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Disclaimer 

2  Managed by UT-Battelle 
 for the U.S. Department of Energy Overview of Vampir – Jens Domke 

Disclaimer 

Performance*tools*will*not*
automa1cally*make*you*
code*run*faster.*They*help*
you*understand,*what*your*
code*does**and*where*to*put*

in*work.*
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The Vampir Toolset 
• Provides detailed insight into parallel applications 
• No automatic analysis but sophisticated visualization 
• Available modes: 

–  Profiling: high-level summary of program behavior 
–  Tracing: detailed insight, time-based relations of events 
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Instrumentation: VampirTrace 

• Scalable trace recording infrastructure 
•  Insert callbacks for events of interest via 

–  Compiler instrumentation (C/C++, Fortran) 
–  Binary instrumentation using Dyninst 
–  Source rewriting using TAU/PDT 
–  Manual instrumentation 
–  Instrumented libraries (MPI, libc, Pthread) 

• Supports also: 
–  MPI, OpenMP, Pthreads 
–  Performance metrics (PAPI, resource usage counter) 
–  CUDA/CUPTI (also supports OpenACC) 
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Compiler Instrumentation 
• module load vampirtrace 
• Use compiler wrapper 

• Re-compile & re-link 
• Options: 

•  -vt:verbose  

•  -vt:<seq,mt,hyb,mpi> 

•  -vt:inst <compinst, tauinst, dyninst, manual> 

•  -vt:help 

CC   = cc 
CXX = CC 
F90  = ftn 
NVCC = nvcc 

CC   = vtcc 
CXX = vtcxx 
F90  = vtf90 
NVCC = vtnvcc 



6 Performance Analysis using Vampir 

Execution 

•  Launch as usual 
•  Trace recording controlled via environment variables 

–  Enable/Disable features 
–  Set target directory for trace 
–  Control buffer size and number of flushes 

•  Trace data is written to OTF files 
–  One file per process/thread 
–  For (really) large trace runs: use I/O forwarding 
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Execution: Environment Variables 

Environment Variable  Description Default 
VT_BUFFER_SIZE Size of event buffer 32M 
VT_NUM_FLUSHES Maximum number of flushes 1 
VT_PFORM_GDIR Directory to hold trace data 
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Execution: vtsetup 
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Analysis: Vampir 

• Scalable visualization infrastructure 
• Arbitrary browsing, selection, and zooming in trace data 
• Overview and detailed view of dynamic behavior 
• Statistics and Metrics 
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Example Trace: CESM 

Main Timeline 

Metric (FLOPS) 

Stack view 

Performance Radar 

Communication 
Matrix 

Function and Function 
Group Summary 



11 Performance Analysis using Vampir 

Case Study: LAMMPS 

• C++ Code  
–  Lots of function calls 
–  Buffers fill up fast 

• Approach: 
–  Run with a filter 
 
–  Select verbose/uninteresting functions 
–  Exclude them from instrumentation 

1 MPI_* -- -1 
2 *     -- 10000 

-finstrument-functions-exclude-file-list=/usr/include,include/g++,math_extra  
-finstrument-functions-exclude-function-list=pack_3d,map,timing,Timer,operator 
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Live Demo: LAMMPS trace 

1.  Connect with NX to home2.ccs.ornl.gov 
2.  ssh -X titan.ccs.ornl.gov 
3.  module load vampir 
4.  Start vampir 
5.  Load trace:  

/tmp/proj/trn001/TitanDev/traces/lammps_lq_1/lmp_xk7.vt.otf 
/tmp/proj/trn001/TitanDev/traces/lammps_lq_2/lmp_xk7.vt.otf 
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Questions? 

Contact us! 
Joseph Schuchart (schuchaj@ornl.gov) 
Bldg. 5700 Rm. B206 


