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Large Hadron Collider   -   CERN

•   Is there a Standard Model Higgs particle?

•   A particle, closely Higgs-like, is found

•   New strong dynamics?

•   Composite Higgs mechanism?

•   SUSY?

Primary focus of USQCD 
BSM effort and this talk

  primary mission:

- Search for Higgs particle

- Origin of Electroweak symmetry breaking
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  How were the particle masses created? 
   massless in Big Bang
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Needs Higgs particle of 
Standard Model, or ...?
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represents two of the 19+1  parameters  
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by strength  v = 250 GeV   

massless particle moves with �friction� in 
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Generates mass (origin of all masses !)  
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Yukawa coupling  g 
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massless particle moves with �friction� in 
Higgs field condensate 
Generates mass (origin of all masses !)  

strength of �friction� is 
Yukawa coupling  g 

Higgs mass ~ 125 GeV 

Excitation of the condensate is the Higgs particle 

Higgs theory makes very 
accurate predictions  -->



Fusion process  p+p  -> de+� begins pp cycle which fuels the Sun 

If value of Higgs condensate v=250 GeV were doubled,  
the fusion reaction inside sun would slow down. 
Sun would shrink by about 22% (Jackson), it would 
also appear brighter with higher surface temperature. 

Our everyday world would 
change dramatically by  
dialing the 19+1 parameters ! 
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Beyond the Standard Model (BSM) tries to explain the origin of 
the dials which are set to fixed values in Standard Model (SM)

this is the DOE Energy Frontier - major USQCD effort
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  White paper - BSM community based effort to:

• identify most significant accomplishments of last few years

• identify our three major research directions for planning

• describe the toolset and its phenomenological applications

• estimate resources needed for the plan

  New hardware proposal of USQCD just submitted to DOE



•  two plots on left drives our planning

    where is the Higgs?      no more asked
    what is it made of?       asked now all the time 

•  “Mexican hat” solution is parametrization rather 
     than dynamical explanation (not gauge force!)

•  has fine tuning and hierarchy problems
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    where is the Higgs?      no more asked
    what is it made of?       asked now all the time 

•  “Mexican hat” solution is parametrization rather 
     than dynamical explanation (not gauge force!)

•  has fine tuning and hierarchy problems

•  three BSM directions to do better:  
     
   - strongly coupled near-conformal gauge theories 

   - light pseudo-Goldstone boson (like little Higgs)

   - SUSY

•  new physics without tuning, within LHC14
    reach? Or hiding just above LHC14 reach?



BSM LATTICE GAUGE THEORIES AT THE ENERGY FRONTIER

The recent discovery of the Higgs-like resonance at 126 GeV by the CMS [1] and AT-
LAS [2] experiments at the Large Hadron Collider (LHC) provides the first insight into
the origin of electroweak symmetry breaking (EWSB) in the standard model. The minimal
realization of EWSB is implemented by introducing an elementary SU(2) doublet scalar
Higgs field whose vacuum expectation value sets the electroweak scale. This simple solution
is generally regarded to be a phenomenological parametrization rather than a dynamical
explanation of EWSB. In particular, the mass-squared parameter of the light Higgs has to
be finely tuned, leading to the well-known hierarchy problem. Searching for a deeper dy-
namical explanation, and resolving the shortcomings of the minimal standard model with its
elementary Higgs doublet, the USQCD BSM program has developed three major research
directions. One direction employs strongly coupled gauge theories near conformality [3–7],
another direction envisions the new particle as a light pseudo-Goldstone boson (PNGB) in
the spirit of little Higgs scenarios [8–15], and the third direction begins to explore the non-
perturbative dynamics of SUSY gauge theories. In each of these three research directions,
new degrees of freedom are expected at the TeV scale with important implications for the
LHC experimental program at the Energy Frontier. In the past few year USQCD lattice-
BSM research has begun to demonstrate the potential of lattice field theory to investigate
non-perturbative consequence of these BSM conjectures:

• Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

• Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

• Investigations of N = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.

Building on these significant and computationally demanding accomplishments, challenges
and prospects are identified in all three major reserach directions of the USQCD BSM
program with emphasis on the broad range of phenomenological applications and the devel-
opment of new lattice-field-theory methods targeted at BSM physics.

The light Higgs and the dilaton near conformality

In the absence of electroweak symmetry breaking, the interactions of standard-model
gauge bosons and fermions show approximate conformal symmetry down to the QCD scale.
This opens up the possibility that the Higgs mode and the dilaton mode, the pseudo-
Goldstone boson of spontaneously broken scale invariance, are perhaps intimately related.
The important properties of the standard-model Higgs boson are basically determined by
the approximate conformal invariance in the limit when the Higgs potential is turned o�. In
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possibility is that an underlying strongly coupled gauge theory could produce this state
as a dilaton, the PNGB of conformal symmetry breaking. The minimal standard model
itself, with a light Higgs particle, has this approximate symmetry at the classical level. The
landscape of strongly interacting gauge theories also provides intriguing chiral symmetry-
breaking patterns in which the light state can exist as a PNGB of an approximate expanded
global symmetry, similar in spirit to the little Higgs scenarios. In addition, the landscape of
SUSY gauge theories includes many attractive features, among them natural flat directions
which can make plausible the dilaton interpretation of the 126 GeV particle.

A. Highlights of Recent Results and Future Goals

Rather than accepting an elementary Higgs boson with no new physics at accessible scales,
lattice BSM research explores its possible origin from TeV-scale physics involving composite-
ness and new symmetries. Studying these theories requires non-perturbative lattice methods,
which build directly on substantial lattice-BSM accomplishments of recent years:

� Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

� Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

� Investigations of N = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.

Building on these significant and computationally demanding accomplishments, the USQCD
BSM program has developed three major directions for future lattice BSM research with
well-defined calculational goals:

� To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

� To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

� To investigate the nature of N = 1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.

For each we describe challenges and prospects with an emphasis on the broad range of
phenomenological investigations underway and the development of new lattice-field-theory

7

Calculational goals identified in the white paper:



possibility is that an underlying strongly coupled gauge theory could produce this state
as a dilaton, the PNGB of conformal symmetry breaking. The minimal standard model
itself, with a light Higgs particle, has this approximate symmetry at the classical level. The
landscape of strongly interacting gauge theories also provides intriguing chiral symmetry-
breaking patterns in which the light state can exist as a PNGB of an approximate expanded
global symmetry, similar in spirit to the little Higgs scenarios. In addition, the landscape of
SUSY gauge theories includes many attractive features, among them natural flat directions
which can make plausible the dilaton interpretation of the 126 GeV particle.

A. Highlights of Recent Results and Future Goals

Rather than accepting an elementary Higgs boson with no new physics at accessible scales,
lattice BSM research explores its possible origin from TeV-scale physics involving composite-
ness and new symmetries. Studying these theories requires non-perturbative lattice methods,
which build directly on substantial lattice-BSM accomplishments of recent years:

� Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

� Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

� Investigations of N = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.

Building on these significant and computationally demanding accomplishments, the USQCD
BSM program has developed three major directions for future lattice BSM research with
well-defined calculational goals:

� To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

� To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

� To investigate the nature of N = 1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.

For each we describe challenges and prospects with an emphasis on the broad range of
phenomenological investigations underway and the development of new lattice-field-theory

7

Calculational goals identified in the white paper:

all three directions break away from QCD paradigm



possibility is that an underlying strongly coupled gauge theory could produce this state
as a dilaton, the PNGB of conformal symmetry breaking. The minimal standard model
itself, with a light Higgs particle, has this approximate symmetry at the classical level. The
landscape of strongly interacting gauge theories also provides intriguing chiral symmetry-
breaking patterns in which the light state can exist as a PNGB of an approximate expanded
global symmetry, similar in spirit to the little Higgs scenarios. In addition, the landscape of
SUSY gauge theories includes many attractive features, among them natural flat directions
which can make plausible the dilaton interpretation of the 126 GeV particle.

A. Highlights of Recent Results and Future Goals

Rather than accepting an elementary Higgs boson with no new physics at accessible scales,
lattice BSM research explores its possible origin from TeV-scale physics involving composite-
ness and new symmetries. Studying these theories requires non-perturbative lattice methods,
which build directly on substantial lattice-BSM accomplishments of recent years:

� Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

� Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

� Investigations of N = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.

Building on these significant and computationally demanding accomplishments, the USQCD
BSM program has developed three major directions for future lattice BSM research with
well-defined calculational goals:

� To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

� To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

� To investigate the nature of N = 1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.

For each we describe challenges and prospects with an emphasis on the broad range of
phenomenological investigations underway and the development of new lattice-field-theory

7

Calculational goals identified in the white paper:

all three directions break away from QCD paradigm

new fields and field theories on the lattice (compute intensive) 



possibility is that an underlying strongly coupled gauge theory could produce this state
as a dilaton, the PNGB of conformal symmetry breaking. The minimal standard model
itself, with a light Higgs particle, has this approximate symmetry at the classical level. The
landscape of strongly interacting gauge theories also provides intriguing chiral symmetry-
breaking patterns in which the light state can exist as a PNGB of an approximate expanded
global symmetry, similar in spirit to the little Higgs scenarios. In addition, the landscape of
SUSY gauge theories includes many attractive features, among them natural flat directions
which can make plausible the dilaton interpretation of the 126 GeV particle.

A. Highlights of Recent Results and Future Goals

Rather than accepting an elementary Higgs boson with no new physics at accessible scales,
lattice BSM research explores its possible origin from TeV-scale physics involving composite-
ness and new symmetries. Studying these theories requires non-perturbative lattice methods,
which build directly on substantial lattice-BSM accomplishments of recent years:

� Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

� Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

� Investigations of N = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.

Building on these significant and computationally demanding accomplishments, the USQCD
BSM program has developed three major directions for future lattice BSM research with
well-defined calculational goals:

� To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

� To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

� To investigate the nature of N = 1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.

For each we describe challenges and prospects with an emphasis on the broad range of
phenomenological investigations underway and the development of new lattice-field-theory

7

Calculational goals identified in the white paper:

all three directions break away from QCD paradigm

new fields and field theories on the lattice (compute intensive) 

feedback to Intensity Frontier ?



possibility is that an underlying strongly coupled gauge theory could produce this state
as a dilaton, the PNGB of conformal symmetry breaking. The minimal standard model
itself, with a light Higgs particle, has this approximate symmetry at the classical level. The
landscape of strongly interacting gauge theories also provides intriguing chiral symmetry-
breaking patterns in which the light state can exist as a PNGB of an approximate expanded
global symmetry, similar in spirit to the little Higgs scenarios. In addition, the landscape of
SUSY gauge theories includes many attractive features, among them natural flat directions
which can make plausible the dilaton interpretation of the 126 GeV particle.

A. Highlights of Recent Results and Future Goals

Rather than accepting an elementary Higgs boson with no new physics at accessible scales,
lattice BSM research explores its possible origin from TeV-scale physics involving composite-
ness and new symmetries. Studying these theories requires non-perturbative lattice methods,
which build directly on substantial lattice-BSM accomplishments of recent years:

� Investigations of strongly coupled BSM gauge theories identified conformal or near
conformal behavior, demonstrating that the anomalous mass dimensions and chiral
condensates are enhanced near conformality, with interesting implications for model
building.

� Electroweak precision experimental constraints were compared with numerical esti-
mates of the S-parameter, W-W scattering, and the composite spectra. In particular
in contrast with naive estimates, these studies demonstrate that the S-paramenter
in near-conformal theories may be reduced in better agreement with experimental
constraints.

� Investigations of N = 1 supersymmetric Yang Mills theory (gauge bosons and gaugi-
nos) produced estimates of the gluino condensate and string tension in these theories.

Building on these significant and computationally demanding accomplishments, the USQCD
BSM program has developed three major directions for future lattice BSM research with
well-defined calculational goals:

� To determine whether a composite dilaton-like particle or light Higgs can emerge in
near-conformal quantum field theories.

� To investigate strongly coupled theories with a composite Higgs as a pseudo-Goldstone
boson.

� To investigate the nature of N = 1 SUSY breaking with matter multiplets and N = 4
conformal SUSY as a test bed for AdS/CFT theoretical conjectures.

For each we describe challenges and prospects with an emphasis on the broad range of
phenomenological investigations underway and the development of new lattice-field-theory

7

Calculational goals identified in the white paper:

all three directions break away from QCD paradigm

new fields and field theories on the lattice (compute intensive) 

feedback to Intensity Frontier ?

muon g-2 experiment is an interesting example



The light Higgs and the dilaton near conformality

there are two different expectations when conformal window is approached:

1. dilaton mass parametrically vanishes                                              
                              

2. dilaton mass finite in the limit              

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
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|0⌃ ⌅ 4
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⇧0|
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
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4
f 2
⌃

⇧0|
⌃
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µ
µ(0)
⌥
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|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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1
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1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
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GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
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theory on the lattice [97].
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of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
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Partially Conserved Dilatation Current (PCDC)



The light Higgs and the dilaton near conformality

there are two different expectations when conformal window is approached:

1. dilaton mass parametrically vanishes                                              
                              

2. dilaton mass finite in the limit              

It is easy to derive, like for example in [70], the dilaton ma-
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ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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g(µ = Λ) = gc
mσ

fσ
→ 0

mσ

fσ
→ const

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
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µ⌅Gaµ⌅

⌥
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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of the gluon condensate to f⌃ ratio when the conformal win-
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Eq. (10) is predicted to approach zero in the limit, so that the
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ish when the conformal limit is reached. The ⇤ scale is defined
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side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga
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one has to deal with the well-known renormalon issues. The
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of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.
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trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
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onciled with recent findings of the sextet ⇥-function [3], if the
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dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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Partially Conserved Dilatation Current (PCDC)

but how light is light ?  would 500 GeV do it?



The light Higgs and the dilaton near conformality

there are two different expectations when conformal window is approached:

1. dilaton mass parametrically vanishes                                              
                              

2. dilaton mass finite in the limit              

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �
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|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
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tr UP⌃
⇥
=
⇧2

36
⇧�
⇧
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
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onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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methodology has been extensively studied in pure Yang-Mills
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of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
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Partially Conserved Dilatation Current (PCDC)

but how light is light ?  would 500 GeV do it?

     Sannino  500-700 GeV might do it:
4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are
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v2 H2 W+
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m2
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2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0
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3(4⇤�F⇥)2
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H
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where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
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1
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f 2
⇤

m2
⌅ . (6)
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The light Higgs and the dilaton near conformality

there are two different expectations when conformal window is approached:

1. dilaton mass parametrically vanishes                                              
                              

2. dilaton mass finite in the limit              

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧
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⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2
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f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga
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quartic divergences. The gluon condensate is computed on the
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gauge-invariant operator of dimension 2 and therefore the or-
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gluon condensate, and its determination requires the subtraction
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data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga
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of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Partially Conserved Dilatation Current (PCDC)

but how light is light ?  would 500 GeV do it?

     Sannino  500-700 GeV might do it:
4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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The light Higgs and the dilaton near conformality

there are two different expectations when conformal window is approached:

1. dilaton mass parametrically vanishes                                              
                              

2. dilaton mass finite in the limit              

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,
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When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,
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Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate
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of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0
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tr UP⌃
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as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,
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where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
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of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
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and the sextet confining force with results on the string tension
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Partially Conserved Dilatation Current (PCDC)

but how light is light ?  would 500 GeV do it?

     Sannino  500-700 GeV might do it:
4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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two fermions and two antifermions with 0++ quantum numbers. Realistic studies require a
3-channel solution, even if exotica are excluded from the analysis. The pilot study presented
here for future planning is restricted to the single channel problem using scalar correlators
which are built from connected and disconnected loops of fermion propagators [60].
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FIG. 2. The fermion loops were evaluated using stochastic methods with full time dilution and
48 noise vectors on each gauge configuration [60]. The correlator Cconn(t) on the left plot and the
correlator Csinglet = Cconn +Cdisc(t) on the right plot were assembled from the stochastic fermion
propagators. The left side plot shows the mass of the lowest non-singlet scalar (blue exponential
fit). The plot also displays the oscillating pseudo-scalar parity partner (magenta) and the full
correlator (red) fitting the data. On the right side plot, with larger errors in the limited pilot
study, the scalar singlet mass is considerably downshifted (blue exponential) and the presence of a
pseudo-scalar parity partner is not detectable. The conventional � = 6/g2 lattice gauge coupling,
setting the lattice spacing a, is shown in addition to the finite fermion mass am of the simulation.

The staggered lattice fermion formulation is deployed in the pilot study to demonstrate
feasibility with control of ⇥SB and serves as a lower bound for the required resources.
Domain wall fermions would be 10-20 times more demanding. The Symanzik improved
tree level gauge action is used with stout smeared gauge links to minimize lattice cut-o⇥
e⇥ects in the study. A staggered operator which creates a state that lies in the spin-taste
representation �S⇥�T also couples to one lying in the �4�5�S⇥�4�5�T representation. Thus
a staggered meson correlator has the general form

C(t) =
⇤

n

�
Ane

�mn(�S⇥�T)t + (�1)tBne
�mn(�4�5�S⇥�4�5�T)t

⇥

with oscillating contributions from parity partner states. For the scalar meson (�S ⇥ �T =
1⇥1), the parity partner is �4�5⇥�4�5 which corresponds to one of the pseudoscalars in the
analysis. For flavour singlet mesons, the correlator is of the form C(t) = Cconn(t) + Cdisc(t)
where Cconn(t) is the correlator coupled to the non-singlet meson state and Cdisc(t) is the
contribution of disconnected fermion loops in the annihilation diagram. Figure 2 on the
left shows the propagation of the lowest flavor-nonsinglet state together with its oscillating
parity partner, as determined by Cconn(t). The singlet scalar mass, the Higgs particle of
the strongly coupled gauge model, is determined from the flavor singlet correlator C(t)
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The enormously demanding calculation of the disconnected 
correlators is very effective on large GPU clusters like the Cray 
Titan installation

- The sextet project would run 643x128 lattices 
  GPU scaling of sextet code on Titan?

- USQCD hardware, like Dsg is limited in size

- Sannino and ATLAS search at the LHC

The light Higgs and the dilaton near conformality

LHC
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• neraly-conformal BSM physics is represented by the sextet model 
• Highly compute intensive (required flop rate ~ 5x-6x of lattice QCD
• Atlas is looking for predictions of the model Mass (TeV)
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Figure 20: Feynman diagram of the signal processes for the dilepton production.
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Feynman diagram of TeV scale new vector meson 
production

Drell-Yen production of composite 
vector bosons on the TeV scale

from Sannino et al.



Higgs as a pseudo-Goldstone boson

• strong dynamics identifying the Higgs as a scalar pseudo-Nambu-Goldstone boson 
  (PNGB)

• in strongly coupled gauge theories with fermions in real or pseudo-real reps of the gauge 
  group Goldstone scalars emerge

• this PNGB Higgs mechanism plays a critical role in little Higgs models

• (also in minimal technicolor models)

• in little Higgs models global symmetries and their symmetry breaking patterns cancel the
   quadratic divergences of the Higgs mass with little fine tuning to ~ 10 TeV

• this provides phenomenologically interesting models with weakly coupled extensions of the
  SM with PNGB Higgs scalars

• project to demonstrate that viable UV complete theories exist with strong gauge sector 
  replacing the weakly coupled elementary (mexican hat) Higgs.



• SU(2) color gauge group with Nf=2 fundamental massless fermions

• additional steril flavors with Nf > 2 can be added to drive the theory close to or into the 
   conformal window (?)

• pseudo-real SU(2) color group enlarges SU(Nf)xSU(Nf) vector-axial vector symmetry to 
  SU(2Nf) flavor symmetry combining 1Nf left/right 2-component chiral spinors

• most attractive channel breaks SU(2Nf) to Sp(2Nf). If explicit masses are given to Nf-2 
   flavors the remaining 2 massless flavors yield SU(4)/Sp(4) coset with 5 Goldstone bosons:

• isotriplet pseudo-scalars (techni-pions) and two isosinglet scalars

• top quark loop breaks symmetry explicitly and lifts the massas of the two scalars

• the lighter is the Higgs impostor and the heavier is dark matter candidate

Minimal PNGB model:

Higgs as a pseudo-Goldstone boson



Studies of supersymmetric theories on the lattice
•New theoretical formulations
•improved algorithms                                   
•increased computer power

pioneering studies of N=1 and 
N=4 super Yang-Mills

N=1 super Yang-Mills is supersymmetric pure gauge QCD

first step to super QCD    can play the role of non-perturbative SUSY breaking in high scale 
hidden sector
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the simplest system with metastable 
vacua  (four colors and five flavors) Giedt, Catterall



Non-perturbative N=4 super Yang-Mills program

• with topologically twisted form of the action

• possesses a single exact supersymmetry at finite lattice spacing

• exploring holographic connections between gauge theories and string/gravity theories

• holographic techni-dilaton connection?

    - dilaton is simple to realize  (translations along flat directions)

    - N=4 lattice action has flat directions (protected by exact lattice supersymmetry)

• fermion Pfaffian presents algorithmic challenge with complex phases in determinant

Studies of supersymmetric theories on the lattice



Toolset and its phenomenological applications

Running coupling and beta-function 
(to understand the force triggering the vacuum condensate)
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Fusion process  p+p  -> de+� begins pp cycle which fuels the Sun 

If value of Higgs condensate v=250 GeV were doubled,  
the fusion reaction inside sun would slow down. 
Sun would shrink by about 22% (Jackson), it would 
also appear brighter with higher surface temperature. 

Our everyday world would 
change dramatically by  
dialing the 19+1 parameters ! 
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chiSB, Dirac spectrum, Anomalous dimension

Boulder group initiative:

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free
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where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.

7

spectral density 

mode number density  complete UV control

renormalized and RG invariant 



Fusion process  p+p  -> de+� begins pp cycle which fuels the Sun 

If value of Higgs condensate v=250 GeV were doubled,  
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chiSB, Dirac spectrum, Anomalous dimension

Boulder group initiative:

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.
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ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free

3

where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free

3

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞
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where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
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=

1
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Fusion process  p+p  -> de+� begins pp cycle which fuels the Sun 

If value of Higgs condensate v=250 GeV were doubled,  
the fusion reaction inside sun would slow down. 
Sun would shrink by about 22% (Jackson), it would 
also appear brighter with higher surface temperature. 

Our everyday world would 
change dramatically by  
dialing the 19+1 parameters ! 
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S-parameter

   kudos to LSD group

• S-parameter is not increasing 
   according to the naive scaling  
   based on QCD and expected by
   phenomenologists

•  without non-perturbative lattice 
    work phenomenology is way off

(LSD)

1.4. The role of a composite scalar and the fundamental Higgs boson limit
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Figure 1.3: Experimental allowed regions and theoretical predictions for the S and T parameters in the Higgsless
SM for 100 < � < 3000 GeV (Eqs. (1.3.25)). The experimental allowed regions are chosen as in Ref. [34]. For the
definition of the (0, 0) point see the footnote 1.6. For the theoretical prediction we have used the most updated
value of the top mass mt = 173.3 GeV [35].

of the SM Higgs boson on the Ŝ and T̂ parameters of Eqs. (1.3.26) is exactly to cut-o⇥ the
logarithms by substituting the scale � with the Higgs boson massmh. In Fig. 1.3 we have plotted
the experimental allowed region in the (S, T ) plane1.6 compared with the theoretical predictions
for � < 3 TeV (or equivalently mh < 3 TeV). It is simple to see that the experimental bounds
on S and T imply � � 200 GeV that fixes a cuto⇥ for the Higgsless SM of the order of the
EW scale. As we will see in the next section, the same bound can be read mh � 200 GeV for
the SM Higgs boson mass. The plot in Fig. 1.3 only contains the logarithmic contributions of
Eqs. (1.3.25). It turns out that introducing also the finite terms that vanish in the limit mh � 0
the straight line in Fig. 1.3 acquires a slight bending shape slightly changing the limit on the
Higgs boson mass. However, a precise determination of the limits on the Higgs boson mass
requires a global fit to all the EWPO. The result of the global fit is [3]

mh = 90+27
�22 GeV , mh < (145, 149, 194) GeV at (90, 95, 99)% CL . (1.3.27)

1.4 The role of a composite scalar and the fundamental Higgs
boson limit

In this section we generalize the Higgsless SM discussed in the previous section adding a
scalar field, coupled to the SM fields through a general e⇥ective Lagrangian. We will see that
for a particular choice of the parameters the scalar coincides with the SM Higgs boson, i.e. can
be embedded with the GBs into a linear doublet of SU(2)L. In this case the Lagrangian will
reduce exactly to the SM Lagrangian.

1.6The origin of the axes in the (S, T ) plane is chosen in such a way that (SSM, TSM)
���
mh=150 GeV ,mt=175 GeV

�
(0, 0). All the plots represent deviations from these values.
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FIG. 3: Plot of MP /|↵k| cot � ' MP aPP vs. (MP /FP )2. The
error bars are statistical plus systematic. The red circles represent
the two-flavor data and the blue squares represent the six-flavor
data. The dashed line is the LO ⇥PT result (zero parameter fit).
Larger negative results correspond to more repulsive scattering.

The dashed line, representing the LO expression
�M2

P/16⇤
2F 2

P , is a reasonably good first approximation
to the data for both Nf = 2 and Nf = 6. For Nf = 2, the
data show that the effect of the NLO term is to make the
interaction more repulsive. The quantity in square brackets
in Eq. (23) is positive and of order unity within the range
shown. A fit to just MPaPP with µ = F leads to the
value b⇥rPP (µ = F ) = �4.67 ± 0.65+1.06

�0.05. Clearly there
is some cancelation between this term and the chiral loga-
rithm. Nonetheless, this b⇥rPP value (when combined with
the brM and brF values in Table I) is consistent with the brPP

value in Eq. (21).
For Nf = 6, the data is even closer to the LO dashed

line, suggesting that NLO perturbation theory in the form
of Eq. 23 might again be reliable. If this expression is
used to fit the Nf = 6 data, then the quantity in square
brackets is again positive and of order unity within the
range shown, but somewhat smaller in magnitude than for
Nf = 2. Since we don’t yet know the precise value of F
in lattice units for Nf = 6, we carry out the NLO fit using
the scale µ = 0.023a�1 (F for Nf = 2). The fit leads to
b⇥rPP (µ = 0.023a�1 ⇤ F ) = �7.81 ± 0.46+1.23

�0.56, larger
in magnitude than for Nf = 2. There is now more cance-
lation between this term and the chiral logarithm than for
Nf = 2.

The above values of b⇥rPP emerge from a fit of Eq. (23)
to each of the three lightest data points (corresponding to
mf = 0.01� 0.02), with a fixed choice µ = 0.023a�1 ⇤
F . A plot of the resultant value of b⇥rPP versus m (Fig. 4),
shows that b⇥rPP (µ = 0.023a�1 ⇤ F ) is relatively inde-
pendent of m for both Nf = 2 and Nf = 6 as expected
if NLO perturbation theory is reliable. The evident shift
going from Nf = 2 to Nf = 6 is interesting since this
quantity is contains LEC’s that enter into WW scattering
through Eq. (24).
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FIG. 4: Chiral parameter b⇥rPP versus fermion mass m for Nf =
2 and Nf = 6.

It is not yet clear whether this fit can be trusted for
Nf = 6, but even if it can, the resultant value for
br⇥PP (µ = 0.023a�1 ⇤ F ) determines only the combi-
nation of LECs in Eq. (24), which includes Lr

i (µ) values
not directly relevant to WW scattering. Further calcula-
tions will be necessary to isolate ��4(MH ,MP = Mds)
and ��5(MH ,MP = Mds) (Eq. (7)). This will then de-
scribe the effect of beyond-standard-model physics for a
range of PNGB masses MP .

SUMMARY AND DISCUSSION

Using lattice simulations, we have computed
pseudoscalar-pseudoscalar scattering in the maximal
isospin channel for an SU(3) gauge theory with two and
six fermion flavors in the fundamental representation.
Our calculation of the S-wave scattering length was then
related to the next-to-leading order (NLO) corrections
to WW scattering through the low-energy coefficients
of the chiral Lagrangian. For Nf = 2, our result for
the scattering length agreed with previous calculations,
showing an increase in repulsion due to the NLO correc-
tions. For WW scattering, we obtained an estimate for
��4(MH)+ ��5(MH) (Eq. (22)) describing deviations from
the standard model.

Six-flavor scattering showed a somewhat less repulsive
NLO interaction than its two-flavor counterpart for a fixed
ratio of the pseudoscalar mass to its decay constant. The
range of fermion masses employed so far does not allow a
clearly reliable use of chiral perturbation theory. Also, the
appearance of more terms in the hadronic chiral lagrangian
for six flavors does not allow the extraction of only the
combination of parameters entering WW scattering. Fur-
ther simulations of additional low-energy scattering param-
eters at lower fermion-mass values will be required to com-
plete this study.

W-W scattering

(LSD)    LSD group

• potentially important for LHC14 
   machine upgrade

• based on equivalence theorem



Dark matter
The Total Energy of the Universe:

Vacuum Energy (Dark Energy)  ~  67 %

NonBaryonic Dark Matter          ~  29 %

Visible Baryonic Matter              ~   4 %
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LSD group

• dark matter candidates 
   electroweak active in the application

• there is room for electroweak singlet
   dark matter particles
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(A) Resource estimates of the near-conformal BSM project

lattice spacing a fermion mass lattice volume config generation measurements

(in fermi) (in a units) V � T (TF-Years) (TF-Years)

2.25� 10�5 0.003 643 � 128 24 72

2.25� 10�5 0.004 643 � 128 20 60

2.25� 10�5 0.005 643 � 128 18 54

1.75� 10�5 0.0023 963 � 192 100 300

1.75� 10�5 0.0030 963 � 192 90 270

1.75� 10�5 0.0035 963 � 192 80 240

(B) Resource estimates of the PNGB project

min. MH lattice volume MD trajectory config generation measurements

(GeV) V � T (time units) (TF-Years) (TF-Years)

650 323 � 64 10000 1 2

520 403 � 80 10000 9 12

433 483 � 96 10000 44 60

371 563 � 112 10000 180 270

(C) Resource estimates of the SUSY project

lattice volume wall separation bare coupling trajectory. config generation

V � T Ls � = 4/g20 (time units) (TF-Years)

163 � 32 24 2.4 10000 5

163 � 32 48 2.4 10000 11

243 � 48 24 2.4 10000 42

243 � 48 48 2.4 10000 84

323 � 64 24 2.4 10000 171

323 � 64 24 2.45 10000 342

323 � 64 48 2.45 10000 380

Total BSM resource estimate 2,941

TABLE VI: (A) Requested resources for the SU(3) two flavor sextet project. The fourth column shows

the resources needed to generate 2,000 configurations from 20,000 MD time units. The fifth column shows

the required resources for all the physics measurements. (B) Resources to generate gauge configuration

ensembles in SU(2) gauge theory with Nf = 2 fermions in the fundamental representation. The inverse

lattice spacing is held fixed at a�1 = 5 TeV. The first column gives the minimum Higgs mass that can fit in

the volume assuming LMH ⇥ 4 and the second column gives the corresponding lattice volume. The fourth

column gives the resources in teraflop/s-years (TF-Years) needed to generate 10,000 molecular dynamics time

units (1,000 equilibrated gauge configurations) for each ensemble for the Wilson fermions. (C) Resources

needed for DWF simulation of SU(2) N = 1 Yang-Mills theory are estimated. As in previous studies, we

set the bare fermion mass mf = 0 for these estimates. Residual masses fall in the range 0.02-0.1 for these

values of the parameters using Shamir (non-Möbius) domain wall fermions. Using three lattice volumes, two

lattice spacings and two values of Ls should allow for careful extrapolation to the chiral continuum limit

while maintaining control over finite volume e�ects.
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Resource estimates

• three projects use three different 
  fermions: staggered, Wilson, DW 

• estimates in Table are expected to 
   change dynamically

• resources for The BSM program are 
  shared equally with the other three   
  USQCD programs

• part (A) in the table is based on sextet 
  model estimates as a stake holder  
  close to the CW

• all three parts are open for 
   adjustments and competition to 
   advance the three major directions as
   defined in the white paper
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Strong Scaling: 483x512 Lattice (Weak Field), Chroma + QUDA 

100 Tflops

BSM algorithmic 
developments

• resource estimates and strategic 
  deployments of fermion method will be
  dynamical adjusted based on code and
  algorithm developments

• kudos to the software group and to 
   RCB holding it together! 

multigrid

strong scaling






