Large Scale Spatiotemporal Data Mining

Raju Vatsavai

Geospatial Data Sciences

Computational Sciences and Engineering Division

Big Spatial Data

2 Managed by UT-Battelle for the Department of Energy 5TB/day – Heterogeneous data

Part 1: Monitoring

Finding change patterns: Veg. damages

AWiFS (56 m, 4B, 5d) •Moderate spatial, Moderate temporal •Used for crop type and condition extraction •Not good for changes at building level

Finding change patterns: infrastructure damages

Haiti Earthquake Damages

Finding change patterns: new construction

China – New Construction (QuickBird)

Understanding seasonal patterns

AVHRR NDVI 1KM (1981-2000)

Example Change

Biomass Monitoring: Architecture

- Each Tile = 4800 x 4800 = 23,040,000 (250m)
- 16-bit, 1 Band = 44 MB
- 10 Trillion time series at Global Scale
- Temporal: Daily to Weakly composite

Change Detection Using Gaussian Process Model

- MODIS NDVI Time Series from Iowa
 - 6 years (2001 2006)
 - 23 observations per year
- Trained for first 5 years and monitored last year
- Accuracy was 88% on a validation set consisting of 97 labeled time series with 13 true changes

Varun Chandola, Ranga Raju Vatsavai: Scalable Time Series Change Detection for Biomass Monitoring Using Gaussian Process. NASA <u>CIDU 2010</u>: 69-82 (One of the best papers, invited to SADM Journal). ¹¹ Managed by UT-Battelle for the Department of Energy

Bitemporal Changes

- Point based at individual pixel (or small neighborhood)
- Mostly univariate
- Multivariate (e.g., MAD) techniques produce multi-band change maps
- Mostly the output is continuous (requires thresholding)

Experimental Setup

- Kacha Garhi Camp, Pakistan
- Established 1980 for Afghan Refugees
- QuickBird (2004 and 2009, 4B, 2.4m)

Comparison of Performance

Difference

14 Managed by UT-Battelle for the Department of Energy

Probabilistic

• Each Tile = 4800 x 4800 = 23,040,000 (250m)

- (1m) => 1,440,000,000,000 = 1,373,291 MB
- Bands = 1 ~ 240; Derived Features ~ 250
- Temporal = ~ 18-22 days; 10's of satellites

Thematic Classification

• Increasing spectral resolution: 4 to 224 Bands

Challenges

- #of training samples ~ (10 to 30) * (number of dimensions)
- Costly ~ \$500-\$800 per plot (depends on geographic area)
- Accessibility Private/Privacy issues (e.g., USFS may average 5% denied access)
- Real-time Emergency situations, such as, forest fires, floods
- Aggregate Classes (Agriculture Corn, Soybean, ...)
- Spatial autocorrelation

Solution: Semi-supervised Learning

EM to estimate GMM parameters

• E-Step

$$e_{ij} = \frac{\left|\hat{\Sigma}_{j}^{k}\right|^{-1/2} \exp\left\{-\frac{1}{2}\left(x_{i} - \hat{\mu}_{j}^{k}\right)^{T} \hat{\Sigma}_{j}^{-1,k}\left(x_{i} - \hat{\mu}_{j}^{k}\right)\right\}}{\sum_{l=1}^{M} \left|\hat{\Sigma}_{l}^{k}\right|^{-1/2} \exp\left\{-\frac{1}{2}\left(x_{i} - \hat{\mu}_{l}^{k}\right)^{T} \hat{\Sigma}_{l}^{-1,k}\left(x_{i} - \hat{\mu}_{l}^{k}\right)\right\}}$$

M-Step

ithdata vector, jth class

Semi-supervised Learning

10 Classes, 100 Training Samples (10-30) x No of dimensions / class

Supervised (BC) vs. Semi-supervised (BC-EM)

18 Managed by UT-Battelle for the Department of Energy

Small Subset of 20 Training Samples

20 labeled + 80 unlabeled samples

Ranga Raju Vatsavai, <u>Shashi Shekhar, Thomas E. Burk: A Semi-Supervised Learning Method for Remote Sensing Data Mining.</u> ICTAI 2005: 207-211

Solution: Gaussian Process (GP) Classification

• Change of distribution over space is modeled by

Goo Jun, Ranga Raju Vatsavai, Joydeep Ghosh: Spatially Adaptive Classification and Active Learning of Multispectral Data with Gaussian Processes. SSTDM 2009: 597-603

Challenge: Multi-temporal Classification

AWiFS (May 3, 2008; FCC (4,3,2))

AWiFS (July 14, 2008; FCC (4,3,2))

20 Managed by UT-Battelle for the Department of Energy

Thematic Classes: C-Corn, S-Soy

Multi-view Approach

- Multi-temporal images are different views of same phenomena
 - Learn single classifier on different views, chose the best one through empirical evaluation
 - Combine different views into a single view, train classifier on single combined view – stacked vector approach
 - Learn classifier on single view and combine predictions of individual classifiers – multiple classifier systems
 - Bayesian Model Averaging
 - Co-training
 - Learn a classifier independently on each view
 - Use predictions of each classifier on unlabeled data instances to augment training dataset for other classifier

Varun Chandola, Ranga Raju Vatsavai: Multi-temporal remote sensing image classification - A multi-view approach. CIDU 2010: 258-270

Class	Training	Validation
Corn	261	261
Soybean	225	225
Alfa alfa	27	27
Grass	189	180
Water	18	18
Developed	90	99
Deciduous Forest	117	117
Wetlands Forest	18	36
Total:	945	963

Beyond Pixels and Objects: Complex Patterns

 Classes that cannot be separated by looking at pixels in isolation

Objects may be same (e.g., Buildings, Roads, ...), but not the spatial patterns (neighborhoods)

Objective: Finding Complex Patterns

23 Managed by UT-Battelle for the Department of Energy <u>ACAK</u> <u>RIDGE</u> National Laboratory

Multiple Instance Learning

 Reasoning with content in a grid (block, segment, object) rather than aggregate (average) information

FCC Image

MIL Classified Image Overlay on FCC

Searching for patterns

- Single Category Detection
 - Predict if a given visual category is present in a given image
- Content based image retrieval
 - Given query image, find similar images
- Structure Recognition
 - Structurally distinct objects within one class

Goal: Turn image pixels into semantic information for the analyst...

for the Department of Energy

. National Laboratory

Image Classification

 How about highresolution images and semantic labels?

 Does this kind of thematic classification make sense for indentifying nuclear power plant? Can these thematic classes imply above image as nuclear plant?

What is missing?

Containment/ Building

Turbine Generator Cooling Towers Semantics: Set of objects like: Switch yard, **Containment Building**, **Turbine** Generator, Cooling **Towers** AND **Their spatial** arrangement **=> may** imply a semantic label like "nuclear power plant"

No of Visual Words and topics

Ranga Raju Vatsavai, Anil Cheriyadat, Shaun S. Gleason: Unsupervised Semantic Labeling Framework for Identification of Complex Facilities in High-Resolution Remote Sensing Images. <u>SSTDM 2010</u>: 273-280

Coal, Nuclear, Airport Images

31 Managed by UT-Battelle for the Department of Energy

Part 2: Computational Challenges

Computational and I/O challenges

\mathbf{i}	Source	Dataset Characteristics	Volume
	Overhead Images	•Resolution: High (0.6 to 30 m) and moderate (56 m to 1 km)	0.5 PB (image size with features ranges from a GB to TB)
	Terrestrial Images	•Small sized photographs: 12 million images (web scale: ~1 Billion images)	2 TB (images range from few KB to 0.5 MB)

GP Change Detection – Computational Challenges

 Size of the covariance matrix grows quadratic with length of time series

 $\log |K|$

• Need to compute

- Not suitable for big time series
- Hyper-parameter estimation for p time series simultaneously is O(p*t³)

- AWiFS Satellite Data Global spatial : 56m, Temporal: 5 days
- MODIS 250m Temporal: 1 day
- Eddy Flux Sensors Temporal: 15 minutes
- ECG Time Series Temporal: ~ 0.2sec

GP Change: Sequential Results

- Compared with Cholesky decomposition based solution
- C implementation
 - CBLAS library for basic operations
 - CLAPACK library for Cholesky decomposition

National Laboratory

Parallelization Results

- System
 - FROST: An SGI Altrix ICE 8200 Cluster at ORNL
 - 128 compute nodes each having 16 virtual cores and 24 GB of RAM
- Task is to estimate hyper-parameters of 1 million NDVI time series

Distributed GMM Clustering

Expectation
 Maximization is a local optimization algorithm

A A A A A

Different
 initialization

Multiple sampling

Local model at each / node

Global model from local models

MapReduce Implementation KLDivergence

Pair-wise

Str OAK <u>RIDGE</u> National Laboratory

Shared Memory, GPUs,

On GPU (GTX 285, 240
 CUDA Cores, 1GB)

- •GMM Clustering ~ 20x to 70x
- Multiple Instance Learning

 Citation-KNN based approach: O(n²Nd)

•Can we reduce "n": O(Nd)^{*n*}

Multidimensional
 Spectral Hashing

Length of median is bounded by:

$$b < m_a < c$$

From Apollonius' Theorem:

$$m_{a} = \sqrt{\frac{2b^{2} + 2c^{2} - a^{2}}{4}}$$

$$\therefore \text{ for small } a: (a \to 0)$$

$$b \le m_{a} \le c$$

$$m_{a} = \sqrt{\frac{2(b^{2} + c^{2})}{4}} = \sqrt{\frac{b^{2} + c^{2}}{2}} = b = c$$

$$\sum_{\text{National Laboratory}}^{\text{OAK}}$$

Parallel Citation-KNN

Divide and conquer parallelization strategy

- resolution, 3 bands
- 1,000x1,000: 1M pixels
- 10x10 block: 10K blocks
- Sequential Performance
 - 27.8 Hours
- Efficient C-kNN
 - 22.22 Hours
- Parallel C-kNN - 2.62 Hours

Conclusions

- Developed several innovative solutions that address big spatiotemporal data challenges
 - Semi-supervised learning
 - Spatial Classification
 - Temporal Classification
 - Complex Pattern Classification
 - Semantic Classification
- Monitoring large regions
 - Online, Scalable
- Parallel Algorithms are needed if this framework needs to be operational
 - Shared memory
 - Distributed memory
 - Cloud computing

Future Directions

- Big geospatial data management and analytics
 - National security (Imagery, Live video feeds, Sensors, Web, ...)
 - Social media mining (12TB Tweets/day)
- Massively Parallel Processing DBMS
 - Greenplum: spatial data extensions
- NoSQL Databases for spatiotemporal data – Extensions: SciDB, CouchDB, …
- Hadoop/Hive, ...
- Parallelization of data mining/machine learning algorithms on heterogeneous architectures
 Integration with parallel I/O (ADIOS)

Questions/Comments/Suggestions? Email: vatsavairr@ornl.gov

Collaborators:

B. Bhaduri, V. Chandola, E. Bright, M. Tuttle, A. Cheriyadat, J. Graesser, R. Sukumar, C. Symons, S. Klasky

Research Supported by:

ORNL/LDRD, DOE/NNSA, Unnamed

