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Lattice QCD calculations at non-zero baryon density...
using a Taylor expansion
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Motivation: Extending lattice QCD to             

T
 [

M
eV

] QCD

hadron gas

nuclear matter
neutron stars

0

vacuum

quark-gluon-plasma
154(9)

chemical potential µB

Expected phase diagram of QCD:

critical 
end-point

Phases of QCD ?
1) hadronic states at low T, low densities
2) quasi-free quarks and gluons at high T 

and/or high densities

Underlying Mechanisms ?
1) spontaneous chiral symmetry breaking
2) (de-)confinement

Critical end-point?

µB 6= 0
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1) spontaneous chiral symmetry breaking
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� Diverging correlation length and fluctuations.
Universal behavior within a scaling region.

µB 6= 0
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Methodology: Expanding p/T4             

p =
T 3

V
lnZ(T, V, ~µ)

µB > 0• Lattice QCD simulations at                not 
feasible by std. Monte Carlo methods 
(complex action, sign problem)              

hot quarks and gluons in a box:

|~µ| = 0

T-derivatives:
used to calculate the equation of 
state (p,e,s,...)

m-derivatives:
used to study chiral symmetry 
breaking

   -derivatives:
used to study density fluctuations

derivatives of lnZ are widely used 
quantities in thermodynamics

study higher derivatives (n=2-6)

obtain Taylor expansion of lnZ)
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Expansion of the pressure:

X = B,Q, S: conserved charges

Lattice Experiment

generalized susceptibilities

cumulants of net-charge fluctuations
�NX ⌘ NX � hNXi

� only at                ! µX = 0

� only at freeze-out (                          )!µf(
p
s), Tf(

p
s)

µB,Q,S• derivatives of lnZ with respect to               can also be studied in heavy ion collisions

p

T 4
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1X
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Generalized Susceptibilites vs Cumulants
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1) Applications
• Freeze-out condition in heavy ion collisions
• The relevant (strange) degrees of freedom

2) The lattice setup
• Adopted numerical methods
• Lattice sizes and quark mass parameter

3) GPU Acceleration
• Performance of the code
• Computing strategy for Titan

4) Summary
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Applications
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Application I: Probing freeze-out conditions
dN

/d
y
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PLB 673 (2009) 142.

• established method: parse particle yields through the HRG model in order to 
extract freeze-out parameters as function of the collision energy.
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Application I: Probing freeze-out conditions

• new method: match measured cumulant ratios of electric charge fluctuations with 
first principle lattice QCD calculations to eliminate a model dependent analysis step.

L. Kumar, QM’12

BNL-Bielefeld, PRL 109 (2012) 192302

27

Thermometer

R31

Q =SQ σQ

3 /MQ

     is in reasonably good agreement with the 
chemical freeze-out temperature 
T

f

T
f , ch≈160 MeV

but at present large experimental errors for a more precise determination

S. Mukherjee, CPOD’13

match at least to cumulant ratios to obtain       and     , eventually more for 
thermodynamic consistency check

) µf
B T f
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Application II: The relevant degrees of freedom

2

here and hence is well justified. Here µ̂B/S = µB/S/T59

are the dimensionless baryon and strangeness chemical60

potentials. PHRG
|S|=1,M is the partial pressure of all |S| = 161

mesons and PHRG
|S|=i,B are the partial pressures of all |S| = i62

(i = 1, 2, 3) baryons , for µB = µS = 0. For simplicity, we63

have set the electric charge chemical potential µ̂Q = 0.64

To investigate the sDoF we will use the dimensionless65

generalized susceptibilities of the conserved charges66

�XY
mn =

@(m+n)[p(µ̂X , µ̂Y )/T 4]

@µ̂m
X@µ̂n

Y

����
~µ=0

, (2)

where X,Y = B,S,Q and ~µ = (µB , µS , µQ). We also use67

the notations �XY
0n ⌘ �Y

n and �XY
m0 ⌘ �X

m.68

Using the two strangeness fluctuations (�S
2 ,�

S
4 )69

and the four baryon-strangeness correlations70

(�BS
11 ,�BS

13 ,�BS
22 ,�BS

31 ) up to fourth order, we have71

a set of six susceptibilities that can be used to construct72

observables that project onto the four di↵erent partial73

pressures in an uncorrelated hadrons gas introduced in74

Eq. (1).75

M(c1, c2) = �S
2 � �BS

22 + c1v1 + c2v2 , (3)

B1(c1, c2) =
1

2

�
�S
4 � �S

2 + 5�BS
13 + 7�BS

22

�

+ c1v1 + c2v2 , (4)

B2(c1, c2) = �1

4

�
�S
4 � �S

2 + 4�BS
13 + 4�BS

22

�

+ c1v1 + c2v2 , (5)

B3(c1, c2) =
1

18

�
�S
4 � �S

2 + 3�BS
13 + 3�BS

22

�

+ c1v1 + c2v2 . (6)

The combination c1v1 + c2v2 spans a two dimensional76

plane in the 6-dimensional space of susceptibilities on77

which the partial pressure PHRG
S vanishes identically78

when the sDoF are described by a gas of uncorrelated79

hadrons irrespective of their masses. The two additional80

free parameters, c1 and c2, can thus be used to construct81

observables that have identical interpretations in the un-82

correlated hadrons gas, but di↵er under other circum-83

stances, for instance in a medium where the sDoF are84

carried by quark-like quasi-particles. For v1 and v2 we85

choose the following combinations86

v1 = �BS
31 � �BS

11 , (7)

v2 =
1

3
(�S

2 � �S
4 )� 2�BS

13 � 4�BS
22 � 2�BS

31 . (8)

Since in a hadron gas the baryonic sDoF are associated87

with |B| = 1, the baryon-strangeness correlations dif-88

fering by even numbers of µB derivatives are identical,89

giving v1 = 0. v2 can be re-written as the di↵erence of90

two operators [21] each of which correspond to the partial91

pressure of all strange hadrons in an uncorrelated hadron92

gas, leading to v2 = 0. Thus, for a classical uncorrelated93

hadron gas such as the HRG modelM(c1, c2) ! PHRG
|S|=1,M94
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FIG. 1. Two combinations, v1 and v2 [see Eqs. (7-8)], of
strangeness fluctuations and baryon-strangeness correlations
that vanish identically if the sDoF are described by an un-
correlated gas of hadrons. Also shown is the di↵erence of
quadratic and quartic baryon number fluctuations, �B

2 � �B
4 ,

that also vanishes identically when the baryon number carry-
ing degrees of freedom, are described by an uncorrelated gas
of strange as well as non-strange baryons. The shaded region
indicates the chiral crossover temperature Tc = 154(9) MeV
[13] and the line at high temperatures indicates the limit when
the degrees of freedom are non-interacting massless quarks.
The LQCD results for the N⌧ = 6 and 8 lattices are shown
by the open and filled symbols respectively.

and Bi(c1, c2) ! PHRG
|S|=i,B (i = 1, 2, 3), independent of95

the values of c1 and c2. For asymptotically high temper-96

atures, i.e. when the sDoF are non-interacting massless97

quarks, these observables will generically attain di↵erent98

values for di↵erent combinations of (c1, c2).99

Strangeness near the chiral crossover.— Here we inves-100

tigate to what extent sDoF are described by an uncor-101

related hadron gas in the vicinity of the chiral crossover102

temperature Tc = 154(9) MeV [13]. The LQCD results103

for the susceptibilities were obtained for two di↵erent104

lattice spacings (a) corresponding to temporal extents105

N⌧ = 1/aT = 6 and 8 using O(a2) improved gauge106

and Highly Improved Staggered Quark [14] discretiza-107

tion schemes for (2 + 1) flavor QCD. The up and down108

quark masses correspond to a Goldstone pion mass of 160109

MeV and the strange quark mass is tuned to its physical110

value. The susceptibilities were measured on 3000�8000111

gauge field configurations, each separated by 10 molec-112

ular dynamics trajectories, using 1500 Gaussian random113

source vectors for each configuration. Further details of114

the LQCD computations can be found in [5, 13].115

In Fig. 1 we show the LQCD results for the two com-116

binations v1 and v2, see Eq. (7) and Eq. (8), that vanish117

identically in an uncorrelated hadron gas. The LQCD118

data for these two quantities are consistent with zero119

up to Tc and show rapid increase towards their non-120

interacting massless quark gas values just above Tc. In121

Fig. 1 we also show the di↵erence between the quadratic122

(�B
2 ) and the quartic (�B

4 ) baryon number fluctuations123

that also receive contributions from the light up and124

down quarks. In an uncorrelated gas of baryons the dif-125

• cumulants are sensitive to effective charges: compare cumulants from non-
perturbative (lattice) QCD calculations to other scenarios such as an uncorrelated 
gas of hadrons (HRG) or perturbative QCD
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FIG. 3. Baryon-strangeness (top) and electric charge-
strangeness correlations (bottom), properly scaled by the
strangeness fluctuations and powers of the fractional bary-
onic and electric charges [see Eq. (9)]. In the non-interacting
massless quark gas all these observables are unity (shown by
the lines at high temperatures). The shaded regions indicate
the range of perturbative estimates (see text) for all these
observables obtained using one-loop re-summed HTL calcu-
lations [16]. The LQCD results for the N⌧ = 6 and 8 lattices
are shown by the open and filled symbols respectively.

ing quasi-quarks even down to temperatures very close197

to Tc. However, our results involving correlations of198

strangeness with higher power of baryon number and199

electric charge clearly indicate that such a description200

in terms of weakly interacting quasi-quarks can only be201

valid for temperatures T & 2Tc. While the HTL per-202

turbative expansion for ratios involving one derivative of203

the baryonic/electric charges (i.e. �11
XS/�

S
2 and �13

XS/�
S
4 ,204

X = B,Q) start di↵ering from the non-interacting quark205

gas limit at O(↵3
s ln↵s) [18], the same for those involving206

higher derivatives of the baryonic/electric charges (i.e.207

�22
XS/�

S
4 and �31

XS/�
S
4 , X = B,Q) starts at O(↵3/2

s ) [16],208

↵s being the strong coupling constant. Thus, the en-209

hancement of the higher order electric charge/baryon-210

strangeness correlations are probably expected within211

the regime of validity of the weak coupling expansion.212

For temperatures beyond the validity of the weak cou-213

pling expansion, it would be interesting to see whether214

such enhancements indicate a strongly coupled QGP [19]215

without quasi-particles or it signals the presence of col-216

ored bound states [8] and/or density dependent massive217

quasi-particles [20].218

Conclusions.— The LQCD results presented in this pa-219

per show that till the chiral crossover temperature Tc the220

quantum numbers associated with the sDoF are consis-221

tent with those of an uncorrelated gas of hadrons. Fur-222

thermore, up to Tc the partial pressures of the strange223

mesons and baryons are separately in agreement with224

those obtained from the uncorrelated hadron gas using225

vacuum masses of the strange hadrons. Such a hadronic226

description of the sDoF breaks down immediately after227

the chiral crossover region. Moreover, the behavior of228

the sDoF around Tc is quite similar to that involving229

the light up and down quarks. Altogether, these results230

suggest that the deconfinement of strangeness seemingly231

takes place at the chiral crossover temperature. On the232

other hand, our LQCD results involving correlations of233

strangeness with higher powers of baryonic and electric234

charges for T > Tc provide unambiguous evidence that235

the sDoF in the QGP are compatible with the weakly236

interacting quark gas only for T & 2Tc. For the interme-237

diate temperatures, Tc . T . 2Tc, strangeness is non-238

trivially correlated with the baryonic and electric charges239

indicating that the QGP in this temperature regime re-240

mains strongly interacting.241

Although the results presented here were not obtained242

in the limit of zero lattice spacing, the e↵ects of contin-243

uum extrapolations are known to be quite small for our244

particular lattice discretization scheme, especially in the245

strangeness sector [5]. This is also borne out in the very246

mild lattice spacing dependence of our LQCD results go-247

ing from the N⌧ = 6 to the N⌧ = 8 lattices. Thus we248

expect that the continuum extrapolated results will not249

alter the physical picture presented in this paper.250
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here and hence is well justified. Here µ̂B/S = µB/S/T59

are the dimensionless baryon and strangeness chemical60

potentials. PHRG
|S|=1,M is the partial pressure of all |S| = 161

mesons and PHRG
|S|=i,B are the partial pressures of all |S| = i62

(i = 1, 2, 3) baryons , for µB = µS = 0. For simplicity, we63

have set the electric charge chemical potential µ̂Q = 0.64

To investigate the sDoF we will use the dimensionless65

generalized susceptibilities of the conserved charges66

�XY
mn =

@(m+n)[p(µ̂X , µ̂Y )/T 4]

@µ̂m
X@µ̂n

Y

����
~µ=0

, (2)

where X,Y = B,S,Q and ~µ = (µB , µS , µQ). We also use67

the notations �XY
0n ⌘ �Y

n and �XY
m0 ⌘ �X

m.68

Using the two strangeness fluctuations (�S
2 ,�

S
4 )69

and the four baryon-strangeness correlations70

(�BS
11 ,�BS

13 ,�BS
22 ,�BS

31 ) up to fourth order, we have71

a set of six susceptibilities that can be used to construct72

observables that project onto the four di↵erent partial73

pressures in an uncorrelated hadrons gas introduced in74

Eq. (1).75

M(c1, c2) = �S
2 � �BS

22 + c1v1 + c2v2 , (3)

B1(c1, c2) =
1

2

�
�S
4 � �S

2 + 5�BS
13 + 7�BS

22

�

+ c1v1 + c2v2 , (4)

B2(c1, c2) = �1

4

�
�S
4 � �S

2 + 4�BS
13 + 4�BS

22

�

+ c1v1 + c2v2 , (5)

B3(c1, c2) =
1

18

�
�S
4 � �S

2 + 3�BS
13 + 3�BS

22

�

+ c1v1 + c2v2 . (6)

The combination c1v1 + c2v2 spans a two dimensional76

plane in the 6-dimensional space of susceptibilities on77

which the partial pressure PHRG
S vanishes identically78

when the sDoF are described by a gas of uncorrelated79

hadrons irrespective of their masses. The two additional80

free parameters, c1 and c2, can thus be used to construct81

observables that have identical interpretations in the un-82

correlated hadrons gas, but di↵er under other circum-83

stances, for instance in a medium where the sDoF are84

carried by quark-like quasi-particles. For v1 and v2 we85

choose the following combinations86

v1 = �BS
31 � �BS

11 , (7)

v2 =
1

3
(�S

2 � �S
4 )� 2�BS

13 � 4�BS
22 � 2�BS

31 . (8)

Since in a hadron gas the baryonic sDoF are associated87

with |B| = 1, the baryon-strangeness correlations dif-88

fering by even numbers of µB derivatives are identical,89

giving v1 = 0. v2 can be re-written as the di↵erence of90

two operators [21] each of which correspond to the partial91

pressure of all strange hadrons in an uncorrelated hadron92

gas, leading to v2 = 0. Thus, for a classical uncorrelated93

hadron gas such as the HRG modelM(c1, c2) ! PHRG
|S|=1,M94

χ2
B-χ4

B
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FIG. 1. Two combinations, v1 and v2 [see Eqs. (7-8)], of
strangeness fluctuations and baryon-strangeness correlations
that vanish identically if the sDoF are described by an un-
correlated gas of hadrons. Also shown is the di↵erence of
quadratic and quartic baryon number fluctuations, �B

2 � �B
4 ,

that also vanishes identically when the baryon number carry-
ing degrees of freedom, are described by an uncorrelated gas
of strange as well as non-strange baryons. The shaded region
indicates the chiral crossover temperature Tc = 154(9) MeV
[13] and the line at high temperatures indicates the limit when
the degrees of freedom are non-interacting massless quarks.
The LQCD results for the N⌧ = 6 and 8 lattices are shown
by the open and filled symbols respectively.

and Bi(c1, c2) ! PHRG
|S|=i,B (i = 1, 2, 3), independent of95

the values of c1 and c2. For asymptotically high temper-96

atures, i.e. when the sDoF are non-interacting massless97

quarks, these observables will generically attain di↵erent98

values for di↵erent combinations of (c1, c2).99

Strangeness near the chiral crossover.— Here we inves-100

tigate to what extent sDoF are described by an uncor-101

related hadron gas in the vicinity of the chiral crossover102

temperature Tc = 154(9) MeV [13]. The LQCD results103

for the susceptibilities were obtained for two di↵erent104

lattice spacings (a) corresponding to temporal extents105

N⌧ = 1/aT = 6 and 8 using O(a2) improved gauge106

and Highly Improved Staggered Quark [14] discretiza-107

tion schemes for (2 + 1) flavor QCD. The up and down108

quark masses correspond to a Goldstone pion mass of 160109

MeV and the strange quark mass is tuned to its physical110

value. The susceptibilities were measured on 3000�8000111

gauge field configurations, each separated by 10 molec-112

ular dynamics trajectories, using 1500 Gaussian random113

source vectors for each configuration. Further details of114

the LQCD computations can be found in [5, 13].115

In Fig. 1 we show the LQCD results for the two com-116

binations v1 and v2, see Eq. (7) and Eq. (8), that vanish117

identically in an uncorrelated hadron gas. The LQCD118

data for these two quantities are consistent with zero119

up to Tc and show rapid increase towards their non-120

interacting massless quark gas values just above Tc. In121

Fig. 1 we also show the di↵erence between the quadratic122

(�B
2 ) and the quartic (�B

4 ) baryon number fluctuations123

that also receive contributions from the light up and124

down quarks. In an uncorrelated gas of baryons the dif-125

probing HRG DoFs: probing quark gas DoFs:

BNL-BI: arXiv:1304.7220
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The lattice setup
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Z(µ,�) =

Z
DU detM(U, µ) e��SG(U)

=

Z
DU eTr lnM(U,µ) e��SG(U)
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Formulation of the operators

• path integral formulation of the partition function:

SU(3)-valued 
link variables

sparse fermion 
matrix

M =

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

· · ·

...
. . .

band structure due to nearest 
neighbor interaction 

x-
dim

.

y-
dim

.

· · ·
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@ lnZ

@µ
=

1

Z

Z
DU Tr

⇥
M�1M 0⇤ eTr lnMe��SG

=
⌦
Tr

⇥
M�1M 0⇤↵

µ
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Z(µ,�) =

Z
DU detM(U, µ) e��SG(U)

=

Z
DU eTr lnM(U,µ) e��SG(U)

• path integral formulation of the partition function:

SU(3)-valued 
link variables

sparse fermion 
matrix

• taking the    -derivative:

Formulation of the operators

M 0 = @M/@µ Mwith                         , similar to      
but with less bands  

Montag, 29. April 13



@2 lnZ

@µ2
=

⌦
Tr

⇥
M�1M 00⇤↵ �

⌦
Tr

⇥
M�1M 0M�1

⇤↵
+

D
Tr

⇥
M�1M 0⇤2

E

Tr [Q] ⇡
1

N

NX

i=1

⌘†
iQ⌘i

⌘i

lim
N!1

1

N

NX

i=1

⌘†
i,x

⌘
i,y

= �
x,y

Christian Schmidt                                     ORNL 04/29/13 13

Formulation of the operators

µ• taking further    -derivatives:

quark line 
connected

quark line 
disconnected

required operators for the 6th derivative: 
traces of 33 different matrices, each of which a combination of up to 6
with insertions of  

)
M (n) = @nM/@µn

M�1

use noisy estimators to for the traces: )
with      being a vector with uncorrelated 
random entries, normalized such that

Montag, 29. April 13



M� = M 0⌘i � = M�1M 0⌘i ⌘†
i� = ⌘†
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Formulation of the operators

@2 lnZ

@µ2
=

⌦
Tr

⇥
M�1M 00⇤↵ �

⌦
Tr

⇥
M�1M 0M�1

⇤↵
+

D
Tr

⇥
M�1M 0⇤2

E

µ• taking further    -derivatives:

quark line 
connected

quark line 
disconnected

required operators for the 6th derivative: 
traces of 33 different matrices, each of which a combination of up to 6
with insertions of  

)
M (n) = @nM/@µn

M�1

use noisy estimators to for the traces: )
use Conjugate Gradient (CG) algorithm to solve: )

) )
and for other operators respectively. A recursive strategy allows to obtain 
estimators for all 33 traces with 10 CG calls per random source.
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mq = ms/27 m⇡ ⇡ 138 MeV

643 ⇥ 16
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Lattice sizes and parameters

mq = ms/20

243 ⇥ 6, 323 ⇥ 8, 483 ⇥ 12

m⇡ ⇡ 160 MeV!

Action:  highly improved staggered quarks (HISQ)

Lattice size: 

Mass:

Current status: 

 0

 0.1

 0.2

 0.3 r2
B

Tc=154(9)MeV

No=6
8

 0

 0.05

 0.1
r4

B BNL-Bielefeld
preliminary

-0.5

 0

 0.5

140 160 180 200 220 240

r6
B

T [MeV]

Statistics: #confs=2000-8000, #sources=1500

Action:  highly improved staggered quarks (HISQ)

Lattice size: 
Mass:

Next goal: 

!

) generation of                   is ongoing 

243 ⇥ 6, 323 ⇥ 8, 483 ⇥ 12, 643 ⇥ 16

) calculations of cumulants could be 
done on Titan
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GPU acceleration
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M(U) = 11m + D(U)
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= D
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Christian Schmidt                                     ORNL 04/29/13 17

Fermion matrix application on the GPU

• runtime dominated by the CG-applications, which again are dominated by the 
applications of the fermion matrix applications                                          (>80%)

low arithmetic intensity (flops/byte                (32bit)) 

) code is bandwidth limited: 
optimize memory access (coalescing) 

) keep fields on GPU to eliminate slow PCIe bandwidth and latencies 

) theoretical performance (without further tricks):

M2075: 105 GFlops
GTX580: 140 GFlops

GTX Titan: 210 GFlops
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Solvers for multiple right hand sides

•consider single precision for improved (HISQ) action

•need inversions for many (1500) ‘source’-vectors for a fixed 
gauge field (matrix)

•Bytes for n vectors

•Flops for n vectors

16 · (72 + n · 24) bytes + n · 24 bytes = 1152 bytes + 408 bytes · n .

1146 flops · n
# r.h.s. 1 2 3 4 5

flops/
byte

0.73 1.16 1.45 1.65 1.8

Mapping the Wilson-Clover operator to CUDA

• Each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Load the clover matrix (72 numbers)

• Save the result (24 numbers)

• Arithmetic intensity

• 3696 floating point operations per site

• 2976 bytes per site (single precision)

• 1.24 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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• Load the neighboring spinor (24 numbers x8)
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• Load the clover matrix (72 numbers)
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GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x⇥ are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.
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as defined in (2), in the µ� � plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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CG performance on the GPU

GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Optimizing memory access

•use coalesced memory layout: structure of arrays (SoA) instead of AoS

•one can reconstruct a SU(3) matrix also from 8 or 12 floats

•improved actions result in matrices that are no longer SU(3):
must load 18 floats

•exploit texture access: near 100% bandwidth

•ECC hurts (naive 12.5%, real world ~ 20-30 %)

•do more work with less bytes:
→ mixed precision inverters (QUDA libray, Clark et al, CPC.181:1517,2010)

→ multiple right hand sides 

GTX580 (3GB)
M2075 (6GB)

 20

 40

 60

 80

100

120

140

163.4 243.6 323.8 403.10 483.12 563.14 643.16 723.18

lattice size

G
flo

p/
s

single precision

double precision

HISQ inverter on single GPU) CG performance (10-15)% lower 
than Dslash performance (due to 
linear algebra which has even lower 
arithmetic intensity) 

reduce transferred memory:

) one possibility: use mixed precision 
inverter (M. Clark, R. Brower, et al.)

) our strategy: use multiple right 
hand sites
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CG Performance on Titan

M. Wagner, GTC 2013
GTC 2013 | Dr. Mathias Wagner | Bielefeld University |

Dslash-performance

•estimate performance from flop/byte ratio and available memory bandwidth

•full inversion should be roughly 10-15% lower

1 2 3 4 5
0

150

300

450

600
M2075 est. GTX 580 est.
K20 est. GTX Titan est.
M2075 measured K20 measured

1 2 3 4 5
0

75

150

225

300
M2075 est. GTX 580 est.
K20 est. GTX Titan est.
M2075 measured K20 measured

card M2075 GTX 580 K20 GTX Titan

Bandwidth 
[GB/s]

150 192 208 288

single precision

double precision

Dslash performance with multiple r.h.s:

)

on the GTX Titan we can get the 
inverter with 3 r.h.s into GPU memory 
for the                   lattices643 ⇥ 16

Inverter should run with ca. 300 
GFlops (ca. 25% penalty for LA 
and ECC)

)

Parallelize over random sources, need 
communication only after CG to collect 
the estimators of the traces

⇡
Performance will show good 
scaling:       #nodes x 300 GFlops  
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Summary
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• Cumulants of conserved charge fluctuations are interesting quantities to compute in 
(lattice) QCD, they can also be measured in heavy ion collision.

Summary

• Main computational cost got into the inversion of a space matrix (CG).

• Computational cost drastically increase with the order of the cumulant. 

• On the GPU we can increase the performance by using inverters with support for 
multiple right hand sites. 

• On Titan we can distribute the random source vectors over the GPUs, and in addition 
can fit a 3 r.h.s-inverter for the                  lattices (this code is ready and tested).  643 ⇥ 16
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Back up
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Lattice sizes and parameters

4

Improved staggered fermions

improvement: T →0improvement: T →∞

action low T impr. high T impr. groups

naive none none Mumbai

p4 not good very good BNL-BI

asqtad good good HotQCD

stout very good none WB

HISQ excellent good HotQCD/BNL-BI

HotQCDHotQCD

Properties of different staggered actions:

mq = ms/20

243 ⇥ 6, 323 ⇥ 8, 483 ⇥ 12

m⇡ ⇡ 160 MeV!

Action:  highly improved staggered quarks (HISQ)

Lattice size: 

Mass:

Current status: 

Statistics: #confs=2000-8000, #sources=1500
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4

Improved staggered fermions

improvement: T →0improvement: T →∞

action low T impr. high T impr. groups

naive none none Mumbai

p4 not good very good BNL-BI

asqtad good good HotQCD

stout very good none WB

HISQ excellent good HotQCD/BNL-BI

HotQCDHotQCDProperties of different staggered actions:
high T improvement

4

Improved staggered fermions

improvement: T →0improvement: T →∞

action low T impr. high T impr. groups

naive none none Mumbai

p4 not good very good BNL-BI

asqtad good good HotQCD

stout very good none WB

HISQ excellent good HotQCD/BNL-BI

HotQCDHotQCD

low T improvement

Lattice sizes and parameters

mq = ms/20

243 ⇥ 6, 323 ⇥ 8, 483 ⇥ 12

m⇡ ⇡ 160 MeV!

Action:  highly improved staggered quarks (HISQ)

Lattice size: 

Mass:

Current status: 

Statistics: #confs=2000-8000, #sources=1500
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