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Large Hadron Collider - CERN

primary mission:
- Search for Higgs particle

- Origin of Electroweak symmetry breaking

Is there a Standard Model Higgs particle?

A particle, closely Higgs-like, is found
New strong dynamics!?

Composite Higgs mechanism!?

SUSY?

Primary focus of USQCD
BSM effort and this talk




Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Mode! is 2 Quanium heory That summanzes our current bnowiodge of the physics of fundamental particies and fundamental Inleractons (nleractons are manfesiod by forces and by decay rates of unstabie partcies )
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‘ I-Iow were the particle masses creafed?

massless in Big Bang
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History of the Universe
Higgs condensation
mass generation
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Higgs condensation
mass generation

Needs I-Ilggs par’rlcle of .
:S’randard Model or 1.2
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represents two of the 19+1 parameters
(Higgs mass and )

/I ,"7
vacuum condensate 1s characterized f!

by strength v = 250 GeV ,;, & !

, Higgs theory makes very
massless particle moves wit
Higgs field condensate  gccurate predictions -->

Generates mass (origin of ali masses !)

Higgs mass ~ 125 GeV

..... strength of ‘friction’ is
Yukawa coupling g

Excitation of the condensate is the Higgs particle



Fusion process p+p -> de*n begins pp cycle which fuels the Sun

If value of Higgs condensate v=250 GeV were doubled,
the fusion reaction inside sun would slow down.
Sun would shrink by about 22% (Jackson), i1t would

Our everyday world would
change dramatically by
dialing the 19+1 parameters !




Fusion process p+p -> de*n begins pp cycle which fuels the Sun

If value of Higgs condensate v=250 GeV were doubled,
the fusion reaction inside sun would slow down.

Sun would shrink by about 22% (Jackson), it would
also appear brighter with higher surface temperature.

Quark and lepton dials

Beyond the Standard Model (BSM) tries to explain the origin of

the dials which are set to fixed values in Standard Model (SM)

this is the DOE Energy Frontier - major USQCD effort



LATTICE GAUGE THEORIES AT THE ENERGY
FRONTIER

Thomas Appelquist, Richard Brower, Simon Catterall, George Fleming,
Joel Giedt, Anna Hasenfratz, Julius Kuti, Ethan Neil, and David Schaich

(USQCD Collaboration)

(Dated: March 10, 2013)

White paper - BSM community based effort to:
identify most significant accomplishments of last few years
identify our three major research directions for planning
describe the toolset and its phenomenological applications
estimate resources needed for the plan

New hardware proposal of USQCD just submitted to DOE
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* two plots on left drives our planning

where is the Higgs!  no more asked
what is it made of? asked now all the time

* “Mexican hat” solution is parametrization rather

than dynamical explanation (not gauge force!)

* has fine tuning and hierarchy problems

e three BSM directions to do better:

- strongly coupled near-conformal gauge theories

- light pseudo-Goldstone boson (like little Higgs)

- SUSY

I o new physics without tuning, within LHC14

reach? Or hiding just above LHCI[4 reach?



Highlights of accomplishments:

e Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

e Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

e Investigations of N' = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.



Calculational goals identified in the white paper:

— To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

— To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

— To investigate the nature of N' =1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.
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Calculational goals identified in the white paper:

— To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

— To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

— To investigate the nature of N' =1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.
all three directions break away from QCD paradigm
new fields and field theories on the lattice (compute intensive)

feedback to Intensity Frontier ?

muon g-2 experiment is an interesting example



The light Higgs and the dilaton near conformality

4 : : :
m2 =~ _F«)l[@Z(O)]NP'O) Partially Conserved Dilatation Current (PCDC)
o
there are two different expectations when conformal window is approached: glu=A)=g,

1. dilaton mass parametrically vanishes m?2 ~ (NJi — Ny) - A2 Mo —0

o

mG
2. dilaton mass finite in the limit fa ~ A —F — const

o

important role of 3 in electroweak phenomenology

o

both scenarios expect light Higgs-like dilaton
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The light Higgs and the dilaton near conformality

m2 =~ f2 <0|[@”(0)] 0) Partially Conserved Dilatation Current (PCDC)
there are two different expectations when conformal window is approached: glu=A)=g,
1. dilaton mass parametrically vanishes m?2 (N — Ny) - A2 o —0

. _ . . . ~ mo
2. dilaton mass finite in the limit fo ~ A —%— const effective mass M"  from 0** connected correlator
7 |v|f°(‘)’"=|v|o+c1 m | p=3.2 |
important role of == in electroweak phenomenology 06l T, meson mass requires missing disconnected part |
. 7 . . . M,= 0.1555 + 0.0070

both scenarios expect light Higgs-like dilaton s 05- oo 253413 LHC group (sextet) |

v/dof=1.21

o
o

but how light is light ? would 500 GeV do it?

o
(&)

Sannino 500-700 GeV might do it:

o S

effective mass M

. input from volumes 24°x 48, 32°x 64

m fit range: 0.003 - 0.010

OM2, ~ —12k2?m? ~ —Kk°r;(600GeV)? 0 0.005 _ 0.01 0.015



The light Higgs and the dilaton near conformality
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<0|[®”(0)] 10) Partially Conserved Dilatation Current (PCDC)

there are two different expectations when conformal window is approached: glu=A)=g,

1. dilaton mass parametrically vanishes m?2 (N — Ny) - A? m—ao

mG
2. dilaton mass finite in the limit fa ~ A —F — const

o

important role of 3 in electroweak phenomenology

o

both scenarios expect light Higgs-like dilaton

but how light is light ? would 500 GeV do it?

Sannino 500-700 GeV might do it:
w Z

OMZ, ~ —12k>72m2 ~ —x*1;(600 GeV)?
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The light Higgs and the dilaton near conformality

proof of life:

Lowest non-singlet scalar from connected correlator

X o7 «10° N=12  Lowest 0++ scalar state from singlet correlator
T T T T T q? T T T T I
Cron-singlet(t): @ i Csinglet(t) ~ exp(-Mo++-t) fitting function:
25 .
°r aMnon-singIet = 0-420(2) 1L -
$ aMo++=0.304(18)
15F B=2.2 am=0.025 1 r : : : T
243x48 lattice simulation
1+ N&=12 1 % 200 gauge configs |
I B=2.2 am=0.025 |
0.5 _
0 - — | -
~0.51 1r i
| | | ] | | | t |
6 8 10 12 26 0 5 10 15 20 25

C(t) — Z [Ane_mn(FS®FT)t + (_1)tBne—mn(74’75FS®7475FT)1;}

n

similar test results were performed in sextet model with Nf=2

staggered correlator



The light Higgs and the dilaton near conformality

proof of life:

Lowest non-singlet scalar from connected correlator o5 N=12
X

Lowest 0++ scalar state from singlet correlator
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x 107
o Gt (0 D \ LHC
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Csinglet(t) ~ exp(-Mo++-t) fitting function:

| Coo + (AW
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effective on large GPU clusters like the Cray
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GPU scaling of sextet code on Titan?
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- Sannino and ATLAS search at the LHC

Ct) = L e e B R s I staggered correlator

n

similar test results were performed in sextet model with Nf=2
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* neraly-conformal BSM physics is represented by the sextet model
e Highly compute intensive (required flop rate ~ 5x-6x of lattice QCD

e Atlas is looking for predictions of the model

10

10
500 1000 1500

500 1000 1500

Number of events/20 GeV @ 10 fb™!
Number of events/20 GeV @ 10 fb’’

M,(GeV) M,(GeV)

from Sannino et al.

q

production

Number of events/20 GeV @ 10 fb’’

M,(GeV)

Dilepton invariant mass distribution My, for pp — Rip — 7€ signal

Drell-Yen production of composite
vector bosons on the TeV scale

£+

1,2

‘-

Feynman diagram of TeV scale new vector meson



Higgs as a pseudo-Goldstone boson

 strong dynamics identifying the Higgs as a scalar pseudo-Nambu-Goldstone boson
(PNGB)

* in strongly coupled gauge theories with fermions in real or pseudo-real reps of the gauge
group Goldstone scalars emerge

* this PNGB Higgs mechanism plays a critical role in little Higgs models
* (also in minimal technicolor models)

* in little Higgs models global symmetries and their symmetry breaking patterns cancel the
quadratic divergences of the Higgs mass with little fine tuning to ~ 10 TeV

* this provides phenomenologically interesting models with weakly coupled extensions of the
SM with PNGB Higgs scalars

* project to demonstrate that viable UV complete theories exist with strong gauge sector
replacing the weakly coupled elementary (mexican hat) Higgs.



Higgs as a pseudo-Goldstone boson

Minimal PNGB model:

e SU(2) color gauge group with Nf=2 fundamental massless fermions

e additional steril flavors with Nf > 2 can be added to drive the theory close to or into the
conformal window (?)

e pseudo-real SU(2) color group enlarges SU(Nf)xSU(Nf) vector-axial vector symmetry to
SU(2Nf) flavor symmetry combining 1Nf left/right 2-component chiral spinors

e most attractive channel breaks SU(2Nf) to Sp(2Nf). If explicit masses are given to Nf-2
flavors the remaining 2 massless flavors yield SU(4)/Sp(4) coset with 5 Goldstone bosons:

e isotriplet pseudo-scalars (techni-pions) and two isosinglet scalars
 top quark loop breaks symmetry explicitly and lifts the massas of the two scalars

* the lighter is the Higgs impostor and the heavier is dark matter candidate



Studies of supersymmetric theories on the lattice

*New theoretical formulations
eimproved algorithms
eincreased computer power

pioneering studies of N=1 and
N=4 super Yang-Mills

N=1 super Yang-Mills is supersymmetric pure gauge QCD

first step to super QCD can play the role of non-perturbative SUSY breaking in high scale
hidden sector

beta=2.4
0.006 —T T T+ T T 1
_ _ - | @ 8k32 .
Gaugino condensate vs residual mass 000sf- [ 16w Ll w -
SU(2) N=1 super Yang-Mills [ nontinear fitL=§ /
DW fermions 0.004 |- i
. . i </<\ - LS:24/ L/—/32 Ls=28(1)
next goal is super QCD investigating 3 "°F = }
the simplest system with metastable 0002' Ls=8 o
. . — __—==7 Ls=40() —
vacua (four colors and five flavors) T Giedt, Catterall
0001}~ -
0 L l L I L l L I L l L
0 0.02 0.04 0.06 0.08 0.1 0.12

m
res



Studies of supersymmetric theories on the lattice

Non-perturbative N=4 super Yang-Mills program

* with topologically twisted form of the action

* possesses a single exact supersymmetry at finite lattice spacing

* exploring holographic connections between gauge theories and string/gravity theories

* holographic techni-dilaton connection?
- dilaton is simple to realize (translations along flat directions)

- N=4 lattice action has flat directions (protected by exact lattice supersymmetry)

e fermion Pfaffian presents algorithmic challenge with complex phases in determinant



Toolset and its phenomenological applications

Running coupling and beta-function

(to understand the force triggering the vacuum condensate)

T T T
O  step function from Wilson flow

Fioo 03
s 0.25
_ from gradient flow on gauge field /, 02
“ ' (LHC) A ‘
§’ 0.15
~os8F
N:I/ Sb 0.1
(@)}
! osf 0.05
2 0
D4
-0.05
02 -0.1
0.15
. 2

gradient flow on gauge field id beautiful realization of
Wilson’s exact RG with continuous momentum
integration - Luscher

Nr=12
from MCRG (Boulder)




TO O I S et a n d its P h e n O m e n O I Fusion process p+p -> de*n begins pp cycle which fuels the Sun

If value of Higgs condensate v=250 GeV were doubled,
the fusion reaction inside sun would slow down.

Sun would shrink by about 22% (Jackson), it would
also appear brighter with higher surface temperature.

Running coupling and beta-function
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Running coupling and beta-function

(to understand the force triggering the vacuum condensate)
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chiSB, Dirac spectrum, Anomalous dimension

>
lim lim lim p(\,m) = — spectral density

A—=0m—0V —0c0

A
v(M,m) = V/ drp(\,m),  A=+/M2—-m? mode number density complete UV control

—A

vr(Mg,mgr) = v(M,mq)  renormalized and RG invariant

Boulder group initiative:

| | ' | 123 x 24
1.8} (b) N f — 4 163 X 32 Bl
243 x 48 .
1.6} Br = 8.0 1
1.4} Br =14 |
: Br=17.0 ]
124 Br = 6.6 1
X, ﬁp =64

Ym 1- ‘.‘ Perturbative ............
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chiSB, Dirac spectrum, Anomalous dimension
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chiral condensate enhancement

(LSD) ® CF {kudos to Lattice Strong Dynamics
= CM 1(LSD) group for all the phenomenology

e there is fast growth in B/F as the
conformal window is approached

e parity split is decreasing in the
spectrum as CW is approached
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kudos to LSD group

e S-parameter is not increasing
according to the naive scaling
based on QCD and expected by
phenomenologists

e without non-perturbative lattice
work phenomenology is way off



W-WV scattering

0 | I T ' ' I ' [
(LSD) ° Eﬁj : LSD group
) -
o * potentially important for LHC14
§ i machine upgrade
% P 0 & 4 e based on equivalence theorem
10— 0.605 | 0.|01 | 0.615 | o.loz | 0.625 | o.los



Dark matter
The Total Energy of the Universe:

Vacuum Energy (Dark Energy) ~ 67 %
NonBaryonic Dark Matter ~ 29 %

Visible Baryonic Matter ~ 4%



Rate, event / (kg-day)

Dark matter
The Total Energy of the Universe:

Vacuum Energy (Dark Energy) ~ 67 %

NonBaryonic Dark Matter ~ 29 %

Visible Baryonic Matter ~ 4%

10°
N
10° S LSD group
\\\
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LO77 P SRR T LTRSS
\§\§\
NE R Y
5 NN
5L D
10 AR NN
\§§\\
NS
107} NN
\§\§\
\§\§\
ANDNUINN
-9 RININE
10 — Ny =2dis \:gsg\
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Nf 6 ord \:§§§§
—_ F= or N \\\
—13 L SNYR
10 XENON100 [1207.5988], expect ~ 1 event N
- XENON100 [1207.5988], > 1 event with 95% N
1072 1071 10° 10! 102

mpy [TeV]

e dark matter candidates
electroweak active in the application

* there is room for electroweak singlet
dark matter particles



(A) Resource estimates of the near-conformal BSM project

lattice spacing a| fermion mass |lattice volume |config generation| measurements

(in fermi) (in a units) VxT (TF-Years) (TF-Years)
2.25 x 1075 0.003 643 x 128 24 72
2.25 x 1079 0.004 64% x 128 20 60
2.25 x 107° 0.005 643 x 128 18 54
1.75 x 1079 0.0023 963 x 192 100 300
1.75 x 1079 0.0030 96% x 192 90 270
1.75 x 1075 0.0035 963 x 192 80 240

(B) Resource estimates of the PNGB project
min. My lattice volume |MD trajectory|config generation| measurements
(GeV) VxT (time units) (TF-Years) (TF-Years)
650 323 x 64 10000 1 2
520 403 x 80 10000 9 12
433 483 x 96 10000 44 60
371 563 x 112 10000 180 270
(C) Resource estimates of the SUSY project
lattice volume |wall separation| bare coupling trajectory. config generation
V xT Ly B=4/g3 (time units) (TF-Years)

163 x 32 24 2.4 10000 5

163 x 32 48 2.4 10000 11

243 x 48 24 2.4 10000 42

243 x 48 48 2.4 10000 84

323 x 64 24 24 10000 171

323 x 64 24 2.45 10000 342

323 x 64 48 2.45 10000 380

Total BSM resource estimate 2,941

TABLE VI: (A) Requested resources for the SU(3) two flavor sextet project. The fourth column shows
the resources needed to generate 2,000 configurations from 20,000 MD time units. The fifth column shows
the required resources for all the physics measurements. (B) Resources to generate gauge configuration
ensembles in SU(2) gauge theory with Ny = 2 fermions in the fundamental representation. The inverse
lattice spacing is held fixed at a=' = 5 TeV. The first column gives the minimum Higgs mass that can fit in
the volume assuming LMy > 4 and the second column gives the corresponding lattice volume. The fourth
column gives the resources in teraflop/s-years (TF-Years) needed to generate 10,000 molecular dynamics time
units (1,000 equilibrated gauge configurations) for each ensemble for the Wilson fermions. (C) Resources
needed for DWF simulation of SU(2) N' = 1 Yang-Mills theory are estimated. As in previous studies, we
set the bare fermion mass my = 0 for these estimates. Residual masses fall in the range 0.02-0.1 for these
values of the parameters using Shamir (non-Mobius) domain wall fermions. Using three lattice volumes, two
lattice spacings and two values of Lg should allow for careful extrapolation to the chiral continuum limit

while maintaining control over finite volume effects.

Resource estimates

* three projects use three different
fermions: staggered, Wilson, DW

* estimates in Table are expected to
change dynamically

* resources for The BSM program are
shared equally with the other three
USQCD programs

e part (A) in the table is based on sextet
model estimates as a stake holder
close to the CW

e all three parts are open for
adjustments and competition to
advance the three major directions as
defined in the white paper



323x256 aniso clover on 1024 BG/P cores
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025 O>—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBiCGStab solver |
’ wv—v Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver
(—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
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Interlagos Sockets (16 core/socket)

BSM algorithmic
developments

* resource estimates and strategic
deployments of fermion method will be
dynamical adjusted based on code and
algorithm developments

e kudos to the software group and to
RCB holding it together!









