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• We began planning for Titan in 2009 
• At the time there were no large-scale 

GPU systems deployed anywhere 
•  Furthermore, OLCF had little previous 

institutional knowledge of GPUs other 
than scattered individuals 

• However, the consensus was that codes 
will require restructuring for memory 
locality, threading and heterogeneity to 
get to exascale—we decided to do it now 

Background 

• Additionally, we didn’t want a machine delivered that had no functioning 
application software 

•  Therefore we selected a small set of applications for early porting, to 
spearhead an effort to move codes to Titan 

• We went through a process to selected a diverse set of codes to give broad 
coverage to represent use cases for our users 

• At the same time we wanted to capture institutional knowledge as lessons 
learned for going forward 
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Criteria for selecting early readiness 
applications 
Task Description  

Science •  Science results, impact, timeliness 
•  Alignment with DOE and U.S. science mission 
•  Broad coverage of science domains 

Implementation  
(models, algorithms, 
software) 

•  Broad coverage of relevant programming models, environment,  
languages, implementations 

•  Broad coverage of relevant algorithms and data structures (motifs) 
•  Broad coverage of scientific library requirements 

User community  
(current and anticipated) 

•  Broad institutional and developer/user involvement 
•  Good representation of current and anticipated INCITE workload 

Preparation for steady state 
(“INCITE ready”) 
operations 

•  Mix of low (“straightforward”) and high (“hard”) risk porting and 
readiness requirements 

•  Availability of OLCF liaison with adequate skills/experience match to 
application 

•  Availability of key code development personnel to engage in and guide 
readiness activities 
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Center for Accelerated Application Readiness (CAAR) 

WL-LSMS 
Illuminating the role of 
material disorder, 
statistics, and fluctuations 
in nanoscale materials 
and systems. 

S3D 
Understanding turbulent 
combustion through direct 
numerical simulation with 
complex chemistry. 
. 

NRDF 
Radiation transport – 
important in astrophysics, 
laser fusion, combustion, 
atmospheric dynamics, 
and medical imaging – 
computed on AMR grids. 
 

CAM-SE 
Answering questions 
about specific climate 
change adaptation and 
mitigation scenarios; 
realistically represent 
features like precipitation 
patterns / statistics and 
tropical storms. 

Denovo 
Discrete ordinates 
radiation transport 
calculations that can 
be used in a variety 
of nuclear energy 
and technology 
applications. 

LAMMPS 
A molecular description 
of membrane fusion, 
one of the most 
common ways for 
molecules to enter or 
exit living cells. 

IMPLICIT AMR FOR EQUILIBRIUM RADIATION DIFFUSION 15

t = 0.50 t = 0.75

t = 1.0 t = 1.25

Fig. 6.6. Evolution of solution and grid for Case 2, using a 32� 32 base grid plus 4 refinement
levels. Boundaries of refinement patches are superimposed on a pseudocolor plot of the solution
using a logarithmic color scale. The coarsest level is outlined in green; level 1: yellow; level 2: light
blue; level 3: magenta; level 4: peach.

increases more quickly due to the presence Region 1, adjacent to the x = 0 boundary.
Eventually there is a decrease in the size of the dynamic calculation as Region 1 is
de-refined and before resolution is increased in Region 2. Two inflection points are
seen in the size of the locally refined calculation, initially as Region 2 is fully resolved
and resolution is increased around Region 3, and subsequently as Regions 2 and 3
are de-refined. The number of cells in the dynamic calculation peaks at less than
20% of the uniform grid calculation, then decreases steadily. On average the dynamic
calculation is around 8% of the size of the uniform grid calculation.

Table 6.2 compares nonlinear and linear iteration counts per time step. Once
again little variation is seen in the number of nonlinear iterations per time step for a
fixed base grid size or for fixed finest resolution, and a small decrease in this iteration
count for a fixed number of refinement levels. In contrast, the number of linear
iterations per time step increases slowly as more refinement levels are added, and
increases by nearly half as we fix resolution and move from a global fine grid to
a locally refined calculation. Again, this is likely due to the fact that operators
on refinement levels are simply obtained by rediscretization, and interlevel transfer
operators are purely geometric.

7. Conclusions and Future Work. The results presented demonstrate the
feasibility of combining implicit time integration with adaptive mesh refinement for

Slides courtesy Bronson Messer 
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1.  Multidisciplinary code team for each code – OLCF application lead, Cray 
engineer, NVIDIA developer, also cross-cutting support from tool and 
library developers 

2.  Early testbed hardware –white box GPU cluster “yona” for code 
development 

3.  Code inventory for each code to understand characteristics – application 
code structure, code suitability for GPU port, algorithm structure, data 
structures and data movement patterns.  Also code execution profile – 
are there performance “hot spots” or is the profile “flat” 

4.  Develop parallelization approach for each application – ascertain which 
algorithm and code components to port to GPU, how to map work to GPU 
threads, how to manage data motion CPU-GPU and between GPU main 
memory and GPU caches/shared memory 

Action plan for code porting 
We developed a plan for porting these applications, which involved the 
following steps: 
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5.  Decide GPU programming model for port to GPU, e.g., CUDA for more 
close-to-the-metal programming, OpenACC for a higher abstraction level 
and a more incremental porting approach, OpenCL for portability 
advantages, or libraries when appropriate 

6.  Address code development issues – rewrite vs. refactor, managing 
portability to other platforms, incorporating GPU code into build system, 
relationship to the code repository main trunk 

7.  Representative test cases, e.g., early science problems, formulated as 
basis for evaluating code performance and setting priorities for code 
optimization.  Also formulate comparison metric to measure success, 
e.g., time to solution on dual Interlagos Cray XE6 vs. Titan Cray XK7 
Interlagos+Kepler 

 

Action plan for code porting (2) 
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App Science 
Area Algorithm(s) Grid type Programming 

Language(s) 
Compiler(s) 
supported 

Approx. 
LOC 

Communicatio
n Libraries Math Libraries 

CAM-SE climate 

spectral finite 
elements, dense 
& sparse linear 

algebra, particles 

structured F90 PGI, Lahey, 
IBM 500K MPI  Trilinos 

LAMMPS Biology / 
materials 

molecular 
dynamics, FFT, 

particles 
N/A C++ GNU, PGI, 

IBM, Intel 140K MPI FFTW 

S3D combustion 

Navier-Stokes, 
finite diff, dense & 

sparse linear 
algebra, particles 

structured F77, F90 PGI 10K MPI None 

Denovo nuclear 
energy 

wavefront sweep, 
GMRES structured C++, Fortran, 

Python 
GNU, PGI, 
Cray, Intel 46K MPI 

Trilinos, 
LAPACK, 
SuperLU, 

Metis 

WL-LSMS nanoscience 
density functional 

theory, Monte 
Carlo 

N/A F77, F90, C, C
++ PGI, GNU 70K MPI 

LAPACK 
(ZGEMM, 
ZGTRF, 
ZGTRS) 

NRDF radiation 
transport 

Non-equilibrium 
radiation diffusion 

equation 

structured 
AMR C++, C, F77 PGI, GNU, 

Intel 500K MPI, SAMRAI 

BLAS, 
PETSc, 
Hypre, 

SAMRSolvers 

Application characteristics inventory 
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§  Purpose: Compute the magnetic structure and 
thermodynamics of low-dimensional magnetic structures 

§ Model: Combines classical statistical mechanics (W-L) 
for atomic magnetic moment distributions with first-
principles calculations (LSMS) of the associated 
energies. 

§  Execution Structure: Master node spawns many Monte 
Carlo “walkers” that do most of the work independently, 
results are occasionally combined on master 

§  Execution Profile: Very concentrated hot spot: most of 
the work is in the walkers: matrix inversion, and BLAS3 
ZGEMMs, typical matrix sizes are 1200X1200, 
1200X3600 

§  Code Language: C++ and F77 

§  Lines of Code: 70K 

1. Wang-Landau LSMS 
First principles, statistical mechanics of magnetic materials 
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§  Parallelization strategy : 

§  Compute ZGEMMs on GPU using cuBLAS library, use 
multiple streams via CPU OpenMP threads to saturate 
GPU 

§  For LU factorization for matrix inversion, using 
cuBLAS, CULA, Cray libsci_acc or custom code 
(fastest) 

§  Also moved matrix construction to GPU 

§  Rewritten code LSMS_3 now allows multiple atoms 
per MPI rank, flexibility for more node parallelism, e.g., 
OpenMP threading, multiple GPU execution streams 

1. Wang-Landau LSMS 
First principles, statistical mechanics of magnetic materials 

See also: Markus Eisenbach, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/WL-LSMS-GPU_don1.pdf 
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2. CAM-SE 
Community Atmosphere Model – Spectral Elements 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

§  Purpose: Answer questions about climate change 
adaptation and mitigation scenarios; accurately represent 
regional-scale climate features of significant impact 

§ Model: Spectral element discretization with dynamical core 
(fluid dynamics + tracer transport) and other physics 
modules 

§  Execution Structure: Runge-Kutta explicit time stepping 
over 2-D logically unstructured cubed-sphere grid with 
vertical levels, at each time step dynamical core 
calculations, tracers, other physics. 

§  Execution Profile: Highly problem dependent. Targeted 
science case: tracer transport highest, then dynamical core, 
both employing vertical remap operation 

§  Code Language: F90 

§  Lines of Code: 500K 
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2. CAM-SE 
Community Atmosphere Model – Spectral Elements 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

§  Parallelization strategy : 
§  Tracers parallelized in straightforward data parallel fashion 
§  For tracers used Mozart chemistry, more tracers, improved 

model realism, more GPU work 
§  Vertical remap –tridiagonal solver replaced with splines, to 

expose more parallelism, 5X faster on CPU 
§  Data structures were reworked – arrays of struct of arrays 

replaced with coalesced flat arrays 
§  Separate element loops fused to improve granularity 
§  Boundary exchange communications were optimized 
§  Asynchronicity to overlap MPI and PCIe transfers using 

staging techniques 
§  Used CUDA Fortran, will move to OpenACC for better 

integration with code trunk 

See also: Matt Norman, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/cray_workshop_2012_mrnorman-2.pdf 
Jeff Larkin, http://www.slideshare.net/jefflarkin/progress-toward-accelerating-camse 
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3. S3D 
Direct Numerical Simulation of Turbulent Combustion 

§  Purpose: Provide fundamental insight into the chemistry-
turbulence interaction of combustion processes 

§ Model: DNS Navier-Stokes simulation on Cartesian grid 
with particle tracking 

§  Execution Structure: 4th-order explicit Runge-Kutta time 
stepping over 3-D structured grid, 8th-order finite 
differences 

§  Execution Profile: 2-3 routines account for most of the 
runtime.  Most prominent is reaction rates, the RHS and 
transport coefficients 

§  Code Language: F90 

§  Lines of Code: 10K 
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3. S3D 
Direct Numerical Simulation of Turbulent Combustion 

§  Parallelization strategy : 
§  Perform major code restructuring to move a 3-D grid loop 

up the call tree to expose coarser-grain parallelism 
§  Port code from pure-MPI to hybrid, MPI-OpenMP, then 

ported kernels to GPU, then rewrite in OpenACC to run 
almost entirely on the GPU 

§  Use compiler diagnostics to understand data movement 
§  Identify data regions to scope arrays for efficient use of 

GPUs 

See also: John Levesque, http://www.olcf.ornl.gov/wp-content/training/CrayTech_XK6_2012/CTW_S3D_10_10.pdf 
Ramanan Sankaran, http://www.olcf.ornl.gov/wp-content/uploads/2011/08/TitanSummit2011_Sankaran.pdf 
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4. LAMMPS 
Large-scale, massively parallel molecular dynamics  

§  Purpose: Provide understanding of molecular processes 
such as cellular membrane fusion 

§ Model: Classical N-body atomistic modeling with 
molecular dynamics 

§  Execution Structure: Forward stepping in time as 
particles move based on force field calculations 

§  Execution Profile: A large fraction of time is spent in 
short-range force calculations.  Long-range force 
computations are chief barrier to high scalability 

§  Code Language: C++ 

§  Lines of Code: 140K 
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4. LAMMPS 
Large-scale, massively parallel molecular dynamics  

§  Parallelization strategy : 
§  Port short-range force calculations and other 

calculations to GPU 
§  For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like 
algorithm with scalable communication 

 

See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf 
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5. DENOVO 
3D Neutron Transport for Nuclear Reactor Design 

§  Purpose: Model radiation transport for reactor safety and 
nuclear forensics 

§ Model: Linear Boltzmann transport, discrete ordinates 
method 

§  Execution Structure: Arnoldi eigenvalue solver, inner 
GMRES loop, matrix-vector product contains a 3-D sweep 
operation 

§  Execution Profile: Nearly all of the runtime is spent in the 
3-D sweep code.  The next most expensive part is 
GMRES 

§  Code Language: C++ 

§  Lines of Code: 46K 
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5. DENOVO 
3D Neutron Transport for Nuclear Reactor Design 

§  Parallelization strategy : 
§  Restructure Denovo to provide to provide another axis 

of parallelism (energy-group) for better cross-node 
scaling and GPU threading 

§  KBA sweep algorithm ported to the GPU, exploiting 
multiple problem dimensions to get enough threads 

§  Permute loops to optimize for memory locality 
§  Use CUDA to extract high performance 
§  Trilinos/GMRES used GPU solves 

See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf 
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Slide courtesy Buddy Bland 

Performance results: 
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Lessons Learned 
• Repeated themes in the code porting work: 

–  finding more threadable work for the GPU 
–  Improving memory access patterns 
–  making GPU work (kernel calls) more coarse-grained if possible 
–  making data on the GPU more persistent 
–  overlapping data transfers with other work 

• Helpful to use as much asynchronicity as possible, to extract 
performance (CPU, GPU, MPI, PCIe-2) 

• Codes with unoptimized MPI communications may need prior 
work in order to improve performance before GPU speed 
improvements can be realized 
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Lessons Learned 
• Some codes need to use multiple MPI tasks per node to access 

the GPU (e.g., via proxy)—others use 1 MPI task with OpenMP 
threads on the node 

• Code changes that have global impact on the code are difficult to 
manage, e.g., data structure changes.  An abstraction layer may 
help, e.g., C++ objects/templates 

•  Two common code modifications are: 
–  Permuting loops to improve locality of memory reference 
–  Fusing loops for coarser granularity of GPU kernel calls 
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Lessons Learned 
•  Tools (compilers, debuggers, profilers) were lacking early on in 

the project but are becoming more available and are improving 
in quality 

• Debugging and profiling tools were useful in some cases 
(Allinea DT, CrayPat, Vampir, CUDA profiler) 
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Lessons Learned 
•  The difficulty level of the GPU port was in part determined by: 

–  Structure of the algorithms—e.g., available parallelism, high 
computational intensity 

–  Code execution profile—flat or hot spots 
–  The code size (LOC) 

• Since not all future code changes can be anticipated, it is 
difficult to avoid significant code revision for such an effort 
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Lessons Learned 
• Up to 1-3 person-years required to port each code 

–  Takes work, but an unavoidable step required for exascale 
–  Also pays off for other systems—the ported codes often run 

significantly faster CPU-only (Denovo 2X, CAM-SE >1.7X) 

• We estimate possibly 70-80% of developer time is spent in 
code restructuring, regardless of whether using CUDA / 
OpenCL / OpenACC / … 

• Each code team must make its own choice of using CUDA vs. 
OpenCL vs. OpenACC, based on the specific case—may be 
different conclusion for each code 
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Lessons Learned 
• Science codes are under active development—porting to GPU 

can be pursuing a “moving target,” challenging to manage 
• More available flops on the node should lead us to think of 

new science opportunities enabled—e.g., more DOF per grid 
cell 

• We may need to look in unconventional places to get another 
~30X thread parallelism that may be needed  for exascale—
e.g., parallelism in time 
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4. LAMMPS 
Large-scale, massively parallel molecular dynamics  

§  Parallelization strategy : 
§  Port short-range force calculations, neighbor list 

calculations and parts of long range force calculations 
to GPU.  Apply one or more threads per atom 

§  Split work between CPU and GPU to use all available 
resources, overlapping work when possible 

§ Make extensive use of CUDA streams 
§ Multiple MPI tasks access GPU 
§  Use Geryon middleware library to be able to target 

CUDA and OpenCL in same code 
§  For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like 
algorithm 

 

See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf 
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5. DENOVO 
3D Neutron Transport for Nuclear Reactor Design 

§  Parallelization strategy : 
§  Restructure Denovo to provide another axis of 

parallelism (energy-group) for better cross-node 
scaling and GPU threading 

§  KBA sweep algorithm ported to the GPU, exploiting 
multiple problem dimensions to get enough threads 

§  Trilinos/GMRES used for GPU solves 

See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf 


