

Heidi Poxon
Cray Inc.

Agenda

● MPI Overview

● Gemini-specific features used by MPI

● Recent MPI enhancements / differences between
ANL MPICH and Cray MPI

● MPI rank re-ordering

● What’s coming next

Cray Inc.
2

OLCF Workshop, February 2013

●  MPT 5.5.5 released October 2012 (default on Titan)
●  MPT 5.6.0 released November 2012
●  MPT 5.6.2 coming in February 2013

●  ORNL received pre-release of cray-mpich2/5.6.2.1

●  ANL MPICH2 version supported: 1.5b1*

●  MPI accessed via cray-mpich2 module (used to be xt-mpich2)

●  Full MPI2 support (except process spawning) based on ANL
MPICH2
●  Cray uses the MPICH2 Nemesis layer for Gemini
●  Cray provides tuned collectives
●  Cray provides tuned ROMIO for MPI-IO

●  See intro_mpi man page for details on environment variables,

etc.
* As of MPT 5.6.0

Cray MPI Overview

Cray Inc.
3

OLCF Workshop, February 2013

MPICH2/Cray layout

Cray Inc.

Application

MPI Interface

MPICH2

ADI3

CH3 Device

CH3 Interface

Xpmem

Nemesis NetMod Interface

GNI GM MX PSM IB TCP
Cray XE6 specific

components

PM
I

Nemesis

Jo
b

la
un

ch
er

ROMIO

ADIO

Lus. GPFS ... Optimized
Collectives

OLCF Workshop, February 2013
4

● FMA (Fast Memory Access)
●  Used for small messages
●  Called directly from user mode
●  Very low overhead  good latency

● DMA offload engine (BTE or Block Transfer Engine)
●  Used for larger messages
●  All ranks on node share BTE resources (4 virtual channels / node)
●  Processed via the OS (no direct user-mode access)
●  Higher overhead to initiate transfer
●  Once initiated, BTE transfers proceed without processor intervention

●  Best means to overlap communication with computation

● AMOs (Atomic Memory Operations)
●  Provide a fast synchronization method for collectives

Gemini Features Used by MPI

Cray Inc. OLCF Workshop, February 2013
5

Recent Cray MPI Enhancements

Cray Inc.
6

● Asynchronous Progress Engine
●  Used to improve communication/computation overlap
●  Each MPI rank starts a “helper thread” during MPI_Init
●  Helper threads progress the MPI state engine while application

is computing
●  Only inter-node messages that use Rendezvous Path are

progressed (relies on BTE for data motion)
●  Both Send-side and Receive-side are progressed
●  Only effective if used with core specialization to reserve a core/

node for the helper threads
●  Must set the following to enable Asynchronous Progress

Threads:
●  export MPICH_NEMESIS_ASYNC_PROGRESS=1
●  export MPICH_MAX_THREAD_SAFETY=multiple
●  Run the application with corespec: aprun -n XX -r 1 ./a.out

●  10% or more performance improvements with some apps

OLCF Workshop, February 2013

2P Example without using Async Progress Threads

Async Progress Engine Example

Compute

MPI_Isend()
 (to Rank B)

Compute Compute MPI_Wait()

A

 MPI_Irecv()
(from Rank A)

Compute Compute Compute

MPI_Wait() Take a trip through
Progress Engine, match msg, fire
off BTE and wait until it completes

B

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

Data Transfer

Cray Inc. OLCF Workshop, February 2013
7

Async Progress Engine Example

Compute

MPI_Isend (to Rank B)
 à send wakeup Msg to Thread B1

Compute Compute MPI_Wait()

A

 MPI_Irecv()
(from Rank A)

Compute Compute Compute
MPI_Wait()  Recv is already
complete. Just finish bookkeeping.

B

Wakeup! Trip through Progress Engine,
match msg and fire off BTE. Back to sleep.

B1

2P Example using Async Progress Threads

T0 T1 T2 T3 T4

sleeping

A1 sleeping

Data Transfer

Cray Inc. OLCF Workshop, February 2013
8

Recent Cray MPI Enhancements (Cont’d)

Cray Inc.
9

Examples of recent collective enhancements:
●  MPI_Gatherv

●  Replaced poorly-scaling ANL all-to-one algorithm with tree-based algorithm
●  Used if average data size is <=16k bytes
●  MPICH_GATHERV_SHORT_MSG can be used to change cutoff
●  500X faster than default algorithm at 12,000 ranks with 8 byte messages

●  MPI_Allgather / MPI_Allgatherv
●  Optimized to access data efficiently for medium to large messages (4k – 500k

bytes)
●  15% to 10X performance improvement over default MPICH2

●  MPI_Barrier
●  Uses DMAPP GHAL collective enhancements

●  To enable set: export MPICH_USE_DMAPP_COLL=1
●  Requires DMAPP (libdmapp) be linked into the executable
●  Internally dmapp_init is called (may require hugepages, more memory)
●  Nearly 2x faster than default MPICH2 Barrier

●  Improved MPI_Scatterv algorithm for small messages*
●  Significant improvement for small messages on very high core counts
●  See MPICH_SCATTERV_SHORT_MSG for more info
●  Over 15X performance improvement in some cases

OLCF Workshop, February 2013

Optimizations on by default unless specified for:
● MPI_Alltoall

● MPI_Alltoallv
● MPI_Bcast

● MPI_Gather

● MPI_Gatherv

● MPI_Allgather
● MPI_Allgatherv
● MPI_Scatterv

Optimizations off by default unless specified for

● MPI_Allreduce and MPI_Barrier
●  These two use DMAPP GHAL enhancements. Not enabled by default.
●  export MPICH_USE_DMAPP_COLL=1

MPI Collectives Optimized for XE/XK

Cray Inc. OLCF Workshop, February 2013
10

MPI_Gatherv Performance

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

1024P 2048P 4096P 8192P 16000P

M
ic

ro
se

co
nd

s

Number of Processes

8 Byte MPI_Gatherv Scaling
Comparing Default vs Optimized Algorithms

on Cray XE6 Systems

Default Gatherv
Optimized Gatherv

500X	
 Improvement	

at	
 16,000	
 Ranks.	

2,111,500 us

473,620 us

Cray Inc. OLCF Workshop, February 2013
11

Improved MPI_Alltoall

0

5000000

10000000

15000000

20000000

25000000

M
ic

ro
se

co
nd

s

Message Size (in bytes)

MPI_Alltoall with 10,000 Processes
Comparing Original vs Optimized Algorithms

on Cray XE6 Systems

Original Algorithm
Optimized Algorithm

Cray Inc.
12

OLCF Workshop, February 2013

MPI_Allgather Improvements

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1024p 2048p 4096p 8192p 16384p 32768p

M
ic

ro
se

co
nd

s

Number of Processes

 8-Byte MPI_Allgather and MPI_Allgatherv Scaling
Comparing Original vs Optimized Algorithms

on Cray XE6 Systems

Original Allgather

Optimized Allgather

Original Allgatherv

Optimized Allgatherv

Cray Inc.
13

OLCF Workshop, February 2013

Recent Cray MPI Enhancements (Cont’d)

Cray Inc.
14

● Minimize MPI memory footprint
●  Optional mode to allow fully connected pure-MPI jobs to run across

large number of cores
●  Memory usage slightly more than that seen with only 1 MPI rank per

node
●  See MPICH_GNI_VC_MSG_PROTOCOL env variable
●  May reduce performance significantly but will allow some jobs to run

that could not otherwise

● Static vs dynamic connection establishment
●  Optimizations for performance improvements to both modes
●  Static mode most useful for codes that use MPI_Alltoall
●  See MPICH_GNI_DYNAMIC_CONN env variable

OLCF Workshop, February 2013

Recent Cray MPI Enhancements (Cont’d)

Cray Inc.
15

●  MPI-3 non-blocking collectives available as MPIX_ functions*
●  Reasonable overlap seen for messages more than 16K bytes, 8 or less

ranks per node and at higher scale
●  Recommend to use core-spec (aprun –r option) and setting

MPICH_NEMESIS_ASYNC_PROGRESS=1 and
MPICH_MAX_THREAD_SAFETY=multiple

● MPI I/O file access pattern statistics*
●  When setting MPICH_MPIIO_STATS=1, a summary of file write and read

access patterns are written by rank 0 to stderr
●  Information is on a per-file basis and written when the file is closed
●  The “Optimizing MPI I/O” white paper describes how to interpret the data

and makes suggestions on how to improve your application.
●  Available on docs.cray.com under Knowledge Base

●  Improved overall scaling of MPI to over 700K MPI ranks
●  Number of internal mailboxes now dependent on the number of ranks in

the job. See MPICH_GNI_MBOXES_PER_BLOCK env variable for more
info

●  Default value of MPICH_GNI_MAX_VSHORT_MSG_SIZE now set to 100
bytes for programs using more than 256K MPI ranks. This is needed to
reduce the size of the pinned mailbox memory for static allocations.

OLCF Workshop, February 2013

MPI Rank Order

OLCF Workshop, February 2013 Cray Inc.
16

Is your nearest neighbor really your nearest neighbor?

And do you want them to be your nearest neighbor?

MPI Rank Placement

OLCF Workshop, February 2013 Cray Inc.
17

● Change default rank ordering with:
●  MPICH_RANK_REORDER_METHOD

● Settings:
●  0: Round-robin placement – Sequential ranks are placed on the next

node in the list. Placement starts over with the first node upon
reaching the end of the list.

●  1: SMP-style placement – Sequential ranks fill up each node before
moving to the next. - DEFAULT

●  2: Folded rank placement – Similar to round-robin placement except
that each pass over the node list is in the opposite direction of the
previous pass.

●  3: Custom ordering - The ordering is specified in a file named
MPICH_RANK_ORDER.

When Is Rank Re-ordering Useful?

OLCF Workshop, February 2013 Cray Inc.
18

● Maximize on-node communication between MPI ranks

● Grid detection and rank re-ordering is helpful for
programs with significant point-to-point communication

● Relieve on-node shared resource contention by pairing

threads or processes that perform different work (for
example computation with off-node communication) on
the same node

Automatic Communication Grid Detection

OLCF Workshop, February 2013 Cray Inc.
19

● Cray performance tools produce a custom rank order if it’s
beneficial based on grid size, grid order and cost metric

● Heuristics available for:
●  MPI sent message statistics
●  User time (time spent in user functions) – can be used for PGAS

codes
●  Hybrid of sent message and user time)

● Summarized findings in report

● Available with sampling or tracing

● Describe how to re-run with custom rank order

MPI Rank Order Observations

OLCF Workshop, February 2013 Cray Inc.
20

Table 1: Profile by Function Group and Function!
!
 Time% | Time | Imb. | Imb. | Calls |Group!
 | | Time | Time% | | Function!
 | | | | | PE=HIDE!
!
 100.0% | 463.147240 | -- | -- | 21621.0 |Total!
|--!
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI!
||---!
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv!
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND!
||===!
| 43.3% | 200.474690 | -- | -- | 32.0 |USER!
||---!
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_!
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_!
||===!
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC!
||---!
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)!
||===!
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL!
|==!

MPI Rank Order Observations (2)

OLCF Workshop, February 2013 Cray Inc.
21

!
MPI Grid Detection:!
!
 There appears to be point-to-point MPI communication in a 96 X 8!
 grid pattern. The 52% of the total execution time spent in MPI!
 functions might be reduced with a rank order that maximizes!
 communication between ranks on the same node. The effect of several !
 rank orders is estimated below.!
!
 A file named MPICH_RANK_ORDER.Grid was generated along with this!
 report and contains usage instructions and the Custom rank order!
 from the following table.!
!
 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD!
 Order Bytes/PE Bytes/PE%!
 of Total!
 Bytes/PE!
!
 Custom 2.385e+09 95.55% 3!
 SMP 1.880e+09 75.30% 1!
 Fold 1.373e+06 0.06% 2!
 RoundRobin 0.000e+00 0.00% 0!

MPICH_RANK_ORDER File

OLCF Workshop, February 2013 Cray Inc.
22

The 'Custom' rank order in this file targets nodes with multi-core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior to
executing the program.

The following table lists rank order alternatives and the grid_order
command-line options that can be used to generate a new order.
…

Auto-Generated MPI Rank Order File

OLCF Workshop, February 2013 Cray Inc.
23

The
'USER_Time_hybrid'
rank order in this
file targets nodes
with multi-core!
processors, based on
Sent Msg Total Bytes
collected for:!
#!
Program: /lus/
nid00023/malice/
craypat/WORKSHOP/bh2o-
demo/Rank/sweep3d/src/
sweep3d!
Ap2 File:
sweep3d.gmpi-u.ap2!
Number PEs: 768!
Max PEs/Node: 16!
#!
To use this file,
make a copy named
MPICH_RANK_ORDER, and
set the!
environment variable
MPICH_RANK_REORDER_MET
HOD to 3 prior to!
executing the
program.!
#!
0,532,64,564,32,572,96
,540,8,596,72,524,40,6
04,24,588!
104,556,16,628,80,636,
56,620,48,516,112,580,
88,548,120,612!

1,403,65,435,33,411,97
,443,9,467,25,499,105,
507,41,475!
73,395,81,427,57,459,1
7,419,113,491,49,387,8
9,451,121,483!
6,436,102,468,70,404,3
8,412,14,444,46,476,11
0,508,78,500!
86,396,30,428,62,460,5
4,492,118,420,22,452,9
4,388,126,484!
129,563,193,531,161,57
1,225,539,241,595,233,
523,249,603,185,555!
153,587,169,627,137,63
5,201,619,177,515,145,
579,209,547,217,611!
7,405,71,469,39,437,10
3,413,47,445,15,509,79
,477,31,501!
111,397,63,461,55,429,
87,421,23,493,119,389,
95,453,127,485!
134,402,198,434,166,41
0,230,442,238,466,174,
506,158,394,246,474!
190,498,254,426,142,45
8,150,386,182,418,206,
490,214,450,222,482!
128,533,192,541,160,56
5,232,525,224,573,240,
597,184,557,248,605!
168,589,200,517,152,62
9,136,549,176,637,144,
621,208,581,216,613!

5,439,37,407,69,447,10
1,415,13,471,45,503,29
,479,77,511!
53,399,85,431,21,463,6
1,391,109,423,93,455,1
17,495,125,487!
2,530,34,562,66,538,98
,522,10,570,42,554,26,
594,50,602!
18,514,74,586,58,626,8
2,546,106,634,90,578,1
14,618,122,610!
135,315,167,339,199,34
7,259,307,231,371,239,
379,191,331,247,299!
175,363,159,323,143,35
5,255,291,207,275,183,
283,151,267,215,223!
133,406,197,438,165,47
0,229,414,245,446,141,
478,237,502,253,398!
157,510,189,462,173,43
0,205,390,149,422,213,
454,181,494,221,486!
130,316,260,340,194,37
2,162,348,226,308,234,
380,242,332,250,300!
202,364,186,324,154,35
6,138,292,170,276,178,
284,210,218,268,146!
4,535,36,543,68,567,10
0,527,12,599,44,575,28
,559,76,607!
52,591,20,631,60,639,8
4,519,108,623,92,551,1
16,583,124,615!

3,440,35,432,67,400,99
,408,11,464,43,496,27,
472,51,504!
19,392,75,424,59,456,8
3,384,107,416,91,488,1
15,448,123,480!
132,401,196,441,164,40
9,228,433,236,465,204,
473,244,393,188,497!
252,505,140,425,212,45
7,156,385,172,417,180,
449,148,489,220,481!
131,534,195,542,163,56
6,227,526,235,574,203,
598,243,558,187,606!
251,590,211,630,179,63
8,139,622,155,550,171,
518,219,582,147,614!
761,660,737,652,705,66
8,745,692,673,700,641,
684,713,644,753,724!
729,732,681,756,721,71
6,764,676,697,748,689,
657,740,665,649,708!
760,528,736,536,704,56
0,744,520,672,568,712,
592,752,552,640,600!
728,584,680,624,720,51
2,696,632,688,616,664,
544,608,656,648,576!
762,659,738,651,706,66
7,746,643,714,691,674,
699,754,683,730,723!
722,731,763,658,642,75
5,739,675,707,650,682,
715,698,666,690,747!

257,345,265,313,281,30
5,273,337,609,369,577,
377,617,329,513,529!
545,297,633,361,625,32
1,585,537,601,289,553,
353,593,521,569,561!
256,373,261,341,264,34
9,280,317,272,381,269,
309,285,333,277,365!
352,301,320,325,288,35
7,328,304,360,312,376,
293,296,368,336,344!
258,338,266,346,282,31
4,274,370,766,306,710,
378,742,330,678,362!
646,298,750,322,718,35
4,758,290,734,662,686,
670,726,702,694,654!
262,375,263,343,270,31
1,271,351,286,319,278,
342,287,350,279,374!
294,318,358,383,359,31
0,295,382,326,303,327,
367,366,335,302,334!
765,661,709,663,741,65
3,711,669,767,655,743,
671,749,695,679,703!
677,727,751,693,647,70
1,717,687,757,685,733,
725,719,735,645,759!
!

!

grid_order Utility

OLCF Workshop, February 2013 Cray Inc.
24

● Can use grid_order utility without first running the

application with the Cray performance tools if you know a
program’s data movement pattern

● Originally designed for MPI programs, but since

reordering is done by PMI, it can be used by other
programming models (since PMI is used by MPI, SHMEM
and PGAS programming models)

● Utility available if perftools modulefile is loaded

● See grid_order(1) man page or run grid_order with no
arguments to see usage information

Reorder Example for Bisection Bandwidth

OLCF Workshop, February 2013 Cray Inc.
25

● Assume 32 ranks

● Decide on row or column ordering:

●  $ grid_order –R –g 2,16
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

●  $ grid_order –C –g 2,16
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

● Since rank 0 talks to rank 16, and not with rank 1, we

choose Row ordering

Reorder Example for Bisection Bandwidth (2)

OLCF Workshop, February 2013 Cray Inc.
26

●  Specify cell (or chunk) to make sure rank pairs live on same
node (but don’t care how many pairs live on a node)

●  $ grid_order –R –g 2,16 –c 2,1
0,16
1,17
2,18
3,19
4,20
5,21
6,22
7,23
8,24
9,25
10,26
11,27
12,28
13,29
14,30
15,31

Fills a Magny-
Cours node

Using New Rank Order

OLCF Workshop, February 2013 Cray Inc.
27

● Save grid_order output to file called
MPICH_RANK_ORDER

● Export MPICH_RANK_REORDER_METHOD=3

● Run non-instrumented binary with and without new rank
order to check overall wallclock time for improvements

Example Performance Results for upcbw

OLCF Workshop, February 2013 Cray Inc.
28

● Default thread ordering
●  Application 8538980 resources: utime ~126s, stime ~108s

● Maximized on-node data movement with reordering
●  Application 8538982 resources: utime ~38s, stime ~106s

Case Study

●  AWP-ODC code from NCAR procurement
●  Earthquake code – x, y, z structured grid

●  MPI uses different mechanisms for on-node and off-
node communication
●  Shared memory on node – fast
●  uGNI between nodes – not as fast

●  AWP-ODC grid => 3-D grid of blocks
●  Each block mapped to a processor
●  Map blocks to node to minimize off-node

communication

●  Use MPI rank re-ordering to map blocks to nodes

OLCF Workshop, February 2013 Cray Inc.
29

AWP-ODC and grid_order

●  If MPICH_RANK_REORDER_METHOD=3
 then rank order => MPICH_RANK_ORDER file

●  Use grid_order to generate MPICH_RANK_ORDER
●  Part of perftools
●  “module load perftools” to access command/man-page
●  grid_order –C –g x,y,z –c nx, ny, nz

●  -C: row major ordering
●  -g: x, y, z grid size

●  x*y*z = number of MPI processes
●  -c: nx, ny, nz of the grids on node

●  nx*ny*nz = number of MPI processes on a node
●  MPI re-order file written to stdout

OLCF Workshop, February 2013 Cray Inc.

30

AWP-ODC example – Part 1
●  NCAR provided three test cases:

●  256 processors: 16x2x8 grid
●  512 processors: 16x4x8 grid
●  1024 processors: 16x4x16 grid

●  For 256 processors: 16x2x8 grid

●  IL-16 node has 32 cores
●  Possible grid block groups (nx, ny, nz) for a node:
●  16x2x1: 64 neighbors off-node
●  2x2x8: 32 neighbors off-node
●  4x2x4: 24 neighbors off -node

16

2 8

Graphics by Kevin McMahon

Interior Grid Block-Top

OLCF Workshop, February 2013 Cray Inc.
31

AWP-ODC example – Part 2
●  For 256 processors test case

●  Using 2x2x8 blocks/node was fastest
●  Default: 0.097 sec/compute iter
●  2x2x8 blocks/node: 0.085 sec/compute iter

●  12% faster than the default results!

●  Final additions to the 256pe PBS batch script:
. ${MODULESHOME}/init/sh
module load perftools
export MPICH_RANK_REORDER_METHOD=3
/bin/rm –rf MPICH_RANK_ORDER

grid_order –C –g 16,2,8 –c 2,2,8 > MPICH_RANK_ORDER

OLCF Workshop, February 2013 Cray Inc.
32

● GPU-to-GPU support
● Merge to MPICH 3.0 release from ANL
● Release and optimize MPI-3 features
●  Improvements to small message MPI_Alltoall at

scale
●  Improvements to MPI I/O
● MPI Stats / Bottlenecks Display

What’s Coming Next?

Cray Inc. OLCF Workshop, February 2013
33

GPU-to-GPU Optimization Feature

Cray Inc.
34

● Coming in February 2013

● Set MPICH_RDMA_ENABLED_CUDA=1

● Pass GPU pointer directly to MPI point-to-point or
collectives

OLCF Workshop, February 2013

Example without GPU-to-GPU...

if (rank == 0) {
 // Copy from device to host, then send.
 cudaMemcpy(host_buf, device_buf, …);

 MPI_Send(host_buf, …);
} else if (rank == 1) {

 // Receive, then copy from host to device.
 MPI_Recv(host_buf,...);
 cudaMemcpy(device_buf, host_buf,...);

}

Cray Inc.
35

OLCF Workshop, February 2013

Example with GPU-to-GPU...

if (rank == 0) {
 // Send device buffer.
 MPI_Send(device_buf, …);
} else if (rank == 1) {
 // Receive device buffer.
 MPI_Recv(device_buf,...);
}

Cray Inc.
36

OLCF Workshop, February 2013

GPU-to-GPU Optimization Specifics

Cray Inc.
37

● Under the hood (i.e., in the GNI netmod), GPU-to-GPU
messages are pipelined to improve performance (only
applies to long message transfer aka rendezvous
messages)

●  The goal is to overlap communication between the GPU
and the host, and the host and the NIC

●  Ideally, this would hide one of the two memcpy's

● We see up to a 50% performance gain.

OLCF Workshop, February 2013

GPU-to-GPU optimization (Cont’d)

Cray Inc.
38

● On the send side (similar for recv. side)...

● Data is prefetched from the GPU using
cudaMemcpyAsync.

● Data that has already been transferred to the host is sent
over the network (this is off-loaded to the BTE engine).

●  This allows for overlap between communication and
computation.

OLCF Workshop, February 2013

Example GPU-to-GPU overlap
Since asynchronous cudaMemcpy's are used internally, it

makes sense to do something like this...
if (rank == 0) {

 MPI_Isend(device_buf, …, &sreq);

 while (work_to_do) [do some work]

 MPI_Wait(&sreq, MPI_STATUS_IGNORE);

} else if (rank == 1)

 MPI_Irecv(device_buf,..., &rreq);

 while (nothing_better_to_do) [do some work]

 MPI_Wait(&rreq, MPI_STATUS_IGNORE);

}

Cray Inc.
39

OLCF Workshop, February 2013

Summary

OLCF Workshop, February 2013 Cray Inc.
40

● Cray MPI optimizations based on message transfer size
and job size

● Cray works very hard to establish good defaults

● Should be able to get very good overlap of large pt2pt

messages (use async progress engine with core
specialization)

● Understand where your performance bottleneck is
●  If MPI_Alltoall for example,

●  Look at Alltoall-specific environment variables (man intro_mpi(3))
●  Try the non-blocking collectives

●  If communication load imbalance detected
●  Try custom rank reorder

Cray Inc.
41

OLCF Workshop, February 2013

● Four message protocols based on size of
message…

● Eager Message Protocol (up to 8K bytes)
●  E0 and E1 Paths

● Rendezvous Message Protocol
●  R0 and R1 Paths

● MPI environment variables that alter those paths

MPI Inter-Node Messaging

Cray Inc. OLCF Workshop, February 2013
42

Environment Variables that Affect Protocols

OLCF Workshop, February 2013 Cray Inc.
43

● MPICH_GNI_MAX_VSHORT_MSG_SIZE
●  Controls max size for E0 path
●  Default varies with job size: 216-984 bytes

● MPICH_GNI_MAX_EAGER_MSG_SIZE
●  Controls max message size for E1 path (default: 8K bytes)

● MPICH_GNI_NDREG_MAXSIZE
●  Controls max message size for R0 path (default: 4MB)

● MPICH_GNI_LMT_PATH=disabled
●  Can be used to disable entire rendezvous path
●  MPI falls back to using internal buffers for long message transfers,

disabling zero-copy RDMA protocols

●  Four Main Pathways through the MPICH2 GNI NetMod
●  Two EAGER paths (E0 and E1)
●  Two RENDEZVOUS (aka LMT) paths (R0 and R1)

● Selected Pathway is Based (generally) on Message Size

● MPI env variables affecting the pathway
●  MPICH_GNI_MAX_VSHORT_MSG_SIZE

●  Controls max size for E0 Path (Default varies with job size: 216-8152
bytes)

●  MPICH_GNI_MAX_EAGER_MSG_SIZE
●  Controls max message size for E1 Path (Default is 8K bytes)

●  MPICH_GNI_NDREG_MAXSIZE
●  Controls max message size for R0 Path (Default is 512K bytes)

●  MPICH_GNI_LMT_PATH=disabled
●  Can be used to Disable the entire Rendezvous (LMT) Path

MPI Inter-node Messaging

0 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 2MB 4MB ++
 E0 E1 R0 R1

Cray Inc. OLCF Workshop, February 2013
44

● Data is transferred when MPI_Send (or variant)
encountered
●  Implies data will be buffered on receiver’s node

● Two EAGER Pathways
●  E0 – small messages that fit into GNI SMSG Mailbox

●  Default mailbox size varies with number of ranks in the job

●  Use MPICH_GNI_MAX_VSHORT_MSG_SIZE to adjust size

●  E1 – too big for SMSG Mailbox, but small enough to still go EAGER
●  Use MPICH_GNI_MAX_EAGER_MSG_SIZE to adjust size
●  Requires extra copies

EAGER Message Protocol

Job Size Max User Data (in bytes)
1 < ranks <= 512 8152

512 < ranks <= 1024 2008
1024 < ranks < 16384 472
16384 < ranks < 256K 216

Cray Inc. OLCF Workshop, February 2013
45

●  GNI SMSG Mailbox size changes with the number of ranks in the job
●  Mailboxes use large pages by default (even if app isn’t using them itself)

MPI Inter-Node Message type E0

Sender Receiver

1. GNI SMSG Send (MPI header + user data)

SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5
PE 22

PE 96

EAGER messages that fit in the GNI SMSG Mailbox

2. Memcpy

Cray Inc. OLCF Workshop, February 2013
46

●  User data is copied into internal MPI buffers on both send and receive side
●  Default MPICH_GNI_NUM_BUFS is 64 (each buffer is 32K)
●  Internal MPI buffers use large pages

MPI Inter-Node Message type E1

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5
PE 22

PE 96

EAGER messages that don’t fit in the GNI SMSG Mailbox

5. Memcpy

2. GNI SMSG Send (MPI header)

3. RDMA GET

4. GNI SMSG Send (Recv done)

1. Memcpy data to pre-allocated MPI buffers

MPICH_GNI_NUM_BUFS

MPICH_GNI_NUM_BUFS

Cray Inc. OLCF Workshop, February 2013
47

● Data is transferred after receiver has posted
matching receive for a previously initiated send

● Two RENDEZVOUS Pathways
●  R0 – RDMA GET method

●  By default, used for messages between 8K and 4 MB
●  Use MPICH_GNI_MAX_EAGER_MSG_SIZE to adjust starting point
●  Use MPICH_GNI_NDREG_MAXSIZE to adjust ending point
●  Can get overlap of communication/computation in this path, if timing is

right
●  Helps to issue MPI_Isend prior to MPI_Irecv

●  R1 – Pipelined RDMA PUT method
●  By default, used for messages greater than 512K bytes
●  Use MPICH_GNI_NDREG_MAXSIZE to adjust starting point
●  Little chance for communication/computation overlap in this path without

using async progress threads

RENDEZVOUS Message Protocol

Cray Inc. OLCF Workshop, February 2013
48

●  No extra data copies
●  Performance of GET sensitive to relative alignment of send/recv buffers

MPI Inter-Node Message type R0

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5
PE 22

PE 96

Rendezvous messages using RDMA Get

2. GNI SMSG Send (MPI header)

4. RDMA GET

5. GNI SMSG Send (Recv done)

1. Register App Send Buffer

3. Register App Recv Buffer

Cray Inc. OLCF Workshop, February 2013
49

●  Repeat steps 2-6 until all sender data is transferred
●  Chunksize is MPI_GNI_MAX_NDREG_SIZE (default of 512K bytes)

MPI Inter-Node Message type R1

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5
PE 22

PE 96

Rendezvous messages using RDMA Put

1. GNI SMSG Send (MPI header, RTS)

5. RDMA PUT

6. GNI SMSG Send (Send done)

4. Register Chunk of App
 Send Buffer

2. Register Chunk of App
 Recv Buffer

3. GNI SMSG Send (CTS msg)

Cray Inc. OLCF Workshop, February 2013
50

Cray Inc.
51

OLCF Workshop, February 2013

● Default is 8192 bytes
● Maximum size message that can go through the eager

protocol.
● May help for apps that are sending medium size

messages, and do better when loosely coupled. Does
application have a large amount of time in
MPI_Waitall? Setting this environment variable higher
may help.

● Max value is 131072 bytes.
● Remember for this path it helps to pre-post receives if

possible.
● Note that a 40-byte message header is included when

accounting for the message size.

MPICH_GNI_MAX_EAGER_MSG_SIZE

Cray Inc.
52

OLCF Workshop, February 2013

MPICH_GNI_RDMA_THRESHOLD

Cray Inc.
53

● Controls the crossover point between FMA and BTE path
on the Gemini.

●  Impacts the E1, R0, and R1 paths

●  If your messages are slightly above or below this
threshold, it may benefit to tweak this value.
●  Higher value: More messages will transfer asynchronously, but at a

higher latency.
●  Lower value: More messages will take fast, low-latency path.

● Default: 1024 bytes
● Maximum value is 64K and the step size is 128

● All messages using E0 path (GNI Smsg mailbox) will be
transferred via FMA regardless of the
MPICH_GNI_RDMA_THRESHOLD value

OLCF Workshop, February 2013

● Default is 64 32K buffers (2M total)

● Controls number of 32K DMA buffers available for
each rank to use in the Eager protocol described
earlier

● May help to modestly increase. But other resources
constrain the usability of a large number of buffers.

MPICH_GNI_NUM_BUFS

Cray Inc.
54

OLCF Workshop, February 2013

● By default, mailbox connections are established when a
rank first sends a message to another rank. This
optimizes memory usage for mailboxes. This feature can
be disabled by setting this environment variable to
disabled.

●  For applications with all-to-all style messaging patterns,
performance may be improved by setting this
environment variable to disabled.

MPICH_GNI_DYNAMIC_CONN

Cray Inc. OLCF Workshop, February 2013
55

56
Cray Inc. OLCF Workshop, February 2013

