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1. Compiling and Building 



CAPS-­‐‑MC  OpenACC  with  MPI	

•  formerly known as HMPP 

o  Load capsmc module 
o  Use Cray PE Wrappers 
o  C and Fortran, basic/limited C++ 
o  Works as preprocessor to 

compilers from all Cray PE 
vendors 

> module load cudatoolkit!
> module load capsmc!
!
> module load PrgEnv-pgi!
> # or!
> module swap PrgEnv-pgi PrgEnv-gnu!
> # or!
> module swap PrgEnv-pgi PrgEnv-cray!
> # or!
> module swap PrgEnv-pgi PrgEnv-intel!
!
> cc foo.c -o foo!
> # or!
> ftn foo.f90 -o foo!
> # or!
> CC foo.cpp -o foo!



OpenACC  with  MPI	

•  ... for PGI and Cray 

Compilers 
o  Use Cray PE Wrappers 
o  C and Fortran, no C++ 
o  Load the cudatoolkit module 
o  Load craype-accel-nvidia35 or 

capsmc modules for Cray or 
CAPSMC/HMPP 

o  Add –acc, –h pragma=acc, or 
–h acc for PGI and Cray builds 

> module load cudatoolkit!
!
> # PGI OpenACC!
> module load PrgEnv-pgi!
> cc –acc foo.c -o foo!
> # or!
> ftn -acc foo.f90 -o foo!
!
> # Cray OpenACC!
> module swap PrgEnv-pgi PrgEnv-cray!
> module load craype-accel-nvidia35!
> cc -h pragma=acc foo.c -o foo!
> # or!
> ftn -h acc foo.f90 -o foo!
!
!



CUDA  Runtime  with  MPI	

•  Must use GNU PE 

o  ... or link with code compiled with GNU 
and from another PE 

•  C and C++ 
•  Load the cudatoolkit module 
•  Use the --compile-bindir flag 

with nvcc so that the Cray 
wrappers are used for host 
code and the appropriate 
includes for MPI are used 

•  Compile everything with nvcc 
or if there are problems or C 
code is used, compile just 
the .cu files with nvcc 

> module load cudatoolkit!
> module swap PrgEnv-pgi PrgEnv-gnu!
> nvcc --compile-bindir `which CC` 
foo.cpp -o foo!
!
!

Note  for  C  code:  .cu  files  are  compiled  
with  C++  name  mangling  using  nvcc.  
In  some  cases,  all  code  can  be  compiled  
with  C++  compiler,  otherwise,  extern  
"ʺC"ʺ  should  be  used  in  the  .cu  file  for  
functions  called  by  C  objects.	




CUDA  Driver  with  MPI	

•  Can use any PE/Compiler 
•  C and C++ 
•  Only the kernels are compiled with nvcc 
•  Kernels are managed in the C/C++ code as strings/

files 



CUDA  Fortran  with  MPI	

•  Use PrgEnv-pgi PE with ftn wrapper. 



OpenCL  with  MPI	

•  Can use the GNU, Intel, 

and PGI programming 
environments 

•  C and C++ 
•  Load the cudatoolkit 

module 
•  Link with  -lOpenCL 

> module load cudatoolkit!
!
> module load PrgEnv-pgi!
> # or!
> module swap PrgEnv-pgi PrgEnv-gnu!
> # or!
> module swap PrgEnv-pgi PrgEnv-intel!
!
> cc foo.c -o foo -lOpenCL!
> # or!
> CC foo.cpp -o foo -lOpenCL!
!
!
!
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Note:  By  isolating  GPU  kernels/memory  calls  to  separate  files,  unsupported  PE/compilers  can  
	
be  used  for  the  remaining  host  code  that  is  linked  with  the  GPU  code.	


Note:  Some  basic/limited  supported  for  OpenACC  with  C++  might  be  available  with  CAPS-­‐‑
	
MC,  Cray,  and  PGI  –  check  with  OLCF  help.	


Note:  Some  additional  options  might  be  available  soon,  e.g.  OpenCL  with  Cray  Compiler.	
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2. Interprocess Communications 



Use  Asynchronous  Calls  and  Pipelining	

•  Peer-2-Peer 
•  GPU-Direct 
•  GPU-Aware MPI 
•  Prepost asynchronous receives 
•  Overlap communications with GPU transfers/kernels where 

possible 
o  Think about options depending on your code 

•  Compute results needed for interprocess communication first in a separate 
kernel call? 

o  Split into a pipeline of multiple asynchronous kernel calls/data transfers? 
•  Compute results needed for interprocess communication concurrently on the 

host without the need for GPU data transfer/synchronization? 
•  ... 

o  There are some tricks that do not require code modification 
•  Multiple MPI processes sharing a GPU can be used to pipeline GPU transfers/

kernel executions/MPI when data becomes available (more later) 

1 GPU per Node 

Not currently available 

Available soon 



GPU-­‐‑Aware  MPI	

•  Available in MPT 5.6.1 

o  Use pointers to memory on the accelerator directly as the MPI send/
receive buffers 

o  MPI implementation takes care of the optimization 
•  Pipelining large messages 
•  GPU Direct 
•  P2P 
•  etc. 

o  Non-blocking MPI calls can be used to overlap communication and 
computation 



Process  Mapping	

•  Job placement can have a significant impact on MPI 

communication times 
•  MPI routines for mapping communication topologies 

onto the network are currently very unsophisticated 
•  Advanced users/developers might want to consider 

handling process mapping to nodes explicitly 
o  In general case, a NP-complete problem but active area of research and 

developers have seen improvements by using heuristics for process mappings in 
their runs 

o  CrayPAT can provide insight for some topologies for your code 
o  MPI process mapping can be altered, in many cases, without changing the 

code by using a file with a rank ordering, MPICH_RANK_ORDER, and setting the 
MPICH_RANK_REORDER_METHOD environment variable 



Understanding  Gemini	

•  The network on Titan is called 

Gemini - connected in a 3D Torus 
o  Each vertex on the torus has an X,Y,Z 

coordinate 
o  1 Gemini ASIC per vertex connected to 2 

nodes 
•  <1μs latency for messages on vertex  

o  There are physical links between a vertex and 
it neighbors at (x±1,y,z), (x,y±1,z), (x,y,z±1) 
•  1.5μs latency for messages across single 

physical link 
•  No edges or center; (0,0,0) has physical 

link to (NX, 0, 0), etc. 
o  Links in the Y direction have half of the 

bandwidth of the X/Z 
o  Minimize message hops based on the Torus 

coordinates, not based on node name or 
physical location (serpentine link patterns, 
etc.) 

o  http://users.nccs.gov/~wb8/code/titan_route_map.txt 
Inter-­‐‑cabinet  cabling  for  32  cabinets  in  4  rows  	


3D  Torus  -­‐‑  1  Gemini	

ASIC  per  Vertex	


XK7  Architecture  -­‐‑  Each  Gemini  ASIC  
has  2  NICs  connected  to  2  Opterons;  
half  bandwidth  for  y  links	
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3. Parallelization of Host Code 



Where  to  Begin?	

1.  Get a profile to identify targets for acceleration for your code 
2.  Understand how to take advantage of existing parallelism in 

your code on the host (OpenMP/MPI) and how concurrent 
host/device execution and data movement can be used to 
help the porting process 

3.  Port target routines to the accelerator 
4.  Run and analyze performance 
5.  Work towards increasing the amount of code running on the 

accelerator and improving concurrency by exploiting fine 
grain parallelism, task-based parallelism, etc. 

6.  Investigate new parameters/algorithms/simulation models 
that might perform better on Titan and future architectures 



Profile  Code	

•  Figure out what routines 
are using the most time with 

•  CrayPAT, Vampir 
•  Manual instrumentation 
•  ... 

•  Example with (now) old 
hardware/software stack 
o  Two 6-core AMD Istanbul 

Processors 
o  Tesla C2070 "Fermi" Accelerators 
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"ʺPair"ʺ  time:  73%  of  simulation  loop;  
also,  the  computation  performed  
here  is  a  good  candidate  for  GPU  
acceleration  J  	




Amdahl'ʹs  Law	

•  > 50x speedup for "Pair" 

routine with acceleration 
(using mixed precision) 

•  Running on a CPU core 
with acceleration is still 
slower than CPU-only on 
all 12 cores 
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Must  "ʺDeal"ʺ  with  the  other  Routines	

•  Port to the accelerator? 

o  This is the preference if it is feasible 
and is expected to have good 
performance on the accelerator 

•  Parallelize on the host? 
o  This is already done, so potentially a 

good place to start 
o  In this example, we still get > 2X 

speedup with only a single routine 
ported to the accelerator 
•  In this example, all MPI 

processes share the GPUs 
•  Performance on newer 

hardware/driver for GPU sharing 
is much better (hyper-q, proxy, 
etc.) 
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Options  for  Parallelization	

•  1 MPI Process/Host Thread per GPU 

o  Best option if you can efficiently run most of your code on the accelerator and 
hide the time spent on the remaining code running on the host with concurrent 
GPU work 

•  1 MPI Process/Multiple Threads per GPU 
o  Use OpenMP/pthreads to parallelize host code 

•  All threads share the accelerator with separate kernel calls/memcopy 
o  ... or ... 

•  Only the master thread accesses the accelerator with shared page-
locked memory to allow multiple threads to provide input and access 
results 

o  Good option if the code... 
•  ...already uses hybrid MPI/OpenMP parallelization on the host 
•  ...is amenable to shared memory parallelism without significant pain 

o  Memory conflicts/code complexity can offset the potential 
advantages of using OpenMP with MPI 



Options  for  Parallelization	

•  Multiple MPI Processes per GPU 

o  Easiest option – no or little changes to code, just run with multiple MPI processes per 
GPU 

o  Some other advantages to this approach: 
•  Code can potentially run simultaneously on GPU and CPU for independent 

calculations 
•  Task-based parallelism might be more straightforward with MPI versus threads 
•  Smaller memory footprint per process can improve performance on both the 

host and the accelerator for some routines (e.g. random memory access with a 
domain decomposition) 

•  Allows potential for pipelining of MPI, memcopies, and computation as data is 
available without modifying the code 

o  This assumes that the software stack is smart enough to do this right and 
that the timing supports this 

o  Disadvantages include: 
•  This can limit strong scaling – don't want the chunks of work for the accelerator 

to be too small 
•  Increases the number of processes doing MPI on a node 
•  Accelerator vendors don't have a lot of experience with this usage model 

 



Code  Snippet	

•  Getting per-accelerator MPI subcommunicators 

and assigning an accelerator to each process 
o  http://users.nccs.gov/~wb8/code/init_device.htm 



Task  Mapping  Revisited	

•  The AMD Opteron 6200 

(Interlagos) Chip has 
two 8-core dies to form 
a multi-chip module 

•  2 NUMA Nodes per 
Socket 
o  Accessing memory allocated 

on one die is much slower from 
the other die 

o  Often better to use at least 2 
MPI processes per node unless 
the code is written at the 
thread level to handle NUMA 
appropriately with careful 
memory allocation/
initialization  

 



Task  Mapping  Revisited	

•  Using multiple MPI processes 

per node can impact 
overall communications 
performance for your code 

•  Remapping MPI tasks to 
minimize off-node 
communications can 
improve performance 
o  Example: Remapping to minimize the 

per-node surface to volume ratio for 
a spatial decomposition 
•  LINK will be provided here 
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4. Running 



The  CUDA  Proxy  Server	

•  The Proxy server is required for multiple CPU processes on 

a single node to share a GPU on Titan 
o  The accelerators on Titan are set to "Exclusive Process" mode 

•  Proxy is a client-server architecture that allows: 
o  Multiple processes to share the GPU when it is in "Exclusive Process" mode – 

currently the only supported mode on Titan 
o  Multiple processes to share a context on the GPU so that 

•  Context switching overhead is eliminated 
•  Kernel and memcpy execution from different processes may overlap and 

execute concurrently (Hyper-Q) 
•  Resource requirements reduced (e.g. memory overhead) from multiple 

contexts 



Using  Proxy	

•  Enabling the Proxy Server 

o  export CRAY_CUDA_PROXY=1!
•  ... before the aprun in your batch or interactive job 

o  Do not enable if you don't need it 

•  Notes when running with proxy 
o  There is no memory protection for allocations on the GPU between 

different MPI processes (one MPI process can access GPU memory 
allocated by another process) 
•  Exploiting this to share GPU memory across processes is not a good 

programming practice 
o  A GPU exception within one process will terminate the other processes 

using the same proxy server 



Proxy  Limitations	

•  Debugging and profiling is not available when using 

proxy 
o  Turn off proxy and run in parallel with 1 process per node 

•  This is sufficient for identifying most bugs 

•  Increased GPU kernel launch and memcopy initiation 
overhead 

•  GPU assert()/printf() is not currently available with proxy 
•  Dynamic parallelism is not currently available with proxy 



Dynamic  Linking	

•  Notes on building with acceleration 

o  Building any accelerated code on Titan requires dynamic linking 
o  Titan nodes are diskless 
o  Use of dynamic linking can cause significant startup overhead at large 

job sizes when compared to static executables 

•  DVS nodes must distribute the shared libraries to all of the nodes 
o  Due to run-time loading from shared libraries, it might be necessary to use 

a "warm-up" loop before doing timings for performance measurement 



Task  Mapping  (Revisited)	

•  It might be more efficient to use less than 

all available cores per node to: 
o  Avoid dividing GPU work into chunks that are too small 
o  Improve floating point performance 

•  Cores on the Interlagos CPU are 
organized into pairs called “Modules” or 
“Compute Unit” 
o  Modules share instruction fetch and 256-bit floating point 

resource 
o  A single core can make use of the entire floating point 

resource with 256-bit AVX instructions 

•  Know about the -N, -S, and -d options to 
aprun 

•  To run using only 1 process or thread per 
module, use -j 1 with aprun. 



Examples	

•  For 2 Node Job 

o  -n à Number of processes 
o  -N à Number of processes per 

node 
o  -S à Number of processes per 

NUMA node 
o  -d à Number of threads per 

process 
o  $OMP_NUM_THREADS à 

Number of OpenMP threads 
per process 

o  $CRAY_CUDA_PROXY à 1 to 
allow multiple processes to 
share GPU 

# MPI-Only, 1 per GPU!
> aprun -n 2 -N 1 ./foo!
!
# MPI/OpenMP, 1 MPI per GPU, 8 threads per,!
# 1 thread per bulldozer module!
> OMP_NUM_THREADS=8 aprun –n 2 -d 8 -j 1 ./foo!
!
# MPI/OpenMP, 2 MPI per GPU, 4 threads per,!
# 1 thread per bulldozer module!
> export CRAY_CUDA_PROXY=1!
> OMP_NUM_THREADS=4 aprun -n 4 -d 4 -j 1 ./foo!
!
# MPI-Only, 4 per GPU, 1 process per module!
> export CRAY_CUDA_PROXY=1!
> aprun -n 8 -N 4 -j 1 ./foo!
!
!



Summary	

•  Depending on your choice of syntax/programming-

model for accelerating your code, there are currently 
restrictions on the compilers you can use. 

•  Exploring/testing different task mapping options can 
improve performance for accelerated codes 

•  Methods to parallelize code on both the host and the 
accelerator can be useful in porting legacy codes and 
in some cases, even preferable for new software 

•  Sharing the accelerator using MPI comes with significant 
limitations on Titan, but in general will perform much 
better than on previous GPUs and driver versions 


