
TITAN Application Readiness at ORNL

Wayne Joubert
OLCF Center for Accelerated Application Readiness

(CAAR)

Titan Users and Developers Workshop
Feb. 19-21 2013

2

• We began planning for Titan in 2009
• At the time there were no large-scale

GPU systems deployed anywhere
•  Furthermore, OLCF had little previous

institutional knowledge of GPUs other
than scattered individuals

• However, the consensus was that codes
will require restructuring for memory
locality, threading and heterogeneity to
get to exascale—we decided to do it now

Background

• Additionally, we didn’t want a machine delivered that had no functioning
application software

•  Therefore we selected a small set of applications for early porting, to
spearhead an effort to move codes to Titan

• We went through a process to selected a diverse set of codes to give broad
coverage to represent use cases for our users

• At the same time we wanted to capture institutional knowledge as lessons
learned for going forward

3

Criteria for selecting early readiness
applications
Task Description

Science •  Science results, impact, timeliness
•  Alignment with DOE and U.S. science mission
•  Broad coverage of science domains

Implementation
(models, algorithms,
software)

•  Broad coverage of relevant programming models, environment,
languages, implementations

•  Broad coverage of relevant algorithms and data structures (motifs)
•  Broad coverage of scientific library requirements

User community
(current and anticipated)

•  Broad institutional and developer/user involvement
•  Good representation of current and anticipated INCITE workload

Preparation for steady state
(“INCITE ready”)
operations

•  Mix of low (“straightforward”) and high (“hard”) risk porting and
readiness requirements

•  Availability of OLCF liaison with adequate skills/experience match to
application

•  Availability of key code development personnel to engage in and guide
readiness activities

4

Center for Accelerated Application Readiness (CAAR)

WL-LSMS
Illuminating the role of
material disorder,
statistics, and fluctuations
in nanoscale materials
and systems.

S3D
Understanding turbulent
combustion through direct
numerical simulation with
complex chemistry.
.

NRDF
Radiation transport –
important in astrophysics,
laser fusion, combustion,
atmospheric dynamics,
and medical imaging –
computed on AMR grids.

CAM-SE
Answering questions
about specific climate
change adaptation and
mitigation scenarios;
realistically represent
features like precipitation
patterns / statistics and
tropical storms.

Denovo
Discrete ordinates
radiation transport
calculations that can
be used in a variety
of nuclear energy
and technology
applications.

LAMMPS
A molecular description
of membrane fusion,
one of the most
common ways for
molecules to enter or
exit living cells.

IMPLICIT AMR FOR EQUILIBRIUM RADIATION DIFFUSION 15

t = 0.50 t = 0.75

t = 1.0 t = 1.25

Fig. 6.6. Evolution of solution and grid for Case 2, using a 32� 32 base grid plus 4 refinement
levels. Boundaries of refinement patches are superimposed on a pseudocolor plot of the solution
using a logarithmic color scale. The coarsest level is outlined in green; level 1: yellow; level 2: light
blue; level 3: magenta; level 4: peach.

increases more quickly due to the presence Region 1, adjacent to the x = 0 boundary.
Eventually there is a decrease in the size of the dynamic calculation as Region 1 is
de-refined and before resolution is increased in Region 2. Two inflection points are
seen in the size of the locally refined calculation, initially as Region 2 is fully resolved
and resolution is increased around Region 3, and subsequently as Regions 2 and 3
are de-refined. The number of cells in the dynamic calculation peaks at less than
20% of the uniform grid calculation, then decreases steadily. On average the dynamic
calculation is around 8% of the size of the uniform grid calculation.

Table 6.2 compares nonlinear and linear iteration counts per time step. Once
again little variation is seen in the number of nonlinear iterations per time step for a
fixed base grid size or for fixed finest resolution, and a small decrease in this iteration
count for a fixed number of refinement levels. In contrast, the number of linear
iterations per time step increases slowly as more refinement levels are added, and
increases by nearly half as we fix resolution and move from a global fine grid to
a locally refined calculation. Again, this is likely due to the fact that operators
on refinement levels are simply obtained by rediscretization, and interlevel transfer
operators are purely geometric.

7. Conclusions and Future Work. The results presented demonstrate the
feasibility of combining implicit time integration with adaptive mesh refinement for

Slides courtesy Bronson Messer

5

1.  Multidisciplinary code team for each code – OLCF application lead, Cray
engineer, NVIDIA developer, also cross-cutting support from tool and
library developers

2.  Early testbed hardware –white box GPU cluster “yona” for code
development

3.  Code inventory for each code to understand characteristics – application
code structure, code suitability for GPU port, algorithm structure, data
structures and data movement patterns. Also code execution profile –
are there performance “hot spots” or is the profile “flat”

4.  Develop parallelization approach for each application – ascertain which
algorithm and code components to port to GPU, how to map work to GPU
threads, how to manage data motion CPU-GPU and between GPU main
memory and GPU caches/shared memory

Action plan for code porting
We developed a plan for porting these applications, which involved the
following steps:

6

5.  Decide GPU programming model for port to GPU, e.g., CUDA for more
close-to-the-metal programming, OpenACC for a higher abstraction level
and a more incremental porting approach, OpenCL for portability
advantages, or libraries when appropriate

6.  Address code development issues – rewrite vs. refactor, managing
portability to other platforms, incorporating GPU code into build system,
relationship to the code repository main trunk

7.  Representative test cases, e.g., early science problems, formulated as
basis for evaluating code performance and setting priorities for code
optimization. Also formulate comparison metric to measure success,
e.g., time to solution on dual Interlagos Cray XE6 vs. Titan Cray XK7
Interlagos+Kepler

Action plan for code porting (2)

7

App Science
Area Algorithm(s) Grid type Programming

Language(s)
Compiler(s)
supported

Approx.
LOC

Communicatio
n Libraries Math Libraries

CAM-SE climate

spectral finite
elements, dense
& sparse linear

algebra, particles

structured F90 PGI, Lahey,
IBM 500K MPI Trilinos

LAMMPS Biology /
materials

molecular
dynamics, FFT,

particles
N/A C++ GNU, PGI,

IBM, Intel 140K MPI FFTW

S3D combustion

Navier-Stokes,
finite diff, dense &

sparse linear
algebra, particles

structured F77, F90 PGI 10K MPI None

Denovo nuclear
energy

wavefront sweep,
GMRES structured C++, Fortran,

Python
GNU, PGI,
Cray, Intel 46K MPI

Trilinos,
LAPACK,
SuperLU,

Metis

WL-LSMS nanoscience
density functional

theory, Monte
Carlo

N/A F77, F90, C, C
++ PGI, GNU 70K MPI

LAPACK
(ZGEMM,
ZGTRF,
ZGTRS)

NRDF radiation
transport

Non-equilibrium
radiation diffusion

equation

structured
AMR C++, C, F77 PGI, GNU,

Intel 500K MPI, SAMRAI

BLAS,
PETSc,
Hypre,

SAMRSolvers

Application characteristics inventory

8

§  Purpose: Compute the magnetic structure and
thermodynamics of low-dimensional magnetic structures

§ Model: Combines classical statistical mechanics (W-L)
for atomic magnetic moment distributions with first-
principles calculations (LSMS) of the associated
energies.

§  Execution Structure: Master node spawns many Monte
Carlo “walkers” that do most of the work independently,
results are occasionally combined on master

§  Execution Profile: Very concentrated hot spot: most of
the work is in the walkers: matrix inversion, and BLAS3
ZGEMMs, typical matrix sizes are 1200X1200,
1200X3600

§  Code Language: C++ and F77

§  Lines of Code: 70K

1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

9

§  Parallelization strategy :

§  Compute ZGEMMs on GPU using cuBLAS library, use
multiple streams via CPU OpenMP threads to saturate
GPU

§  For LU factorization for matrix inversion, using
cuBLAS, CULA, Cray libsci_acc or custom code
(fastest)

§  Also moved matrix construction to GPU

§  Rewritten code LSMS_3 now allows multiple atoms
per MPI rank, flexibility for more node parallelism, e.g.,
OpenMP threading, multiple GPU execution streams

1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

See also: Markus Eisenbach, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/WL-LSMS-GPU_don1.pdf

10

2. CAM-SE
Community Atmosphere Model – Spectral Elements

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

§  Purpose: Answer questions about climate change
adaptation and mitigation scenarios; accurately represent
regional-scale climate features of significant impact

§ Model: Spectral element discretization with dynamical core
(fluid dynamics + tracer transport) and other physics
modules

§  Execution Structure: Runge-Kutta explicit time stepping
over 2-D logically unstructured cubed-sphere grid with
vertical levels, at each time step dynamical core
calculations, tracers, other physics.

§  Execution Profile: Highly problem dependent. Targeted
science case: tracer transport highest, then dynamical core,
both employing vertical remap operation

§  Code Language: F90

§  Lines of Code: 500K

11

2. CAM-SE
Community Atmosphere Model – Spectral Elements

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

§  Parallelization strategy :
§  Tracers parallelized in straightforward data parallel fashion
§  For tracers used Mozart chemistry, more tracers, improved

model realism, more GPU work
§  Vertical remap –tridiagonal solver replaced with splines, to

expose more parallelism, 5X faster on CPU
§  Data structures were reworked – arrays of struct of arrays

replaced with coalesced flat arrays
§  Separate element loops fused to improve granularity
§  Boundary exchange communications were optimized
§  Asynchronicity to overlap MPI and PCIe transfers using

staging techniques
§  Used CUDA Fortran, will move to OpenACC for better

integration with code trunk

See also: Matt Norman, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/cray_workshop_2012_mrnorman-2.pdf
Jeff Larkin, http://www.slideshare.net/jefflarkin/progress-toward-accelerating-camse

12

3. S3D
Direct Numerical Simulation of Turbulent Combustion

§  Purpose: Provide fundamental insight into the chemistry-
turbulence interaction of combustion processes

§ Model: DNS Navier-Stokes simulation on Cartesian grid
with particle tracking

§  Execution Structure: 4th-order explicit Runge-Kutta time
stepping over 3-D structured grid, 8th-order finite
differences

§  Execution Profile: 2-3 routines account for most of the
runtime. Most prominent is reaction rates, the RHS and
transport coefficients

§  Code Language: F90

§  Lines of Code: 10K

13

3. S3D
Direct Numerical Simulation of Turbulent Combustion

§  Parallelization strategy :
§  Perform major code restructuring to move a 3-D grid loop

up the call tree to expose coarser-grain parallelism
§  Port code from pure-MPI to hybrid, MPI-OpenMP, then

ported kernels to GPU, then rewrite in OpenACC to run
almost entirely on the GPU

§  Use compiler diagnostics to understand data movement
§  Identify data regions to scope arrays for efficient use of

GPUs

See also: John Levesque, http://www.olcf.ornl.gov/wp-content/training/CrayTech_XK6_2012/CTW_S3D_10_10.pdf
Ramanan Sankaran, http://www.olcf.ornl.gov/wp-content/uploads/2011/08/TitanSummit2011_Sankaran.pdf

14

4. LAMMPS
Large-scale, massively parallel molecular dynamics

§  Purpose: Provide understanding of molecular processes
such as cellular membrane fusion

§ Model: Classical N-body atomistic modeling with
molecular dynamics

§  Execution Structure: Forward stepping in time as
particles move based on force field calculations

§  Execution Profile: A large fraction of time is spent in
short-range force calculations. Long-range force
computations are chief barrier to high scalability

§  Code Language: C++

§  Lines of Code: 140K

15

4. LAMMPS
Large-scale, massively parallel molecular dynamics

§  Parallelization strategy :
§  Port short-range force calculations and other

calculations to GPU
§  For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like
algorithm with scalable communication

See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf

16

5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

§  Purpose: Model radiation transport for reactor safety and
nuclear forensics

§ Model: Linear Boltzmann transport, discrete ordinates
method

§  Execution Structure: Arnoldi eigenvalue solver, inner
GMRES loop, matrix-vector product contains a 3-D sweep
operation

§  Execution Profile: Nearly all of the runtime is spent in the
3-D sweep code. The next most expensive part is
GMRES

§  Code Language: C++

§  Lines of Code: 46K

17

5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

§  Parallelization strategy :
§  Restructure Denovo to provide to provide another axis

of parallelism (energy-group) for better cross-node
scaling and GPU threading

§  KBA sweep algorithm ported to the GPU, exploiting
multiple problem dimensions to get enough threads

§  Permute loops to optimize for memory locality
§  Use CUDA to extract high performance
§  Trilinos/GMRES used GPU solves

See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf

18
Slide courtesy Buddy Bland

Performance results:

19

Lessons Learned
• Repeated themes in the code porting work:

–  finding more threadable work for the GPU
–  Improving memory access patterns
–  making GPU work (kernel calls) more coarse-grained if possible
–  making data on the GPU more persistent
–  overlapping data transfers with other work

• Helpful to use as much asynchronicity as possible, to extract
performance (CPU, GPU, MPI, PCIe-2)

• Codes with unoptimized MPI communications may need prior
work in order to improve performance before GPU speed
improvements can be realized

20

Lessons Learned
• Some codes need to use multiple MPI tasks per node to access

the GPU (e.g., via proxy)—others use 1 MPI task with OpenMP
threads on the node

• Code changes that have global impact on the code are difficult to
manage, e.g., data structure changes. An abstraction layer may
help, e.g., C++ objects/templates

•  Two common code modifications are:
–  Permuting loops to improve locality of memory reference
–  Fusing loops for coarser granularity of GPU kernel calls

21

Lessons Learned
•  Tools (compilers, debuggers, profilers) were lacking early on in

the project but are becoming more available and are improving
in quality

• Debugging and profiling tools were useful in some cases
(Allinea DT, CrayPat, Vampir, CUDA profiler)

22

Lessons Learned
•  The difficulty level of the GPU port was in part determined by:

–  Structure of the algorithms—e.g., available parallelism, high
computational intensity

–  Code execution profile—flat or hot spots
–  The code size (LOC)

• Since not all future code changes can be anticipated, it is
difficult to avoid significant code revision for such an effort

23

Lessons Learned
• Up to 1-3 person-years required to port each code

–  Takes work, but an unavoidable step required for exascale
–  Also pays off for other systems—the ported codes often run

significantly faster CPU-only (Denovo 2X, CAM-SE >1.7X)

• We estimate possibly 70-80% of developer time is spent in
code restructuring, regardless of whether using CUDA /
OpenCL / OpenACC / …

• Each code team must make its own choice of using CUDA vs.
OpenCL vs. OpenACC, based on the specific case—may be
different conclusion for each code

24

Lessons Learned
• Science codes are under active development—porting to GPU

can be pursuing a “moving target,” challenging to manage
• More available flops on the node should lead us to think of

new science opportunities enabled—e.g., more DOF per grid
cell

• We may need to look in unconventional places to get another
~30X thread parallelism that may be needed for exascale—
e.g., parallelism in time

25

Acknowledgements

Bronson Messer, Mike Brown, Matt Norman, Markus Eisenbach,
Ramanan Sankaran

26

Supplementary slides

27

4. LAMMPS
Large-scale, massively parallel molecular dynamics

§  Parallelization strategy :
§  Port short-range force calculations, neighbor list

calculations and parts of long range force calculations
to GPU. Apply one or more threads per atom

§  Split work between CPU and GPU to use all available
resources, overlapping work when possible

§ Make extensive use of CUDA streams
§ Multiple MPI tasks access GPU
§  Use Geryon middleware library to be able to target

CUDA and OpenCL in same code
§  For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like
algorithm

See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf

28

5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

§  Parallelization strategy :
§  Restructure Denovo to provide another axis of

parallelism (energy-group) for better cross-node
scaling and GPU threading

§  KBA sweep algorithm ported to the GPU, exploiting
multiple problem dimensions to get enough threads

§  Trilinos/GMRES used for GPU solves

See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf

