Hands onExample

OLCF==-.

DAk RIDGE LEADERSHIP COMPUTING FACILITY ‘

Process/ Thread Affinity Suzanne Parete-Koon
1. Logical Core layout

2. MPI| Example

3. OpenMP Example

U.S. DEPARTMENT OF

 ENERGY % Ok Ripcr NarionaL Lasoratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Motivation

* Motivation: To show you how to run and compile and application by playing
with core affinity.

« Core affinity is effectively the layout of the processes/threads on the
“cores”.

» Understanding the default layout of threads and process on the cores and
how to manipulate core affinity can help avoid performance bottlenecks.

» With Hyper threading there is an extra layer of complication because each
physical core becomes two logical cores.

* The following will give you an codes to help illustrate the various aprun
options.

> OJLCFeeee

o
0
O
o
, Z
<
=
)
Z

J 810D |edisAyd

9 alo0) |edisAyd

G al0) |eaisAyd

¥ 8109 |eoisAyd

¢ al0) |eoisAyd

Z @109 |eaisAyd

| 8100 |eaisAyd

0 8109 |edisAyd

L3 Cache

NUMA Node 1

G| 810D |eodisAyd

i) @100 [edisAyd

¢l 109 [edisAyd

21 9100 [eoishud

L1 210D [edisAyd

0l 8109 [eodisAyd

6 8109 |eaisAyd

g 2109 |edisAyd

L3 Cache

List of 32 cores via aprun cat /proc/cpuinfo

processor : 0 Physical Core ID

vendor id : Genuinelntel

cpu family :6

model . 45

model name : Xeon(R) CPU E5-2670 0 @ 2.60GHz
stepping 4

cpu MHz : 2601.000
cache size : 20480 KB

physical id 0 (ETYCET
siblings : 16

core id : 0
cpucores :8

4 OLCFeeee

€7 9210) |e2ISo T€ 240D |ed21307

Physical
Core 7
Physical
Core 15

/[940D |e21807 GT 340D |e21807

27 210) |e21807 0€ 940D |e21807

]
—l —

9 940) |ed1307

Physical
Core 6
Physical
Core 14

¥T 240D |e21807

1z 240) [e21807 6¢ 940D |e21807

Physical
Core 5
Physical
Core 13

G 210D |e21807 €T 940D |e21301

0z 210D |e21807 8¢ 910D |ed(301

Physical
Core 4
Physical
Core 12

8107 [eai18oT T 940D |e21801

6T 940D |ed1307 [T 340D |edid07

L3 Cache
NUMA Node 1
L3 Cache

o
0
O
o
. Z
<
=
)
Z

Physical
Core 3
Physical
Core 11

TT 240D |ed1307

9¢ 240) |ed1307

Physical
Core 2
Physical
Core 10

Physical
Core 1
Physical
Core 9

T 940D |e21307

9T 940) |ed1307

Core 0
Physical
Core 8

0 940D |ed1807 g 940) |ed1307

Physical

Instructions

The following example is a simple MPI/Open program,
Xith.c that shows how processes/threads are placed on
the cores. We will use the Intel compiler for most of this.
The exercises are designed to allow you to explore the
core layout and process placement.

1. Login to Eos/Dater and git files/

% module load git.
% git clone https://github.com/olcf/XC30-Training.git
% cd XC30-Training

¢ OLCFeee

Instructions

2. Copy example folder to your scratch area and compile it with the
Intel compiler.

Eos:
%cp —r affinity SMEMBERWORK/projid

%cd SMEMBERWORK/projid/affinity
% cc -openmp Xith.c

Darter:
% cp —r affinity /lustre/snx/username

% module swap PrgEnv-Cray PrgEnv-Intel
% cd /lustre/snx/username/affinity
% cc —openmp Xith.c

7 OLCFeee

Instructions
3. Look at batch script, aff.pbs, and use it to start a job on 1 node.

% vi aff.pbs
% qsub aff.pbs

#!/bin/bash

Begin PBS directives

#PBS -A STFO07

#PBS -N affinity

#PBS -j oe

#PBS -l walltime=00:05:00,nodes=1

End PBS directives and begin shell
commands

cd SMEMBERWORK/stf007

aprun -n 16 ./a.out

8 OJLCFeeee

Instructions

The code is a hello world that prints out the node, rank, thread, and
“logical” core for all the tasks running. Ranks 0 and 1 have been given
some labor- to generate 1000000 random numbers and do some
multiplication. All ranks have a timer.

Test1: What do | get with basic hyper threading?
Try no hyper threading : aprun —n 16
Try aprun —n 32 (what did we forget?!)
Try aprun —n 32 —|2

' OLCFeeee

aprun -n32 -j2 ./a.out
Consecutive ranks fall on the same physical core.

Physical
Core 0O

o
)
—
(e}

O

©

2
Qo
o

-

Logical Core 16

Rank O, Node 00763, Core O ,physical 0
Rank 1, Node 00763, Core 16, physical O
Rank 2, Node 00763, Core 1, physical 1
Rank 3, Node 00763, Core 17, physical 1

Rank 30, Node 00763, Core 15, physical 31
Rank 31, Node 00763, Core 31, physical 31

Physical Physical Physical Physical Physical
Core 1 Core 2 Core 3 Core 4 Core 5

Logical Core 1
Logical Core 17
Logical Core 2
Logical Core 18
Logical Core 3
Logical Core 19
Logical Core 4
Logical Core 20
Logical Core 5
Logical Core 21

Physical
Core 6

Logical Core 6
Logical Core 22

Physical
Core 7

Logical Core 7
Logical Core 23

Instructions Test 2

What happens if | use hyper threading on an unpacked
node?

Here we will look at the effect of the core affinity aprun
option, cc.

-cc enables you to bind a processing element (pe) to a
particular CPU or a subset of CPUs on a node in a
controlled manner.

To get the details:
%man aprun

1 OLCFeeee

Instructions Test 2

Lets look at the default cc behavior
Try % aprun —n 4 —j2 ./a.out

Physical Physical Physical Physical Physical Physical Physical Physical
Core 0O Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

o
()
—
(e}

O

©

=
oo
o

-

Logical Core 16
Logical Core 1
Logical Core 17
Logical Core 2
Logical Core 18
Logical Core 3
Logical Core 19
Logical Core 4
Logical Core 6
Logical Core 7

Instructions Test 2

-cc 0-3 will bind the first 4 successive ranks to the first 4
successive cores.

Try % aprun —n 4 —j2 —cc 0-3 ./a.out

Try % aprun —n 4 ./a.out (Should look familiar)

Physical
Core 0O

Logical Core 16

o
()
—
(e}

O

©

=
oo
o

-

Physical
Core 1

Logical Core 1
Logical Core 17

Physical
Core 2

Logical Core 2
Logical Core 18

Physical
Core 3

Logical Core 3
Logical Core 19

Physical
Core 4

Logical Core 4
Logical Core 20

Physical
Core 5

Logical Core 5
Logical Core 21

Physical
Core 6

Logical Core 6
Logical Core 22

Physical
Core 7

Logical Core 7
Logical Core 23

Instructions Test 2

-cc 0-3 will bind the first 4 successive ranks to the first 4
successive cores. The default is —cc cpu which binds
ranks to each “core” round robin on the node.

Try % aprun —n 4 ./a.out
Should look familiar

Physical
Core 0O

Logical Core 16

o
()
—
o

O

©

=
oo
o)

-

Physical
Core 1

Logical Core 1
Logical Core 17

Physical
Core 2

Logical Core 2
Logical Core 18

Physical
Core 3

Logical Core 3
Logical Core 19

Physical
Core 4

Logical Core 4
Logical Core 20

Physical
Core 5

Logical Core 5
Logical Core 21

Physical
Core 6

Logical Core 6
Logical Core 22

Physical
Core 7

Logical Core 7
Logical Core 23

Test 3 Threading
Modify your batch script:

5 OJLCFeee

% vi aff.pbs

#!/bin/bash

Begin PBS directives

#PBS -A STFO07

#PBS -N affinity

#PBS -j oe

#PBS -l walltime=00:05:00,nodes=1
End PBS directives and begin shell
commands

export OMP_NUM_THREADS=16
cd SMEMBERWORK/stf007
aprun—-n 2 —d 16 —j2 ./a.out

Test 3 Threading
Modify your batch script:

6 JLCFeeee

% vi aff.pbs

#!/bin/bash

Begin PBS directives

#PBS -A STFO07

#PBS -N affinity

#PBS -j oe

#PBS -l walltime=00:05:00,nodes=1
End PBS directives and begin shell
commands

export OMP_NUM_THREADS=16
cd SMEMBERWORK/stf007
aprun—n 2 —d 16 —j2 ./a.out

% qgsub aff.pbs

Instructions Test 3 Threading

The -d option assigns depth; the number of cores per
processing element.

In this case our processing element (pe) is an MPI task
that spawns 16 threads.

We gave the pe a depth of 16 so, 16 threads use 16
cores.

7 OLCFeeee

Test 3 Threading
Modify your batch script:

8 OJLCFeeee

% vi aff.pbs

#!/bin/bash

Begin PBS directives

#PBS -A STFO07

#PBS -N affinity

#PBS -j oe

#PBS -l walltime=00:05:00,nodes=2
End PBS directives and begin shell
commands

export OMP_NUM_THREADS=16
cd SMEMBERWORK/stf007
aprun—n 2 —d 16 ./a.out

% qgsub aff.pbs

Instructions MPI Example

For many more examples with this code of how to
see the man page for aprun.

Example 7: Optimizing NUMA-node memory references (-S option)

This example uses the =S option to restrict placement of PEs to one
per NUMA node. Two compute nodes are required, with one PE on NUMA
node ® and one PE on NUMA node 1:

% aprun -n 4 -S 1 ./xthi | sort
Application 225117 resources: ~Bs, stime ~@s

Hello from rank @, thread @, on nid@@@43. (core affinity = @)
Hello from rank 1, thread @, on nid@0043. (core affinity = 4)
Hello from rank 2, thread @, on nid@0044. (core affinity = @)
Hello from rank 3, thread @, on nid@@@44. (core affinity = 4)

Example 8: Optimizing NUMA-node memory references (-sl option)

This example runs all PEs on NUMA node @; the PEs cannot allocate
remote NUMA node memory:

% aprun -n 8 -s1 @ ./xthi | sort
Application 225118 resources: utime ~Bs, stime ~@s

Hello from rank @, thread @, on nid@0028. (core affinity = @)
Hello from rank 1, thread @, on nid@0028. (core affinity = 1)
Hello from rank 2, thread @, on nid@@828. (core affinity = 2)
Hello from rank 3, thread @, on nid@0028. (core affinity = 3)
Hello from rank 4, thread @, on nid@0029. (core affinity = @)

o OLCES ™ _

Questions?

20 JLCFeeee

Hyper Threading /proc/cpuinfo

Default is to run with one process/thread per physical
core. aprun option —j2 allows two processes per physical
core. “Hyper Threading “on”.

To see what that looks like on Eos:

e0s% qsub -|I —A projID -Inodes=1,walltime=01:00:00
eos-login2% cd $SMEMBERWORK/projid
[eos-login2% aprun cat /proc/cpuinfo

To see what that looks like on Darter
Darter% qsub -I —A PrgID 3 -Isize=32,walltime=01:00:00
Darter% cd lustre/snx/username

Darter% aprun cat /proc/cpuinfo
21 JLCF eoee

aprun -n32 -j2 -cc 0-31 ./a.out

Consecutive ranks do not fall on the same physical core.

Rank 0, Node 00763, Core 0 ,phyical core 0
Rank 16, Node 00763, Core 16, physical core O

Rank 1, Node 00763, Core 1, physical corel
Rank 17, Node 00763, Core 17, physical corel

Rank 2, Node 00763, Core 2, physical core2
Rank 18, Node 00763, Core 18, physical core2

Rank 15, Node 00763, Core 15,Physical core 16
Rank 31, Node 00763, Core 31, Physical core 16

2 OLCFeee

aprun -n32 -j2 —cc numa_node ./a.out

This allows process to migrate with in a nuam domaine

Rank O, Node 00757, Core 0-7,16-23
Rank 1, Node 00757, Core 0-7,16-23
Rank 2, Node 00757, Core 0-7,16-23

Rank 29, Node 00757, Core 8-15,24-31
Rank 30, Node 00757, Core 8-15,24-31
Rank 31, Node 00757, Core 8-15,24-31

You would need to user —cc numa_none if you were trying to use
Opemp in the Intel compiler enviroment with thread depth that divides
evenly in to the nubmer of “cores”.

BOLCFeee

