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Data Analysis and Visualization of
“Big Data” from HPC



What is “Big Data”?

• Big data is…

• “Large”: Beyond the capabilities of “ordinary” techniques

• HPC has been doing this for decades:

• Using datasets from large-scale simulation of physical phenomena

Extracting meaning from large 
sets of digital information



Data may be the “fourth pillar” of science
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So what’s all the hype about?

• Much of the hype of the last two years has been about extracting 
meaning…

• …from large unstructured and semi-structured datasets

• …from the Business Intelligence community

• …using scalable analysis and storage tools like:
Hadoop, Cassandra, HBase, Hive, Pig, MongoDB, …

• Some successes in scientific computing for unstructured data



Petascale machines are solving important scientific 
problems through the generation and analysis of large 
datasets

Physics of high-temperature 
superconducting cuprates

Chemical structure of HIV viral 
envelope

Global climate simulation of CO2

dynamics and biochemistry

Biological conversion of cellulosic 
feedstock for biofuels

Three-dimensional simulation of 
blood flow

Combustion of turbulent lean fuel 
mixtures



Current success comes from having tools that 
scale to the HPC datasets

• Analysis methods are generally the same as in serial

• It’s the tools and techniques that must scale

• SPMD data parallelism has taken us far -> Petascale+

I/O
Decomposed 

data set
Parallel
Analysis

Code

Rendering/
compositing



Pipeline visualization



A lot of success has been through data flow 
networks (pipelines)

• Different input data formats:

• NetCDF, HDF, text, CSV, PDB, ADIOS, …

• Different types of data operations:

• Slicing, resampling, mesh transforms, filtering, …

• Different ways of drawing on-screen:

• Pseudocolor, isosurfaces, volume rendering, …

These are independent of each other



Make these independent modules

This is a
data flow network

• Data reading

• Data operations

• Data plotting



Many software systems use data flow networks

• VTK
• VisIt, ParaView

• AVS/Express
• SCIRun
• COVISE
• …



We’ve scaled to trillions of mesh cells

2T cells, 32K procs

Machine Type Problem Size # cores
Jaguar Cray XT5 2T 32k

Franklin Cray XT4 1T, 2T 16k, 32k

Dawn BG/P 4T 64k

Juno Linux 1T 16k, 32k

Ranger Sun Linux 1T 16k

Purple AIX 0.5T 8k

Since this work, people have
surpassed 8 trillion cells = 20,0003

cells.

• Weak scaling study 2009 (isocontouring, 
volume rendering): ~63 million cells/core



The “Three V’s” of big data as applied to HPC

Volume Variety

VelocityThere are 
other V’s:

Veracity, Value, 
Validity, 
Voldemort?



The “Three V’s” of big data as applied to HPC

• Volume:

• Increasing mesh resolution

• Increasing temporal complexity

• Variety:

• Higher-dimensional data

• Increasing multi-variance

• Complex data models

• Ensembles, parameter studies

• Velocity:

• Future hardware constraints will limit I/O



Data scale limits scientific understanding

• Spatial resolution increasing in many domains

• Too many zones to see on screen (with or without high-res Powerwall)

• Temporal complexity increasing

• Climate simulations will have 100,000s of time steps

• Manually finding temporal patterns is tedious and error-prone

• Multivariate overload

• Climate simulations have 200-400 variables

• Growing to thousands

• Issues of data models and domain-specific data

• E.g., Multi-group radiation fields



Common Themes in Mathematics for 
Data

Computation Mode Memory 
Architecture

Data Partition
Availability Data Passes

Serial or 
Multithreaded contiguous N/A (all) many

Distributed partitioned all many

Out-of-Core partitioned one-at-a-time one or few

Streaming/
in situ partitioned one-at-a-time one

Mathematics 
needed

partition coupling 
math

updating via partition 
coupling math

one-pass updating via 
partition coupling math

Minimizing data access (energy) pushes everyone toward 
one-pass (one-touch) updating.



Prediction of Ice and Climate Evolution at 
Extreme Scales (PISCEES)

• SciDAC Project that is: 

• Developing robust, accurate, and scalable 
dynamical cores for ice sheet modeling on a variety 
of mesh types

• Evaluate ice sheet models using new tools for V&V 
and UQ

• Integrate these models and tools into the Community 
Ice Sheet Model (CISM) and Community Earth 
System Model (CESM)

• Simulate decade-to-century-scale evolution of the 
Greenland and Antarctic ice sheets

PI: William Lipscomb, Philip Jones (Acting)
LANL



Data set structure

• Structured NetCDF files

• Ice defined by two variables: topg, thk

• Ice flow sheets defined by N levels

land height

ice thickness

Ice sheet mesh



Flow Analysis in PISCEES



We have a scalable integral curve algorithmParallelize 
over blocks

Parallelize 
over seeds

• Use a combination of seed and block parallelization

• Dynamically steer computation

• Allocate resources where needed

• Load blocks from disk on demand

• Parallelize over seeds and blocks

• Goals:

1.Maximize processor utilization

2.Minimizes IO

3.Minimizes communication

• Works adequately in all use cases
D. Pugmire, H. Childs, C. Garth, S. Ahern, G. Weber, “Scalable Computation of Streamlines on 
Very Large Datasets,” Proceedings of Supercomputing 2009, Portland, OR, November, 2009 



Parallel Integral Curve System (PICS)

Data flow network
Pipeline

Filter Filter Filter Render

PICS Filter



PICS Filter

PICS Filter Design

Instantiate 
particles

Advance 
particles

Evaluate 
velocity

Analyze 
step

Create 
output

Parallelization



“Distance Traveled” operator

12.83



Results

Steady state flow distance traveled 

1 year of travel 10 years of travel



Big Data Exploration Requires Flexibility in 
Analytics

• Analytics for not-so-big data:

• Science produces great many 
algorithms

• Often redundant and related

• Statistics and mathematics prune, 
generalize, and connect

• Still we have hundreds of statistics 
and mathematics books on data 
analytics

No reason to expect big data less needy than not-so-big data
Flexibility and a big toolbox are critical for exploration

Need for analytics diversity persists for big data



Programming with Big Data in R: pbdR 

• R has unmatched diversity and flexibility for data

• Goals:

• Shorten time from big data to science insight

• Productivity, Portability, Performance

• Approach:

• Implicit management of distributed data details

• Scalable, big data analytics with high-level syntax

• Identical syntax to serial R

• Powered by state of the art scalable libraries

• Free* R packages

*MPL, GPL and BSD licensed

pbdR  Core  TeamGeorge 
Ostrouchov1,2, Team Lead
Wei-Chen Chen1Pragnesh 
Patel2Drew Schmidt2

1Oak Ridge National Laboratory
2University of Tennessee



High-Level Syntax

Cov.X <- cov(X) Cov.X <- cov(X)

N <- nrow(X)mu <- colSums(X) / NX <-
sweep(X, STATS=mu, MARGIN=2)Cov.X <-
crossprod(X.spmd) / (N-1)

N <- allreduce(nrow(X))mu <-
allreduce(colSums(X) / N)X <- sweep(X, 
STATS=mu, MARGIN=2)Cov.X <-
allreduce(crossprod(X)) / (N-1)

Covariance

D
ev

el
op

er
 

Linear Models
Lm.X <- lm.fit(X, Y) Lm.X <- lm.fit(X, Y)

tX <- t(X)A <- tX %*% XB <- tX %*% 
Yols <- solve(A) %*% B

tX <- t(X)A <- allreduce(tX %*% X)B <-
allreduce(tX %*% Y)ols <- solve(A) %*% B

D
ev

el
op

er
 



A High-Level Language for Big Data Analytics

Distributed 
Matrix 
Class

Built on 
standard 
parallel 
libraries

Managed 
block 

distribution

Parallel 
data 

access



Promising Scalability

Nautilus Kraken



Promising Scalability

Nautilus

Gaussian data generation



Performance is highly dependent upon I/O rates

2T cells, 32K procs

• Weak scaling study 2009 (isocontouring, 
volume rendering): ~63 million cells/core

•Appx I/O time: 2-5 minutes
•Appx processing time: 10 seconds

Machine Type Problem Size # cores
Jaguar Cray XT5 2T 32k
Franklin Cray XT4 1T, 2T 16k, 32k
Dawn BG/P 4T 64k
Juno Linux 1T 16k, 32k
Ranger Sun Linux 1T 16k
Purple AIX 0.5T 8k



Hardware technology curves at the exascale: ~2018

• Billion-way concurrency

• Constrained memory environment

• Very constrained I/O
(in relation to compute capability)

NSF CIF21: “Computing 
power, data volumes, software, 
and network capacities are all 
on exponential growth paths.”



Node Memory
400 PB/s
Node Memory
400 PB/s

Interconnect (10% Staging Nodes)
10 PB/s
Interconnect (10% Staging Nodes)
10 PB/s

Storage
60 TB/s
Storage
60 TB/s

Computation
8 EB/s
Computation
8 EB/s

Off-Line 
Visualization

Co-Scheduled 
Visualization

Embedded 
Visualization

Visualization thanks to Ken Moreland



Implications for analysis & visualization

• Extremely limited ability to move data off HPC resource

• The de-coupling of simulation codes and visualization codes can no longer 
continue

• Extremely limited memory space

• Extreme concurrency will break most communication models

• Pure MPI already breaking at the petascale

• Fine degree of data parallelism will break most data processing models



Implications for visualization & analysis

• Massive concurrency across nodes

• New parallel methodologies avoid scaling limits

• e.g., hybrid and multi-level parallelism

• In situ analysis codes must be commensurate with simulation codes’ parallelism

• Massive concurrency within nodes

• Thread- and data-level parallelism

• Accelerators/GPUs today also have discrete memory

• Current vis GPU use generally limited to rendering

Predicted Exascale Machines
Node Concurrency 1,000 - 10,000
Number of Nodes 1,000,000 - 100,000
Total Concurrency 1 billion



So what do we do?

• We’ve had a lot of success moving processing closer and closer to the 
data.

• Medium-term goal: Take the final step in moving processing closer to the 
data

• Right to the source, in memory where it’s generated

• Reduce data every step of the way to the user

• All data visualization (and analysis) becomes remote

• Long-term goal: Move data processing everywhere the data lives



Injection of analysis into I/O pipelines

• Leverages existing code methods for data movement

• Lots of compute available

• Exploits high-capacity HPC interconnect

• Possible to annotate, reduce, and reorder data in flight

• I/O is the primary bottleneck, so it’s the logical place to begin adaptation

• Challenges:

• Memory-constrained

• Impossible to do serendipitous discovery with in situ alone

• Temporal analysis can be difficult



Goal: Tightly-coupled analysis infrastructures

Simulation

Coupled 
analysis

Post 
processing
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ADIOS: ADaptable I/O System

• An I/O abstraction framework 

• Provides portable, fast, scalable, easy-to-use, 
metadata rich output with a simple API

• Layered software architecture

• Change I/O method on-the-fly

• Abstracts the API from the method used for I/O

• Provides method for injection of analysis and 
visualization



ADIOS: I/O problems and their solutions

• I/O buffering and aggregation:

• Buffering utilizes max I/O bandwidth at writing

• Aggregation utilizes max I/O bandwidth at reading

• Data layout optimization:

• Layout optimization improves read performance

• Reduce synchronization and contention:

• Log-file format and aggregation decreases lock 
contention and decrease network movement

• Scheduled staging decreases impact of 
asynchronous I/O 

5% peak 

0.8% peak 



Success across many application domains

• Fusion:

• Using staging towards predictive capabilities

• Coupled with ParaView, VisIt, and dashboards

• Combustion:

• Orders of magnitude speed improvement for 
checkpoint/restart

• In situ feature detection

• More (astro, AMR,
geophysics, …)



At the same time: Exploit fine-grained parallelism

• Memory space per core may be down in the megabytes to 100s of 
kilobyte range

• (Though HMC’s may alleviate the memory wall and capacity.)

• Data parallelism becomes much more complex at this fine level of detail:

• How to create and exploit search data structures

• How to harness communication hierarchies

• How to handle “ghost” region between data blocks

• Iterative algorithms (e.g., streamlines) become extremely inefficient

• No analysis or visualization algorithms are written this way.
Everything must be rewritten.



Extreme-scale Analysis and Visualization Library: 
EAVL

• Update traditional data model to handle modern simulation codes and a 
wider range of data. Extend current analysis and vis tools to data that 
cannot be approached today.

• Investigate how an updated data and execution model can achieve the 
necessary computational, I/O, and memory efficiency.

• Explore methods for visualization algorithm developers to achieve these 
efficiency gains and better support exascale architectures. Allow easy 
gradual adoption into existing analysis/vis tools.



Three primary activities

• Provide a richer data model for 
scientific data expression

• Provide new execution models for 
constrained memory, advanced 
architectures

• Distributed parallelism, task parallelism, 
thread parallelism

• Provide programming method to 
exploit the above: functor + iterator, 
library of methods
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Promising results to date

• Data thresholding is more memory- and 
computation-efficient.

• Coordinate space transformation moves 
from O(n) to O(1).

• Structured grids are an order of magnitude 
more space efficient.

• Efficient execution on heterogenous 
architectures

• Temporal parallelism provides scalability 
benefits

• In-place processing provides significant 
memory benefits



HPC data is becoming more complex

• Workflow tools are becoming more common:

• Pegasus, Swift, HTCondor, Kepler, Eden, …

• Ensembles are growing larger

• Parameter studies and Design of Experiments are becoming much more 
common

• Tracking provenance is important

• There are no general tools for processing large runs of simulations

The concept of a “data set” is evolving
…becoming more unstructured.
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Turbo Compressor Innovation
Breakthrough aerodynamic design optimization

OLCF Contribution Results

Science Objectives and Impact

• Ramgen Power Systems is developing shock wave 
compression turbo machinery to meet DOE goals for 
reducing Carbon Capture and Sequestration (CCS) 
costs

• Complementary goal: design a gas turbine with 
dramatically lower costs and higher efficiency

• Compressing CO2 to the required 100 atmospheres 
represents approximately 33 percent of the total cost of 
Sequestration

• Transformed Ramgen’s aerodynamic design process
• Observed designs with valuable new characteristics, from 

ensembles not possible without Jaguar
• Created a new workflow paradigm that accelerates design of 

compressors
• Accelerated computational design cycle for turbo machinery from 

months to 8 hours!

Leadership-scale ensemble runs on Jaguar support 
intelligently-driven design optimization

• 50x improvement in code scalability with 
more efficient memory utilization

• Accelerated I/O by 10x with optimizations 
and ADIOS

• Intelligent use of ensembles to explore 
parameter space using 240,000 cores

"The use of Jaguar has cut the projected time from concept to a commercial 
product by at least two years and the cost by over $4 million,” 
-- Ramgen’s CEO and Director Doug Jewett. 

INCITE Project
Allan Grosvenor, Ramgen Power Systems

Allocated hours: 40M
Used hours: 36M
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Science Objectives and Impact
• Predict how many protons and neutrons can be 

bound within a nucleus.
• Identify the nuclear drip lines that denote the 

limits of nuclear binding.
• Project advances toward the vision of “designer 

nuclei,” with uses ranging from potential cancer 
treatments to a better understanding of 
superconductivity. 

Nuclear Physics 
The Limits of the 
Nuclear Landscape

Map of bound even–even nuclei as a function of Z and N. Shown are stable nuclei 
(black), radioactive nuclei (green), mean drip lines with uncertainties (red), and two-
neutron separation line (blue). The inset shows the irregular behavior of the two-neutron 
drip line around Z = 100.

• Custom code (co-authored by OLCF staff 
member Hai Ah Nam) used density functional 
theory to solve the nuclear structure, which 
involved a large algebraic non-linear eigenvalue 
problem.  

• Each ensemble of nuclei took about two hours to 
calculate on 224,256-processors in Jaguar 
system.

• Each run evaluated about 250,000 possible 
nuclear configurations.

OLCF Contribution Science Results
• Accurate calculation of the number of bound nuclei in nature.
• Calculations predicted about 7,000 possible combinations of 

protons and neutrons allowed in bound nuclei with up to 120 
protons. 

• Several leading models of nuclear interaction shown to be largely in 
agreement. 

J. Erier, et al., “The Limits of the Nuclear Landscape” 
Nature, June 2012.

INCITE Project
James Vary, Iowa State University

Allocated hours: 37M
Used hours: 60M
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Science Objectives and Impact
•Determine how much sea level will rise 

based on three climate-change mitigation 
scenarios

•Examine mechanisms involved in sea-
level rise, including ice melt and thermal 
expansion of water

•Quantify sea-level rise in response to 
mitigation strategies

•Used CCSM4 to conduct simulation 
ensembles for each mitigation scenario

•Simulation of 15 separate solutions, 
4,500 total simulation years

OLCF Contribution Science Results
• Sea level will continue to rise in the future, even with aggressive CO2

mitigation scenarios.
• Aggressive mitigation measures strongly affect the rate of increase
• Mitigation buys important time to implement adaptation measures for 

inevitable sea-level rise

Cooling
Stable
Warming

Sea-Level Rise Inevitable
Aggressive Greenhouse Gas
Mitigation Can Help Slow Rate

Sea level will continue to rise due to thermal expansion into 2300 under the most 
aggressive mitigation scenario, (cooling), but the rise will be slowed enough to 
implement adaptation measures. With less aggressive mitigation (stable) and 
(warming), there would be less time for adaptation.

G.A. Meehl, et al., “Relative outcomes of climate change 
mitigation…,” Nature Climate Change, August 2012.

INCITE Project
Warren Washington, NCAR

Allocated hours: 56M
Used hours: 49M
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Science Objectives and Impact
• Test millions of compounds against a specific 

protein receptor using simulations.
• Find the best match between a compound and its 

targeted protein receptor, in hopes 
of creating drugs with a higher degree of 
specificity and less cross-reactivity, as well as 
exploring alternative uses for existing drugs.

• Impact: Drastically decrease the time and money 
spent bringing new, improved drugs to market.

Computational and Molecular Biophysics
High-Performance Computing for Accelerated Drug Discovery

Director’s Discretion Project
Usage between 1/1/2012–9/30/2012
Used 7.6 M hours of allocation, or 110%
Used variations of AutoDock, a General 
Public License, open-source software, 
commonly used for molecular 3D modeling 
in protein-docking simulations. 

OLCF Contribution Science Results
• Successfully screened 2 million compounds against a targeted 

receptor in a matter of days, as opposed to months using 
computing clusters or longer with test-tube methods.

• Allowed scientists to account for specific binding in protein 
receptors as well as structural variations within the receptor.

• Enabled search of a vast library of molecular compounds to find 
alternative uses for existing drugs (i.e. “repurposing”).

Computational approaches are used to describe how molecular compounds 
of a drug candidate (displayed in colored spheres) bind to its specific protein 
receptor target. Image courtesy of Jerome Baudry, UTK & ORNL

S. Ellingson. “Accelerating virtual high-throughput ligand docking,” 
Presented at HPDC12, 2012 .

Discretionary Project
Jerome Baudry, UTK/ORNL

Allocated hours: 7M
Used hours: 8M



Southern California Earthquake Center (SCEC)

San OnofreSan Onofre

1. Hazard map
3. Hazard
disaggregation

4. Rupture model

5. Seismograms

2. Hazard curves

CyberShake workflow
A single large 
HPC simulation 
leads to millions of 
serial analysis 
jobs



What does the future hold for big data from HPC?

• Evolving nature of data sets means new research and development directions. We have no 
general tools to handle these!

• Workflow tools, ensemble processing, and parameter studies ->

• Need to store “meta” information about simulation results.

• Promising: Database storage and query methods. SciDB?

• Scalability limitations of traditional files ->

• Need to store scientific information with new methods.

• Promising: Object stores and access methods

• Fusion of HPC data and observational data ->

• Need for algorithms and methods to expand into new data types.

• New data types and descriptions ->

• Requirement for processing beyond simply distributed-parallel methods

• Promising: “business analytics” methods for unstructured data



We’ve got a lot of work to do!

Thanks for your time!


