SANVIDIA.

’

LARANNAAAI NN IS

L
O AAAAr

’ ’ Pha

A dddd N e
iAo
S A A dddddddd A N
A E SRy e

R

sensns
PRI i s s iidesss
Iy

3
O

io

Introduct

3 Ways to Accelerate Applications

=

NVIDIA

Applications

J

Libraries

“Drop-in”
Acceleration

Easily Accelerate
Applications

e

_

Programming
Languages

™\

J

Maximum
Flexibility

OpenACC =

The Standard for GPU Directives

* Simple: Directives are the easy path to accelerate compute
intensive applications

®* Open: OpenACC is an open GPU directives standard, making GPU
programming straightforward and portable across parallel
and multi-core processors

¢ Powerful: GPU Directives allow complete access to the massive
parallel power of a GPU

DIRECTIVES FOR ACCELERATORS

>

High-level

Compiler directives to specify parallel regions in C & Fortran
Offload parallel regions
Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogeneous programs
Without explicit accelerator initialization
Without explicit data or program transfers between host and accelerator

High-level... with low-level access <=,

Programming model allows programmers to start simple

Compiler gives additional guidance
Loop mappings, data location, and other performance details

¢ Compatible with other GPU languages and libraries

* Interoperate between CUDA C/Fortran and GPU libraries
* e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Directives: Easy & Powerful <,

Real-Time Object Valuation of Stock Portfolios Interaction of Solvents and
Detection using Monte Carlo Biomolecules
Global Manufacturer of Navigation Global Technology Consulting Company University of Texas at San Antonio
Systems

.
J

98.6 v 1:42 Hrs
27130 r) 60 9:45 T:

YARDS

5x in 40 Hours 2xin 4 Hours 5xin 8 Hours

¢ Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. »

-- Developer at the Global Manufacturer of Navigation Systems

Focus on Exposing Parallelism >}

With Directives, tuning work focuses on exposing parallelism,
which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

e e)

CAM-SE

Answer questions about specific
climate change adaptation and
mitigation scenarios

S3D
Research more efficient
combustion with next-

generation fuels
* Tuning top 3 kernels (90% of runtime) » Tuning top key kernel (50% of runtime)
» 3 to 6x faster on CPU+GPU vs. CPU+CPU » 6.5x faster on CPU+GPU vs. CPU+CPU

» But also improved all-CPU version by 50% » Improved performance of CPU version by 100%

OpenACC Specification and Website

* Full OpenACC 1.0 Specification available online

www.opéenacc.org

® Quick reference card also available

* Compilers available now from PGI, Cray, and CAPS

<3

nvibia

The OpenACC™ API
QUICK REFERENCE GUIDE

THE EUFERCOMPUTER COMPANY

NVIDIA.

http://www.openacc.org/

<3

NVIDIA.

Exposing Parallelism
with OpenACC

A Very Simple Exercise: SAXPY <=

SAXPY Iin C SAXPY in Fortran
Ki.d saxpy (int n, \ @routine saxpy(n, a, x, y)\
float a, real :: x(n), y(n), a
float *x, integer :: n, i

float *restrict y)

do i=1,n
: : . : y(i) = a*x(i)+y (1)
for Flnt i= 9, i< ?, ++1i) enddo
yl[i] = a*x[1i] + yl[i]~;
} end subroutine saxpy
// Perform SAXPY on 1M elements ! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x d,

saxpy (1<<20, 2.0, x, y);

v

A Very Simple Exercise: SAXPY OpenMP &,

SAXPY Iin C SAXPY in Fortran
Ki.d saxpy (int n, \ @routine saxpy(n, a, x, y)\
float a, real :: x(n), y(n), a
float *x, integer :: n, i

float *restrict y) '$omp parallel do

do i=1,n
y(i) = a*x(i)+y (i)

{
#pragma omp parallel for

for Fint i= 9; i< ?; ++1i) enddo
yli] = a*x[1] + y[i1]; 'Somp end parallel do
} end subroutine saxpy
// Perform SAXPY on 1M elements ! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x d,

saxpy (1<<20, 2.0, x, y);
\ J\Z v

A Very Simple Exercise: SAXPY OpenACC &,

SAXPY Iin C SAXPY in Fortran
Ki.d saxpy (int n, \ @routine saxpy(n, a, x, y)\
float a, real :: x(n), y(n), a
float *x, integer :: n, i

. :
float *restrict y) 1 Sacc parallel loop

do i=1,n
y(i) = a*x(i)+y (i)

{
#pragma acc parallel loop

for Fint i= 9; i< ?; ++1i) enddo
yli]l = a*x[1] + y[1]; ISacc end parallel loop
} end subroutine saxpy
// Perform SAXPY on 1M elements ! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x d,

saxpy (1<<20, 2.0, x, y);
\ J\Z v

OpenACCisnot ™ "
GPU Programming.

OpenACC s
Exposing Parallelism
In your code.

OpenACC Execution Model >}

Application Code

E—

&
)
O
O
§e)
Y,
-
2
o)

Compute-Intensive Functions CPU Code

G P U Generate Parallel Code for GPU

e

] Rest of Sequential

QO
(@)
(@)
@D
>
o
©
jab)
=
i
@

Directive Syntax <.

® Fortran

!Sacc directive [clause [,] clause] ..]
...often paired with a matching end directive surrounding a structured code block:
!Sacc end directive

*C
#pragma acc directive [clause [,] clause] ..]
...often followed by a structured code block

® Common Clauses
if (condition), async(handle)

OpenACC parallel Directive N>

NVIDIA

Programmer identifies a loop as having parallelism, compiler
generates a parallel kernel for that loop.

Slacc parallel loop
do i=1,n
y(i) = a*x(1i)+y(1)
enddo

S'acc end parallel loop _

>

Parallel
kernel

*Most often parallel will be used as parallel loop.

Complete SAXPY example code <=

® Trivial first example [T mean(ing sxge, chax Fraxgy)
L Apply a loop directive int N = 1<<20; // 1 million floats
® Learn compiler commands if (arge > 1)

N = atoi(argv[l]);

float *x = (float*)malloc(N * sizeof(float));
float *y = (float*)malloc(N * sizeof (float)) ;

@clude <stdlib.h> \

for (int i = 0; 1 < N; ++i) {

void saxpy(int n, x[?] = 2.0f;

float a, y[i] = 1.0f;

float *x, }

float *restrict y)
{ saxpy (N, 3.0f, x, y);
#pragma acc parallel loop
for (int i = 0; i < n; ++i) } return 0;

\ y[i] = a * x[i] + yI[i]; /

Compile (PGl) >

NVIDIA

¢ C
pgcc —acc [-Minfo=accel] [-ta=nvidia] -0 saxpy acc saxpy.cC
¢ Fortran:

pgf90 —-acc [-Minfo=accel] [-ta=nvidia] -o saxpy acc saxpy.f90

¢ Compiler output:

[pgcc -acc -Minfo=accel -ta=nvidia -o saxpy acc saxpy.c \
saxpy:
11, Accelerator kernel generated
13, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */
11, Generating present_or copyin(x[0:n])
Generating present_or_ copy(y[0:n])
Generating NVIDIA code
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary

\ Generating compute capability 3.0 binary /

Run

* The PGI compiler provides automatic instrumentation when

PGI ACC TIME=1 at runtime

f/"7 Accelerator Kernel Timing data
/home/jlarkin/kernels/saxpy/saxpy.c
saxpy NVIDIA devicenum=0
time (us): 3,256
11: data copyin reached 2 times
device time (us): total=1l,619 max=892 min=727 avg=809
11: kernel launched 1 times
grid: [4096] block: [256]
device time (us): total=714 max=714 min=714 avg=714
elapsed time (us): total=724 max=724 min=724 avg=724

\\\‘> 15: data copyout reached 1 times

device time (us): total=923 max=923 min=923 avg=923

N

3

NVIDIA

Run

* The Cray compiler provides automatic instrumentation when
CRAY ACC DEBUG=<1,2,3> at runtime

e

ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:
ACC:

Initialize CUDA
Get Device 0
Create Context
Set Thread Context
Start transfer 2 items from saxpy.c:17
allocate, copy to acc 'x' (4194304 bytes)
allocate, copy to acc 'y' (4194304 bytes)
End transfer (to acc 8388608 bytes, to host 0 bytes)
Execute kernel saxpy$ck L17 1 blocks:8192 threads:128 async(auto) from saxpy.c:17
Wait async(auto) from saxpy.c:18
Start transfer 2 items from saxpy.c:18
free 'x' (4194304 bytes)
copy to host, free 'y' (4194304 bytes)
End transfer (to acc 0 bytes, to host 4194304 bytes)

~

3

nvibia

%

Another approach: kernels construct N>

NVIDIA

* The kernels construct expresses that a region may contain

parallelism and the compiler determines what can safely be
parallelized.
1Sacc kernels
do i=1,n
a(i)
b (i)
c(1)
end do

> kernel 1

i n
N PO
© oo

do i=1,n

a(i) = b(i) + c(i) »~ kernel2
end do
1Sacc end kernels

OpenACC parallel vs. kernels 2
PARALLEL KERNELS
* Requires analysis by « Compiler performs parallel
programmer to ensure safe analysis and parallelizes what
parallelism it believes safe
« Straightforward path from « Can cover larger area of code
OpenMP with single directive

Both approaches are equally valid and can perform
equally well.

>
NVIDIA.

OpenACC by
Example

Example: Jacobi Iteration >

Iteratively converges to correct value (e.g. Temperature), by
computing new values at each point from the average of
neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: V2f(x,y) = 0

A(i+1,])
®

e e A=
(]'1;J) A(];J) A(1+1’J) 4’

®
A(i,j-1)

Jacobi Iteration: C Code |

while (err > tol && iter < iter max) ({

err=0.0; Iterate until converged

(Ilterate across matrix

for(int j = 1; j < n-1; j++) { elements

for(int i = 1; i < m-1; i++) {

l Calculate new value from
neighbors

Anew[j][i] = 0.25 * (A[Jj][i+1] + A[j][i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j]l[i]) - l Compute max error for
}

} convergence

A A A A

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) { |
A[j]1[i] = Anew[j][i]; { Swap input/output arrays
}
}

iter++;

Jacobi Iteration: OpenMP C Code <.

while (err > tol && iter < iter max) ({
err=0.0;

| Parallelize loop across

#pragma om arallel for shared(m, n, Anew, A) reduction(max:erﬂ'
pragh PP CPU threads

for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[Jj][i+1] + A[j][i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i])
}
}

‘ | Parallelize loop across

#pragma om arallel for shared(m, n, Anew, A)
pregt PP CPU threads

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[]][i];
}
}

iter++;

Jacobi Iteration: OpenACC C Code <.

while (err > tol && iter < iter max) ({

err=0.0;
#pragma acc parallel loop reduction (max:err) < l Para”e“ZZIF?LOJp =]
for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {
Anew[]j][i] = 0.25 * (A[j][i+1] + A[j]l[i-1] +
A[j-1]1[i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[Jj][i]) -
}
}
$pragma acc parallel loop < | ParallellzeGllgl(jp nest on

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[]][i]
}
}

iter++;

PGl Accelerator Compiler output (C) <

pgcc -Minfo=all -ta=nvidia:5.0,cc3x -acc -Minfo=accel -o laplace2d acc laplace2d.c
main:
56, Accelerator kernel generated
57, #pragma acc loop gang /* blockIdx.x */
59, #pragma acc loop vector (256) /* threadIdx.x */
56, Generating present or copyin(A[0:][0:])
Generating present or copyout (Anew[1:4094][1:4094])
Generating NVIDIA code
Generating compute capability 3.0 binary
59, Loop is parallelizable
68, Accelerator kernel generated
69, #pragma acc loop gang /* blockIdx.x */
71, #pragma acc loop vector (256) /* threadIdx.x */
68, Generating present or copyout(A[1:4094][1:4094])
Generating present or copyin(Anew[1:4094][1:4094])
Generating NVIDIA code
Generating compute capability 3.0 binary
71, Loop is parallelizable

Performance >

CPU: AMD IL-16

@ 2.2 GHz GPU: NVIDIA Tesla K20X

Speedup vs. 1 CPU core

s

o OpeniVIP threads

0O ,Q%.fl/ CC GPU 180.9 .0 Speedup vs. 4 OpenMP Threads

What went wrong? <.
¢ Set PGI_ACC TIME environment variable to ‘1’

Accelerator Kernel Timing data

/lustre/scratch/jlarkin/openacc-workshop/exercises/00l1-laplace2D-kernels/laplace2d.c
main

69: region entered 1000 times W
time (us) : total=109,998,808 init=262 region= r
rkernels=1,748,221 data=
w/o init: total=109,998,546 max=110,762 min=109,378 avg=10

69: kernel launched 1000 times

grid: [4094] block: [256]

time (us): total=1,748,221 max=1,820 min=1,727 avg=1, 74

/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-k
main

57: region entered 1000 times

ime (us) : total=71,790,531 init=491,553 regiM
SIAEEONGE ——— xernerast, 66,007 datas :
w/o init: total=71,298,978 max=75,603 min=70,486 avg=71,298
57: kernel launched 1000 times
grid: [4094] Dblock: [256]
time (us): total=2,347,795 max=3,737 min=2,343 avg=2,347
58: kernel launched 1000 times
grid: [1] block: [256]
time (us): total=22,012 max=1,400 min=19 avg=22
total: 181.792123 s

Basic Concepts <.

=g ...
&=)

| Offload computation > -

For efficiency, decouple data movement and compute off-load

Excessive Data Transfers <2

while (err > tol && iter < iter max) ({
err=0.0;

A, Anew resident on host Copy #pragma acc parallel loop reduction (max:err)
A, ANew resiaent on accelerator

for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j] [i] = 0.25 * (A[j][i+1l] + A[j]l[i-1] +
A[j-1]1[i] + A[j+1][i]);
err = max(err, abs(Anew[j][i] - A[j]l[i]) -

A, Anew resident on accelerator:

A, Anew resident on host

And note that there are two #pragma acc parallel, so there are 4 copies per while loop iteration!

<3

NVIDIA.

Data Management
with OpenACC

Defining data regions >

NVIDIA

® The data construct defines a region of code in which GPU arrays

remain on the GPU and are shared among all kernels in that
region.
1Sacc data N
do i=1,n
a(i)
b (i)
c (1)
end do > Data Region

i n
N PO
© oo

do i=1,n
a(i) = b(i) + c(i)
end do
1Sacc end data J

Data Clauses <

copy (list) Allocates memory on GPU and copies data from host
to GPU when entering region and copies data to the
host when exiting region.

copyin (list) Allocates memory on GPU and copies data from host
to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the
host when exiting region.

create (1ist) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another
containing data region.

and present or copyl[in|out], present or create, deviceptr.

<A

Array Shaping i

Compiler sometimes cannot determine size of arrays
Must specify explicitly using data clauses and array “shape”

C
#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

® Fortran
!Sacc data copyin(a(l:end)), copyout(b(s/4:3*s/4))

* Note: data clauses can be used on data, parallel, or kernels

Jacobi lteration: Data Directives <

® Task: use acc data to minimize transfers in the Jacobi example

Jacobi Iteration: OpenACC C Code <

[Copy A in at beginning of

#pragma acc data copy(A), create (Anew)
while (err > tol && iter < iter max) { ‘ loop, out at end. Allocate
err=0.0; Anew on accelerator

#pragma acc parallel loop reduction(max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j][i-1] +
A[j-1]1[i] + A[j+1]1[i])~

err = max(err, abs(Anew[j][i] - A[Jj][i]) -
}
}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[jl[i] = Anew[]][i];
}
}

iter++;

Did it help? >

Accelerator Kernel Timing data
/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c
main
69: region entered 1000 times
time (us): total=1,791,050 init=217 region=1,790,833
kernels=1,742,066
w/o init: total=1l,790,833 max=1,950 min=1,773 avg=1l,790
69: kernel launched 1000 times
grid: [4094] block: [256]
time (us): total=1,742,066 max=1,809 min=1,725 avg=1,742
/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c
main
57: region entered 1000 times
time (us) : total=2,710,902 init=182 region=2,710,720
kernels=2,361,193
w/o init: total=2,710,720 max=4,163 min=2,697 avg=2,710
57: kernel launched 1000 times
grid: [4094] Dblock: [256]
time (us): total=2,339,800 max=3,709 min=2,334 avg=2,339
58: kernel launched 1000 times
grid: [1] block: [256]
time (us): total=21,393 max=1,321 min=19 avg=21
/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c
main
51: region entered 1 time 069 Seconds
time (us) : total=5,063,688 init=4%x* 5 region=4,5/4,555
data=68,993
w/o init: total=4,574,555 max=4,574,555 min=4,574,555 avg=4,574,555

Performance >

CPU: AMD IL-16

@ 2.2 GHz GPU: NVIDIA Tesla K20X

Speedup vs. 1 CPU core

OpenACC GPU

Speedup vs. 4 OpenMP Threads

Further speedups >

* OpenACC gives us more detailed control over parallelization
®* Via gang, worker, and vector clauses

* By understanding more about OpenACC execution model and GPU
hardware organization, we can get higher speedups on this code

* By understanding bottlenecks in the code via profiling, we can
reorganize the code for higher performance

* More on this in the Advanced OpenACC session this afternoon.

>
NVIDIA.

OpenACC Tips
& Tricks

C tip: the restrict keyword =,

Declaration of intent given by the programmer to the compiler
Applied to a pointer, e.g.
float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it
(such as ptr + 1) will be used to access the object to which it points”*

* Limits the effects of pointer aliasing

* Compilers often require restrict to determine independence
(true for OpenACC, OpenMP, and vectorization)
® Otherwise the compiler can’t parallelize loops that access ptr
* Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict

Tips and Tricks >

Nested loops are best for parallelization
Large loop counts (1000s) needed to offset GPU/memcpy overhead

* Iterations of loops must be independent of each other
To help compiler: use restrict keyword in C
* Compiler must be able to figure out sizes of data regions
* Can use directives to explicitly control sizes
* Inline function calls in directives regions
® (PGIl): -Minline or -Minline=levels:<N>
® (Cray): -hpl=<dir/>
® This has been improved in OpenACC 2.0

Tips and Tricks (cont.) =,

Use time option to learn where time is being spent
(PGI) PGI_ACC TIME=1 (runtime environment variable)
(Cray) CRAY ACC DEBUG=<1,2, 3> (runtime environment variable)
(CAPS) HMPPRT 1OG LEVEL=info (runtime environment variable)

Pointer arithmetic should be avoided if possible
Use subscripted arrays, rather than pointer-indexed arrays.

Use contiguous memory for multi-dimensional arrays
Use data regions to avoid excessive memory transfers
Conditional compilation with OPENACC macro

)

.

-

SR ILALA A

<A NVIDIA.

Frrss
.»n_.ﬁ-ns\h
i (e csrs
4 _...w,....h.hh.hq..« st
S L)
S e
\nnniaﬁ.nanqqa n-nu
55

fidss e

R R R R

OO
' AAAAr
thhddsis

T ddddddd

PP PP AT R
.\\\\s\u\\\- BREPIIIII NI RN E RN R BB RN RN A AN rrrra s
S I A

