
Trace-based
Performance
Analysis using
Vampir

Joseph Schuchart

2 Performance Analysis using Vampir

Disclaimer

2 Managed by UT-Battelle
 for the U.S. Department of Energy Overview of Vampir – Jens Domke

Disclaimer

Performance*tools*will*not*
automa1cally*make*you*
code*run*faster.*They*help*
you*understand,*what*your*
code*does**and*where*to*put*

in*work.*

3 Performance Analysis using Vampir

The Vampir Toolset
• Provides detailed insight into parallel applications
• No automatic analysis but sophisticated visualization
• Available modes:

–  Profiling: high-level summary of program behavior
–  Tracing: detailed insight, time-based relations of events

4 Performance Analysis using Vampir

Instrumentation: VampirTrace

• Scalable trace recording infrastructure
•  Insert callbacks for events of interest via

–  Compiler instrumentation (C/C++, Fortran)
–  Binary instrumentation using Dyninst
–  Source rewriting using TAU/PDT
–  Manual instrumentation
–  Instrumented libraries (MPI, libc, Pthread)

• Supports also:
–  MPI, OpenMP, Pthreads
–  Performance metrics (PAPI, resource usage counter)
–  CUDA/CUPTI (also supports OpenACC)

5 Performance Analysis using Vampir

Compiler Instrumentation
• module load vampirtrace
• Use compiler wrapper

• Re-compile & re-link
• Options:

•  -vt:verbose

•  -vt:<seq,mt,hyb,mpi>

•  -vt:inst <compinst, tauinst, dyninst, manual>

•  -vt:help

CC = cc
CXX = CC
F90 = ftn
NVCC = nvcc

CC = vtcc
CXX = vtcxx
F90 = vtf90
NVCC = vtnvcc

6 Performance Analysis using Vampir

Execution

•  Launch as usual
•  Trace recording controlled via environment variables

–  Enable/Disable features
–  Set target directory for trace
–  Control buffer size and number of flushes

•  Trace data is written to OTF files
–  One file per process/thread
–  For (really) large trace runs: use I/O forwarding

7 Performance Analysis using Vampir

Execution: Environment Variables

Environment Variable Description Default
VT_BUFFER_SIZE Size of event buffer 32M
VT_NUM_FLUSHES Maximum number of flushes 1
VT_PFORM_GDIR Directory to hold trace data

8 Performance Analysis using Vampir

Execution: vtsetup

9 Performance Analysis using Vampir

Analysis: Vampir

• Scalable visualization infrastructure
• Arbitrary browsing, selection, and zooming in trace data
• Overview and detailed view of dynamic behavior
• Statistics and Metrics

10th VI-HPS Tuning Workshop, 16-19 October 2012, Garching

Vampir Toolset Architecture - Overview

6

Score-P

Score-P Trace
File

(OTF2)

Vampir 7

Trace
File

(OTF2)

VampirServer

CPU CPU

CPU CPU CPU CPU

CPU CPU
Multi-Core
Program

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

10 Performance Analysis using Vampir

Example Trace: CESM

Main Timeline

Metric (FLOPS)

Stack view

Performance Radar

Communication
Matrix

Function and Function
Group Summary

11 Performance Analysis using Vampir

Case Study: LAMMPS

• C++ Code
–  Lots of function calls
–  Buffers fill up fast

• Approach:
–  Run with a filter

–  Select verbose/uninteresting functions
–  Exclude them from instrumentation

1 MPI_* -- -1
2 * -- 10000

-finstrument-functions-exclude-file-list=/usr/include,include/g++,math_extra
-finstrument-functions-exclude-function-list=pack_3d,map,timing,Timer,operator

12 Performance Analysis using Vampir

Live Demo: LAMMPS trace

1.  Connect with NX to home2.ccs.ornl.gov
2.  ssh -X titan.ccs.ornl.gov
3.  module load vampir
4.  Start vampir
5.  Load trace:

/tmp/proj/trn001/TitanDev/traces/lammps_lq_1/lmp_xk7.vt.otf
/tmp/proj/trn001/TitanDev/traces/lammps_lq_2/lmp_xk7.vt.otf

13 Performance Analysis using Vampir

Questions?

Contact us!
Joseph Schuchart (schuchaj@ornl.gov)
Bldg. 5700 Rm. B206

