
Parallelization using
Multiple GPUs on Titan	

W. Michael Brown
Titan Users and Developers Workshop (West Coast)

January 31, 2013

Outline	

1.  Compiling/Linking

o  Compiling with MPI, CUDA, OpenCL, OpenACC, Compiler Restrictions

2.  Interprocess Communications
o  Asynchronous Communications, Cray XK7 Architecture, Task Mapping

3.  Parallelization of host code
o  Parallelization Strategy, MPI Only, Hybrid MPI/OpenMP
o  Cray XK7 Architecture, Task Mapping Revisited

4.  Running
o  Sharing a GPU between multiple processes/threads with a single context
o  Environment Variables, Task Mapping Revisited
o  Dynamic Linking, DVS

5.  Summary

Parallelization using
Multiple GPUs on Titan	

1. Compiling and Building

CAPS-­‐‑MC OpenACC with MPI	

•  formerly known as HMPP

o  Load capsmc module
o  Use Cray PE Wrappers
o  C and Fortran, basic/limited C++
o  Works as preprocessor to

compilers from all Cray PE
vendors

> module load cudatoolkit!
> module load capsmc!
!
> module load PrgEnv-pgi!
> # or!
> module swap PrgEnv-pgi PrgEnv-gnu!
> # or!
> module swap PrgEnv-pgi PrgEnv-cray!
> # or!
> module swap PrgEnv-pgi PrgEnv-intel!
!
> cc foo.c -o foo!
> # or!
> ftn foo.f90 -o foo!
> # or!
> CC foo.cpp -o foo!

OpenACC with MPI	

•  ... for PGI and Cray

Compilers
o  Use Cray PE Wrappers
o  C and Fortran, no C++
o  Load the cudatoolkit module
o  Load craype-accel-nvidia35 or

capsmc modules for Cray or
CAPSMC/HMPP

o  Add –acc, –h pragma=acc, or
–h acc for PGI and Cray builds

> module load cudatoolkit!
!
> # PGI OpenACC!
> module load PrgEnv-pgi!
> cc –acc foo.c -o foo!
> # or!
> ftn -acc foo.f90 -o foo!
!
> # Cray OpenACC!
> module swap PrgEnv-pgi PrgEnv-cray!
> module load craype-accel-nvidia35!
> cc -h pragma=acc foo.c -o foo!
> # or!
> ftn -h acc foo.f90 -o foo!
!
!

CUDA Runtime with MPI	

•  Must use GNU PE

o  ... or link with code compiled with GNU
and from another PE

•  C and C++
•  Load the cudatoolkit module
•  Use the --compile-bindir flag

with nvcc so that the Cray
wrappers are used for host
code and the appropriate
includes for MPI are used

•  Compile everything with nvcc
or if there are problems or C
code is used, compile just
the .cu files with nvcc

> module load cudatoolkit!
> module swap PrgEnv-pgi PrgEnv-gnu!
> nvcc --compile-bindir `which CC`
foo.cpp -o foo!
!
!

Note for C code: .cu files are compiled
with C++ name mangling using nvcc.
In some cases, all code can be compiled
with C++ compiler, otherwise, extern
"ʺC"ʺ should be used in the .cu file for
functions called by C objects.	

CUDA Driver with MPI	

•  Can use any PE/Compiler
•  C and C++
•  Only the kernels are compiled with nvcc
•  Kernels are managed in the C/C++ code as strings/

files

CUDA Fortran with MPI	

•  Use PrgEnv-pgi PE with ftn wrapper.

OpenCL with MPI	

•  Can use the GNU, Intel,

and PGI programming
environments

•  C and C++
•  Load the cudatoolkit

module
•  Link with -lOpenCL

> module load cudatoolkit!
!
> module load PrgEnv-pgi!
> # or!
> module swap PrgEnv-pgi PrgEnv-gnu!
> # or!
> module swap PrgEnv-pgi PrgEnv-intel!
!
> cc foo.c -o foo -lOpenCL!
> # or!
> CC foo.cpp -o foo -lOpenCL!
!
!
!

Compiler Support	

CAPS-­‐‑
MC	

Open-­‐‑
ACC	

CUDA
Runtime	

CUDA
Driver	

CUDA
Fortran	

OpenCL	

CC	
 cc	
 ftn	
 CC	
 cc	
 ftn	
 CC	
 cc	
 ftn	
 CC	
 cc	
 ftn	
 CC	
 cc	
 ftn	
 CC	
 cc	
 ftn	

PE-­‐‑pgi	

PE-­‐‑gnu	

PE-­‐‑cray	

PE-­‐‑intel	

Note: By isolating GPU kernels/memory calls to separate files, unsupported PE/compilers can
	
be used for the remaining host code that is linked with the GPU code.	

Note: Some basic/limited supported for OpenACC with C++ might be available with CAPS-­‐‑
	
MC, Cray, and PGI – check with OLCF help.	

Note: Some additional options might be available soon, e.g. OpenCL with Cray Compiler.	

Parallelization using
Multiple GPUs on Titan	

2. Interprocess Communications

Use Asynchronous Calls and Pipelining	

•  Peer-2-Peer
•  GPU-Direct
•  GPU-Aware MPI
•  Prepost asynchronous receives
•  Overlap communications with GPU transfers/kernels where

possible
o  Think about options depending on your code

•  Compute results needed for interprocess communication first in a separate
kernel call?

o  Split into a pipeline of multiple asynchronous kernel calls/data transfers?
•  Compute results needed for interprocess communication concurrently on the

host without the need for GPU data transfer/synchronization?
•  ...

o  There are some tricks that do not require code modification
•  Multiple MPI processes sharing a GPU can be used to pipeline GPU transfers/

kernel executions/MPI when data becomes available (more later)

1 GPU per Node

Not currently available

Available soon

GPU-­‐‑Aware MPI	

•  Available in MPT 5.6.1

o  Use pointers to memory on the accelerator directly as the MPI send/
receive buffers

o  MPI implementation takes care of the optimization
•  Pipelining large messages
•  GPU Direct
•  P2P
•  etc.

o  Non-blocking MPI calls can be used to overlap communication and
computation

Process Mapping	

•  Job placement can have a significant impact on MPI

communication times
•  MPI routines for mapping communication topologies

onto the network are currently very unsophisticated
•  Advanced users/developers might want to consider

handling process mapping to nodes explicitly
o  In general case, a NP-complete problem but active area of research and

developers have seen improvements by using heuristics for process mappings in
their runs

o  CrayPAT can provide insight for some topologies for your code
o  MPI process mapping can be altered, in many cases, without changing the

code by using a file with a rank ordering, MPICH_RANK_ORDER, and setting the
MPICH_RANK_REORDER_METHOD environment variable

Understanding Gemini	

•  The network on Titan is called

Gemini - connected in a 3D Torus
o  Each vertex on the torus has an X,Y,Z

coordinate
o  1 Gemini ASIC per vertex connected to 2

nodes
•  <1μs latency for messages on vertex

o  There are physical links between a vertex and
it neighbors at (x±1,y,z), (x,y±1,z), (x,y,z±1)
•  1.5μs latency for messages across single

physical link
•  No edges or center; (0,0,0) has physical

link to (NX, 0, 0), etc.
o  Links in the Y direction have half of the

bandwidth of the X/Z
o  Minimize message hops based on the Torus

coordinates, not based on node name or
physical location (serpentine link patterns,
etc.)

o  http://users.nccs.gov/~wb8/code/titan_route_map.txt
Inter-­‐‑cabinet cabling for 32 cabinets in 4 rows 	

3D Torus -­‐‑ 1 Gemini	

ASIC per Vertex	

XK7 Architecture -­‐‑ Each Gemini ASIC
has 2 NICs connected to 2 Opterons;
half bandwidth for y links	

Parallelization using
Multiple GPUs on Titan	

3. Parallelization of Host Code

Where to Begin?	

1.  Get a profile to identify targets for acceleration for your code
2.  Understand how to take advantage of existing parallelism in

your code on the host (OpenMP/MPI) and how concurrent
host/device execution and data movement can be used to
help the porting process

3.  Port target routines to the accelerator
4.  Run and analyze performance
5.  Work towards increasing the amount of code running on the

accelerator and improving concurrency by exploiting fine
grain parallelism, task-based parallelism, etc.

6.  Investigate new parameters/algorithms/simulation models
that might perform better on Titan and future architectures

Profile Code	

•  Figure out what routines
are using the most time with

•  CrayPAT, Vampir
•  Manual instrumentation
•  ...

•  Example with (now) old
hardware/software stack
o  Two 6-core AMD Istanbul

Processors
o  Tesla C2070 "Fermi" Accelerators

0	

50	

100	

150	

200	

250	

300	

350	

CPU	

Force Interp	

Field Solve	

Charge Spread	

Other	

Output	

Comm	

Neigh	

Bond	

Pair	

"ʺPair"ʺ time: 73% of simulation loop;
also, the computation performed
here is a good candidate for GPU
acceleration J 	

Amdahl'ʹs Law	

•  > 50x speedup for "Pair"

routine with acceleration
(using mixed precision)

•  Running on a CPU core
with acceleration is still
slower than CPU-only on
all 12 cores

0	

50	

100	

150	

200	

250	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

1 CPU Core	
 2 CPU Cores	
4 CPU Cores	
8 CPU Cores	
12 CPU Cores	

Other	

Output	

Comm	

Neigh	

Kspce	

Bond	

Pair	

Must "ʺDeal"ʺ with the other Routines	

•  Port to the accelerator?

o  This is the preference if it is feasible
and is expected to have good
performance on the accelerator

•  Parallelize on the host?
o  This is already done, so potentially a

good place to start
o  In this example, we still get > 2X

speedup with only a single routine
ported to the accelerator
•  In this example, all MPI

processes share the GPUs
•  Performance on newer

hardware/driver for GPU sharing
is much better (hyper-q, proxy,
etc.)

0	

50	

100	

150	

200	

250	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

C
PU

	

G
PU

+C
PU

	

1 CPU Core	
2 CPU Cores	
4 CPU Cores	
8 CPU Cores	
12 CPU Cores	

Other	

Output	

Comm	

Neigh	

Kspce	

Bond	

Pair	

Options for Parallelization	

•  1 MPI Process/Host Thread per GPU

o  Best option if you can efficiently run most of your code on the accelerator and
hide the time spent on the remaining code running on the host with concurrent
GPU work

•  1 MPI Process/Multiple Threads per GPU
o  Use OpenMP/pthreads to parallelize host code

•  All threads share the accelerator with separate kernel calls/memcopy
o  ... or ...

•  Only the master thread accesses the accelerator with shared page-
locked memory to allow multiple threads to provide input and access
results

o  Good option if the code...
•  ...already uses hybrid MPI/OpenMP parallelization on the host
•  ...is amenable to shared memory parallelism without significant pain

o  Memory conflicts/code complexity can offset the potential
advantages of using OpenMP with MPI

Options for Parallelization	

•  Multiple MPI Processes per GPU

o  Easiest option – no or little changes to code, just run with multiple MPI processes per
GPU

o  Some other advantages to this approach:
•  Code can potentially run simultaneously on GPU and CPU for independent

calculations
•  Task-based parallelism might be more straightforward with MPI versus threads
•  Smaller memory footprint per process can improve performance on both the

host and the accelerator for some routines (e.g. random memory access with a
domain decomposition)

•  Allows potential for pipelining of MPI, memcopies, and computation as data is
available without modifying the code

o  This assumes that the software stack is smart enough to do this right and
that the timing supports this

o  Disadvantages include:
•  This can limit strong scaling – don't want the chunks of work for the accelerator

to be too small
•  Increases the number of processes doing MPI on a node
•  Accelerator vendors don't have a lot of experience with this usage model

Code Snippet	

•  Getting per-accelerator MPI subcommunicators

and assigning an accelerator to each process
o  http://users.nccs.gov/~wb8/code/init_device.htm

Task Mapping Revisited	

•  The AMD Opteron 6200

(Interlagos) Chip has
two 8-core dies to form
a multi-chip module

•  2 NUMA Nodes per
Socket
o  Accessing memory allocated

on one die is much slower from
the other die

o  Often better to use at least 2
MPI processes per node unless
the code is written at the
thread level to handle NUMA
appropriately with careful
memory allocation/
initialization

Task Mapping Revisited	

•  Using multiple MPI processes

per node can impact
overall communications
performance for your code

•  Remapping MPI tasks to
minimize off-node
communications can
improve performance
o  Example: Remapping to minimize the

per-node surface to volume ratio for
a spatial decomposition
•  LINK will be provided here

Parallelization using
Multiple GPUs on Titan	

4. Running

The CUDA Proxy Server	

•  The Proxy server is required for multiple CPU processes on

a single node to share a GPU on Titan
o  The accelerators on Titan are set to "Exclusive Process" mode

•  Proxy is a client-server architecture that allows:
o  Multiple processes to share the GPU when it is in "Exclusive Process" mode –

currently the only supported mode on Titan
o  Multiple processes to share a context on the GPU so that

•  Context switching overhead is eliminated
•  Kernel and memcpy execution from different processes may overlap and

execute concurrently (Hyper-Q)
•  Resource requirements reduced (e.g. memory overhead) from multiple

contexts

Using Proxy	

•  Enabling the Proxy Server

o  export CRAY_CUDA_PROXY=1!
•  ... before the aprun in your batch or interactive job

o  Do not enable if you don't need it

•  Notes when running with proxy
o  There is no memory protection for allocations on the GPU between

different MPI processes (one MPI process can access GPU memory
allocated by another process)
•  Exploiting this to share GPU memory across processes is not a good

programming practice
o  A GPU exception within one process will terminate the other processes

using the same proxy server

Proxy Limitations	

•  Debugging and profiling is not available when using

proxy
o  Turn off proxy and run in parallel with 1 process per node

•  This is sufficient for identifying most bugs

•  Increased GPU kernel launch and memcopy initiation
overhead

•  GPU assert()/printf() is not currently available with proxy
•  Dynamic parallelism is not currently available with proxy

Dynamic Linking	

•  Notes on building with acceleration

o  Building any accelerated code on Titan requires dynamic linking
o  Titan nodes are diskless
o  Use of dynamic linking can cause significant startup overhead at large

job sizes when compared to static executables

•  DVS nodes must distribute the shared libraries to all of the nodes
o  Due to run-time loading from shared libraries, it might be necessary to use

a "warm-up" loop before doing timings for performance measurement

Task Mapping (Revisited)	

•  It might be more efficient to use less than

all available cores per node to:
o  Avoid dividing GPU work into chunks that are too small
o  Improve floating point performance

•  Cores on the Interlagos CPU are
organized into pairs called “Modules” or
“Compute Unit”
o  Modules share instruction fetch and 256-bit floating point

resource
o  A single core can make use of the entire floating point

resource with 256-bit AVX instructions

•  Know about the -N, -S, and -d options to
aprun

•  To run using only 1 process or thread per
module, use -j 1 with aprun.

Examples	

•  For 2 Node Job

o  -n à Number of processes
o  -N à Number of processes per

node
o  -S à Number of processes per

NUMA node
o  -d à Number of threads per

process
o  $OMP_NUM_THREADS à

Number of OpenMP threads
per process

o  $CRAY_CUDA_PROXY à 1 to
allow multiple processes to
share GPU

MPI-Only, 1 per GPU!
> aprun -n 2 -N 1 ./foo!
!
MPI/OpenMP, 1 MPI per GPU, 8 threads per,!
1 thread per bulldozer module!
> OMP_NUM_THREADS=8 aprun –n 2 -d 8 -j 1 ./foo!
!
MPI/OpenMP, 2 MPI per GPU, 4 threads per,!
1 thread per bulldozer module!
> export CRAY_CUDA_PROXY=1!
> OMP_NUM_THREADS=4 aprun -n 4 -d 4 -j 1 ./foo!
!
MPI-Only, 4 per GPU, 1 process per module!
> export CRAY_CUDA_PROXY=1!
> aprun -n 8 -N 4 -j 1 ./foo!
!
!

Summary	

•  Depending on your choice of syntax/programming-

model for accelerating your code, there are currently
restrictions on the compilers you can use.

•  Exploring/testing different task mapping options can
improve performance for accelerated codes

•  Methods to parallelize code on both the host and the
accelerator can be useful in porting legacy codes and
in some cases, even preferable for new software

•  Sharing the accelerator using MPI comes with significant
limitations on Titan, but in general will perform much
better than on previous GPUs and driver versions

