
Titan Architecture

Jeff Larkin

Titan Configuration

Name Titan

Architecture XK7

Processor AMD Interlagos

Cabinets 200

Nodes 18,688

CPU

Memory/Node

32 GB

GPU

Memory/Node

6 GB

Interconnect Gemini

GPUs Nvidia Kepler
2

Cray XK7 Architecture

AMD Interlagos Processor
Cray Gemini Interconnect
Lustre Filesystem Basics
Nvidia Kepler Accelerator

Cray XK7 Architecture

AMD Series
6200 CPU

NVIDIA Kepler GPU

1600 MHz DDR3;
32 GB

6GB GDDR5;
138 GB/s

Cray Gemini High
Speed Interconnect

 4

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

XK7 Node Details

● 1 Interlagos Processor, 2 Dies
● 8 “Compute Units”
● 8 256-bit FMAC Floating Point Units
● 16 Integer Cores

● 4 Channels of DDR3 Bandwidth to 4 DIMMs
● 1 Nvidia Kepler Accelerator

● Connected via PCIe Gen 2

To Interconnect

PCIe

HT3

Shared L3 Cache

Shared L3 Cache

HT3

5

6

Interlagos Core Definition

● In order to optimize the utilization of the shared and dedicated
resources on the chip for different types of applications, modern x86
processors offer flexible options for running applications. As a result,
the definition of a core has become ambiguous.

● Definition of a Core from Blue Waters proposal:

● Equivalent to an AMD “Interlagos” Compute Unit, which is an AMD
Interlagos “Bulldozer module” consisting of: one instruction
fetch/decode unit, one floating point scheduler with two FMAC
execution units, two integer schedulers with multiple pipelines and L1
Dcache, and a L2 cache. This is sometimes also called a “Core
Module.” A “core” = “compute unit” = “core module.”

7

Interlagos Processor Architecture

● Interlagos is composed of a
number of “Bulldozer
modules” or “Compute Unit”

● A compute unit has shared
and dedicated components
● There are two independent

integer units; shared L2 cache,
instruction fetch, Icache; and a
shared, 256-bit Floating Point
resource

● A single Integer unit can
make use of the entire
Floating Point resource with
256-bit AVX instructions
● Vector Length

● 32 bit operands, VL = 8
● 64 bit operands, VL = 4

Shared L2 Cache

Fetch

Decode

Shared L3 Cache and NB

FP

Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int

Scheduler

Int

Scheduler

Int Core 0 Int Core 1

Dedicated
Components

Shared at the
module level

Shared at
the chip level

8

Building an Interlagos Processor

● Each processor die is
composed of 4 compute units
● The 4 compute units share a

memory controller and 8MB
L3 data cache
● Each processor die is

configured with two DDR3
memory channels and
multiple HT3 links

S
h

a
re

d
 L

3
 C

a
c
h

e

NB/HT Links Memory Controller

9

Interlagos Die Floorplan

10

Interlagos Processor

● Two die are packaged on a

multi-chip module to form

an Interlagos processor

● Processor socket is called

G34 and is compatible with

Magny Cours

● Package contains

● 8 compute units

● 16 MB L3 Cache

● 4 DDR3 1333 or 1600

memory channels

S
h

a
re

d
 L

3
 C

a
c
h

e

NB/HT

Links

Memory

Controller

S
h

a
re

d
 L

3
 C

a
c
h

e

NB/HT

Links

Memory

Controller

Interlagos Caches and Memory

● L1 Cache
● 16 KB, 4-way predicted, parity protected
● Write-through and inclusive with respect to L2
● 4 cycle load to use latency

● L2 Cache
● 2MB, Shared within core-module
● 18-20 cycle load to use latency

● L3 Cache
● 8 MB, non-inclusive victim cache (mostly exclusive)

● Entries used by multiple core-modules will remain in cache
● 1 to 2 MB used by probe filter (snoop bus)
● 4 sub-caches, one close to each compute module
● Minimum Load to latency of 55-60 cycles

● Minimum latency to memory is 90-100 cycles

12

Two MPI Tasks on a Compute Unit
 ("Dual-Stream Mode")

● An MPI task is pinned to each integer unit

● Each integer unit has exclusive access to an

integer scheduler, integer pipelines and L1

Dcache

● The 256-bit FP unit, instruction fetch, and the L2

Cache are shared between the two integer units

● 256-bit AVX instructions are dynamically

executed as two 128-bit instructions if the

2nd FP unit is busy

● When to use

● Code is highly scalable to a large number of MPI
ranks

● Code can run with a 2GB per task memory
footprint

● Code is not well vectorized

Shared L2 Cache

Fetch

Decode

FP

Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li

n
e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int

Scheduler

Int

Scheduler

Int Core 0 Int Core 1

MPI Task 0 Shared
Components

MPI Task 1

One MPI Task on a Compute Unit
("Single Stream Mode")

● Only one integer unit is used per compute unit

● This unit has exclusive access to the 256-bit FP

unit and is capable of 8 FP results per clock cycle

● The unit has twice the memory capacity and

memory bandwidth in this mode

● The L2 cache is effectively twice as large

● The peak of the chip is not reduced

● When to use

● Code is highly vectorized and makes use of AVX
instructions

● Code benefits from higher per task memory size
and bandwidth Shared L2 Cache

Fetch

Decode

FP

Scheduler

1
2

8
-b

it

F
M

A
C

L1 DCache L1 DCache

1
2

8
-b

it

F
M

A
C

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Integer

Scheduler
Integer

Scheduler

Integer Core

0

Integer Core

1

Idle
Components

Active
Components

One MPI Task per compute unit with Two OpenMP
Threads ("Dual-Stream Mode")

● An MPI task is pinned to a compute unit

● OpenMP is used to run a thread on each
integer unit

● Each OpenMP thread has exclusive access to
an integer scheduler, integer pipelines and L1
Dcache

● The 256-bit FP unit and the L2 Cache is
shared between the two threads

● 256-bit AVX instructions are dynamically
executed as two 128-bit instructions if the 2nd
FP unit is busy

● When to use

● Code needs a large amount of memory per
MPI rank

● Code has OpenMP parallelism at each MPI
rank

Shared L2 Cache

Fetch

Decode

FP

Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int

Scheduler

Int

Scheduler

Int Core 0 Int Core 1

OpenMP
Thread 0

Shared
Components

OpenMP
Thread 1

AVX (Advanced Vector Extensions)

● Max Vector length doubled to 256 bit

● Much cleaner instruction set
● Result register is unique from the source registers

● Old SSE instruction set always destroyed a source register

● Floating point multiple-accumulate
● A(1:4) = B(1:4)*C(1:4) + D(1:4) ! Now one instruction

● Both AMD and Intel now have AVX

● Vectors are becoming more important, not less

16

Running in Dual-Stream mode

● Dual-Stream mode is the current default mode. General use does not
require any options. CPU affinity is set automatically by ALPS.

● Use the aprun -d option to set the number of OpenMP threads per
process. If OpenMP is not used, no -d option is required. The aprun
–N option is used to specify the number of MPI processes to assign
per compute node or -S to specify the number of MPI processes per
Interlagos die. These options are generally only needed in the case of
OpenMP programs or programs needed more memory per process.

17

Running in Single-Stream mode

● Single-Stream mode is specified through the -j aprun option.
Specifying -j 1 tells aprun to place 1 process or thread on each
compute unit.

● When OpenMP threads are used, the -d option must be used to
specify how many threads will be spawned per MPI process. See the
aprun(1) man page for more details. The aprun –N option may be
used to specify the number of MPI processes to assign per compute
node or -S to specify the number of processes per Interlagos die.
Also, the environment variable $OMP_NUM_THREADS needs to be set to
the correct number of threads per process.

● For example, the following spawns 4 MPI processes, each with 8
threads, using 1 thread per compute unit.

OMP_NUM_THREADS=8 aprun -n 4 -d 8 -j 1 ./a.out

18

aprun Examples (XK7)

● No-OpenMP, 16 MPI processes per node
<default>

● No-OpenMP, 8 MPI processes per node

-j 1

● OpenMP, 2 MPI processes, 8 threads per process

-d 8

● OpenMP, 2 MPI processes, 4 threads per process

-d 4 -j 1

● OpenMP, 1 MPI process, 16 threads

-d 16

● OpenMP, 1 MPI process, 8 threads

-d 8 -j 1

19

NUMA Considerations

● An XK7 compute node with 1 Interlagos processors has 2 NUMA
memory domains, each with 4 Bulldozer Modules. Access to memory
located in a remote NUMA domain is slower than access to local
memory. Bandwidth is lower, and latency is higher.

● OpenMP performance is usually better when all threads in a process
execute in the same NUMA domain. For the Dual-Stream case, 8 CPUs
share a NUMA domain, while in Single-Stream mode 4 CPUs share a
NUMA domain. Using a larger number of OpenMP threads per MPI
process than these values may result in lower performance due to
cross-domain memory access.

● When running 1 process with threads over both NUMA domains, it’s
critical to initialize (not just allocate) memory from the thread that will
use it in order to avoid NUMA side effects.

20

21

22

Cray Network Evolution

SeaStar
Built for scalability to 250K+ cores

Very effective routing and low contention switch

Gemini
100x improvement in message throughput

3x improvement in latency

PGAS Support, Global Address Space

Scalability to 1M+ cores

Aries
Cray “Cascade” Systems

Funded through DARPA program

Details not yet publically available

23

Cray Gemini

● 3D Torus network
● Supports 2 Nodes per ASIC
● 168 GB/sec routing capacity
● Scales to over 100,000 network

endpoints
● Link Level Reliability and

Adaptive Routing
● Advanced Resiliency

Features
● Provides global address space
● Advanced NIC designed to

efficiently support
● MPI

● Millions of messages/second

● One-sided MPI
● UPC, FORTRAN 2008 with

coarrays, shmem
● Global Atomics

Hyper Transport 3

NIC 0

Hyper Transport 3

NIC 1

Netlink

48-Port

YARC Router

24

Gemini Advanced Features

● Globally addressable memory provides
efficient support for UPC, Co-array
FORTRAN, Shmem and Global Arrays
● Cray Programming Environment will target this

capability directly

● Pipelined global loads and stores
● Allows for fast irregular communication patterns

● Atomic memory operations
● Provides fast synchronization needed for one-sided

communication models

25

Gemini NIC block diagram

● FMA (Fast Memory Access)
● Mechanism for most MPI transfers
● Supports tens of millions of MPI requests per second

● BTE (Block Transfer Engine)
● Supports asynchronous block transfers between local and remote

memory, in either direction
● For use for large MPI transfers that happen in the background

H
T3

 C
av

e

vc0

vc1

vc1

vc0

LB Ring

LB
LM

N
L

FMA

CQ

NPT

RMT
net req

H

A

R

B

net

rsp

ht p

ireq

ht treq p

ht irsp

ht np

ireq

ht np req

ht np req
net req

ht p req O

R

B

RAT

NAT

BTE

net

req

net

rsp

ht treq np

ht trsp net

req

net

req

net

req

net

req

net

reqnet req

ht p req

ht p req

ht p req net rsp

CLM

AMO
net rsp headers

T

A

R

B

net req

net rsp

S

S

I

D

R
ou

te
r T

ile
s

26

Gemini vs SeaStar – Topology

Module with

SeaStar

Module with

Gemini

Y

X

Z

27

A Question About the Torus…

It looks like for each x,y,z

coordinate, there are two node numbers

associated. Is there some reason for

this? Is each node number actually

indicating 8-cores rather than 16?

Node X Y Z

 0 0 0 0

 1 0 0 0

 2 0 0 1

 3 0 0 1

 4 0 0 2

 5 0 0 2

● Unlike the XT-line of systems,

where each node had an idividual

SeaStar, a Gemini services 2

compute nodes.

● So, 2 compute nodes will have the

same dimensions in the torus in an

XE or XK system.

29

Term Meaning Purpose

MDS Metadata Server Manages all file metadata for filesystem. 1

per FS

OST Object Storage Target The basic “chunk” of data written to disk.

Max 160 per file.

OSS Object Storage Server Communicates with disks, manages 1 or

more OSTs. 1 or more per FS

Stripe Size Size of chunks. Controls the size of file chunks stored to

OSTs. Can’t be changed once file is

written.

Stripe Count Number of OSTs used per file. Controls parallelism of file. Can’t be

changed once file is writte.

Key Lustre Terms

30

Lustre File System Basics

31

File Striping: Physical and Logical Views

32

Single writer performance and Lustre

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
● Unable to take advantage of file system parallelism

● Access to multiple disks adds overhead which hurts performance

 Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

33

Stripe size and I/O Operation size

 Lustre

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

W
ri

te
 (

M
B

/s
)

Stripe Size (MB)

Single Writer
Transfer vs. Stripe Size

32 MB Transfer

8 MB Transfer

1 MB Transfer

● Single OST, 256 MB File Size
● Performance can be limited by the process (transfer size) or file

system (stripe size)

34

● Use the lfs command, libLUT, or MPIIO hints to adjust
your stripe count and possibly size
● lfs setstripe -c -1 -s 4M <file or directory> (160 OSTs, 4MB stripe)

● lfs setstripe -c 1 -s 16M <file or directory> (1 OST, 16M stripe)

● export MPICH_MPIIO_HINTS=‘*: striping_factor=160’

● Files inherit striping information from the parent
directory, this cannot be changed once the file is
written
● Set the striping before copying in files

Lustre: Important Information

35

NVIDIA KEPLER

ACCELERATOR

© NVIDIA Corporation

Tesla K20: Same Power, 3x DP Perf of Fermi
Product Name M2090 K20X

Peak Single

Precision
Peak SGEMM

1.3 Tflops
0.87 TF

3.95 TF

 3.35 TF

Peak Double

Precision
Peak DGEMM

0.66 Tflops
0.43 TF

1.32 TF
1.12 TF

Memory size 6 GB 6 GB

Memory BW (ECC
off)

177.6 GB/s 250 GB/s

New CUDA
Features

-
GPUDirect w/ RDMA,

Hyper-Q, Dynamic
Parallelism

ECC Features
DRAM, Caches &

Reg Files
DRAM, Caches & Reg

Files

CUDA Cores 512 2688

Total Board Power 225W 225W

3x Double Precision

Hyper-Q, Dynamic

Parallelism

CFD, FEA, Finance, Physics

© NVIDIA Corporation

