Chroma at OLCF

A grab bag of Chroma related topics

Bálint Joó Lattice QCD Workshop Oak Ridge National Laboratory April 30, 2013

Thomas Jefferson National Accelerator Facility

Gauge Generation

Essential First Step of any Lattice Calculation

Hybrid Monte Carlo

- A.k.a Hybrid Molecular Dynamics Monte Carlo (MDMC)
- Update all links, treating them as coordinates of a Hamiltonian System
- Accept updates with Metropolis acceptance probability: Pacc = min(1, exp{ -(H'-H) })
- Advantage of MD: Update all links, H'-H small due to energy conservation
 - reasonable acceptance achievable, control $\langle P_{acc} \rangle$ with step-size d τ

Thomas Jefferson National Accelerator Facility

Expensive Part: MD Forces

• Fermion Forces:

Computational Character

- In terms of Berkeley Dwarfs
 - Sparse Linear Algebra (Dwarf #2)
 - Dirac Equation in various forms: Large, Sparse, Complex, Linear Systems
 - Sparse Matrix is not explicitly assembled, custom SpMV directly using fields
 - Krylov methods:
 - Standard: Conjugate Gradients, BiCGStab, GCR, GMRES, + Shifted variants
 - Emerging: +DD preconditioner, +Deflation, Multi-Grid methods
 - Dense Linear Algebra (Dwarf #1)
 - 3x3 complex matrix-matrix, matrix-vector, trace, etc at each lattice site
 - Structured Grids (Dwarf #5)
 - New Multi-Grid methods add "uniform" grid-refinement (blocking)

Nearest Neighbors

- Most communication is between nearest neighbors
- Gauge Action:
 - plaquette
- Fermion Matrix
 - Key Component: Wilson Dslash
 - AI: ~ 0.92 FLOP/byte in single prec.
 - AI: ~0.46 FLOP/byte in double prec.
 - Nearest Neighbor stencil

Tuesday, April 30, 2013

Strong Scaling

1 for solver + 1/4 for reducing $d\tau$ to keep P_{acc} constant

$$\operatorname{Cost} \propto V^{5/4} \left[k_1 + \frac{k_2}{(m_\pi a)^2} \right] \left(\frac{1}{a} \right)^5$$

- Volume dependence of computational cost is mild
- Lattice spacing and quark mass dependence much harder
- Science dictates
 - finer (closer to continuum) lattices
 - physical quark masses
 - a necessary *minimum* volume
- Focus power on m_{π} , a and statistics => Strong Scaling

Jefferson Lab

Operational Characteristics

- Current CPU Running on Titan
 - Volume: 40^3x256 sites, $m_{\pi} \sim 230 MeV$
 - 3 streams using 25600 'cores' each: 76800 cores (bin #2)
 - 12-24 hour jobs, 2920 sec / traj on average
 - Typical: ~30 traj / 12 hour job
 - I/O: save 9 GB files, ~35 sec per file, ~263MB/sec
 - Writes to Lustre, with stripe-count of 10.
 - Occasionally tar these to HPSS (offsite transfer later)
 - Current INCITE Usage: 43M / 140M ~ 30%
 - We got this on the cheap tho, since charge factor is 16 'cores' per node
 - Burn rate will increase when OLCF starts charging for GPUs too.

QDP++ and Chroma

- QDP++ is a data parallel 'layer' in the USQCD Software stack
- QDP++ provides 'matlab like' expressions on QCD data-types, via "expression templates"
- Chroma is an application suite coded in terms of QDP++
- Additional acceleration from libraries:
 - Wilson Dslash operators
 - Solver libraries like QUDA

- C/C++ with OpenMP threads/pthreads
- Code Size (measured by sloccount on 4/27/13) :
 - **QDP++** ~ **137.6 KLOC** (including QIO)
 - Chroma ~ 299.0 KLOC (including bundled libraries)
- QMP built over MPI
- Library dependencies: libxml2 (parameter files)

Chroma On GPUs

- Using GPUs since 2009 via QUDA library (Mike Clark's talk)
 - Accelerated solvers
- Recently: move all of QDP++ to the GPUs
 - QDP-JIT (F. Winter)
 - JIT/C is production ready
 - JIT/PTX is full featured
 - some interfacing with QUDA remains
 - work in progress (almost complete)
 - Titan porting testing via LGT006 discretionary project (Thank You!)
 - Friendly/Early use of TitanDev

Jefferson Lab

Variety of Speedups

Quantify Speedup in either GFLOPS or Wallclock time

- Speedups tend to decrease as jobs get larger:
 - Strong Scaling effects (S/V)
 - Algorithmic improvement from Domain Decomposition is **INCLUDED** here
- Whole app speedup different from solver speedup. Suspect:
 - Amdahl's law effects
 - performance variations
- Summary: ~3-4x at scale in wallclock time

Preliminary: error bars needed

Thomas Jefferson National Accelerator Facility

Xeon Phi Experiences

- In collaboration with Intel Parallel Labs
 - M. Smelyanskiy, D. G. Kalamkar, K. Vaidyanathan
- Achieving High Performance needed:
 - vectorization tricks
 - cache blocking
 - block-to-core mapping
 - L2 prefetching in software
- Performance portability to AVX via 'code generator'
- Ninja code: 1 Xeon Phi ~ 4 x SNB sockets
- Non-Ninja code: 1 Xeon Phi ~ 2 sockets

From: B. Joo, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnani, V. W. Lee, P. Dubey, W. Watson III, "Lattice QCD on Intel(R) Xeon Phi(tm) Coprocessors", Proceedings of ISC'13 (Leipzig) Lecture Notes in Computer Science Vol 7905 (to appear),

■ V=24x24x24x128 ■ V=32x32x32x128 ■ V=40x40x40x96 ■ V=48x48x24x64 ■ V=32x40x24x96

Thomas Jefferson National Accelerator Facility

Future Architectures

- Our primary desire from a future architecture is probably a good balance between memory and internode bandwidth.
 - Would also like stability & predictable performance (talk by DeTar)
- Simple model: Scaling of Wilson-Dslash Operator
 - Nearest neighbor 'stencil' in 4 Dimensions
- Assume:
 - 2L⁴ sites on a node, L⁴ after checkerboarding
 - No reuse of gauge links
 - Maximum spinor reuse (load 1 new spinor for every lattice site)
 - Compute for body can be overlapped with the memory traffic, mem B/W is B_m
 - All faces communicated concurrently with B/W: Bn per face
 - Total network bandwidth B_N=16B_n ((send+receive) x (forward+back) x 4 dims))
 - latencies are negligible

Gauge: 18

Spinor: 24 numbers

Tuesday, April 30, 2013

Jefferson Lab

Scaling Example

- Face Size: 12 L³ sizeof(F), Body Size: 192 (L-2)⁴ sizeof(F)
- Face Comms Time: 192 L³ sizeof(F) / B_N
- Body Compute Time: 192 (L-2)⁴ sizeof(F) / B
- Face Time /Compute Time = $L^3 B_m / (L-2)^4 B_N$
- To overlap compute with comms need: $B_N/B_m \lesssim L^3/(L-2)^4 \sim 1/L$

	B _m (GB/s)	B _N (GB/s)	L _{min}	B _N /B _m	L ³ /(L-2) ⁴	V∟ sites	Nodes for 96 ³ x256 lattice
Accelerator like	180	16 (PCle2)	16	0.09	0.11	32x16 ³	1728
"CPU" like	45	16 (PCle2)	8	0.36	0.39	16x8 ³	27,648

- Caveats:
 - not the whole story: reduced communications algorithms (e.g. DD+GCR) help
 - Hardware improvements: e.g. as in this presentation (move fabric onto chip, like BG/Q)

Scaling Example

• Face	Size: 1213	sizeof(E) Bo	dy Size	• 192 (I -2)4	sizeof(F)					
• Face	 Moral of this example: 									
• Body	- Improve B_N/B_m by $4x$ (by reducing B_m)									
• Face	 Lose 4x in body compute 									
	- Gain 16x in scalability									
	 Overall 4x speedup 									
	 More Ideal Scenario: Keep high B_m & improve B_N by 4x 									
	 would lead to overall 16x speedup 									
Accelerator like	 but this simple example doesn't consider power cost for network 									
"CPU" like	45	16 (PCle2)	8	0.36	0.39	16x8 ³	27,648			

- Caveats:
 - not the whole story: reduced communications algorithms (e.g. DD+GCR) help
 - Hardware improvements: <u>e.g. as in this presentation</u> (move fabric onto chip, like BG/Q)

Porting/Future Architectures

- Rough Effort estimates for Porting
 - On GPUs
 - QUDA developing since 2008/2009(?): 4-5 calendar years
 - QDP-JIT: Since Dec 2009: 2 and 1/3rd FTE year, just over 3 calendar years
 - On Xeon Phi
 - Chroma compiled 'out of box' but needs development for higher efficiency:
 - 'parscalarvec' work by Jie for example: vector friendly layout, more pervasive threading
 - Dslash work with Intel took off about Mid April 2012
 - So far at most 1 FTE year between self, Jie and Intel colleagues
 - Lots left to do: double precision, optimized clover, more work in QDP++, etc
 - In total 2-2.5 FTE years estimate seems not unreasonable.

Porting/Future Architectures

- Does it take 2-4 years to stand up to a new architecture?
- It took about 2-3 years for Chroma to initially stabilize... (started 2002)
 - but architectures were then 'stable' for about 7-8 years
 - MPP with MPI/QMP: QCDOC, BG/L, BG/P, Cray XT, Xeon/AMD IB Clusters
- 4 years is about the lifetime of a leadership computer...
- Lessons:
 - Vendor Partnerships really critical: e.g. IBM, Intel, NVIDIA
 - Partnerships/Communication with LCFs is really critical.
 - help us prepare, make important decisions re. software, advocate our needs to vendors
 - rewrite needs payoff guarantee to be worth it
 - e.g. if one needs to take on a radically different programming model
 - otherwise porting is preferable preserve investments

Tuesday, April 30, 2013

Conclusions

- BJ: Happy & Friendly USQCD user of OLCF since 2007
 - also of NICS (mostly Kraken and development on Keeneland)
- Chroma + QDP JIT/PTX + QUDA is well poised to use Titan
- Going forward
 - We need closer relationships to the LCFs
 - Especially if Hardware/Sfw environment is heavily site specific (e.g. interconnect) and is not available on the general commodity computing market
 - We need to be involved/informed very early to have time to stand up production ready code.
 - We need to continue our excellent relations with Vendors
 - We are willing to work under NDAs if needed.
- Looking forward to working with all stakeholders to keep LQCD viable and vibrant on future platforms on the road to Exascale, and to advance the USQCD Science program

Thomas Jefferson National Accelerator Facility

