
Introduction to

OpenACC

Jeff Larkin, NVIDIA

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

Simple: Directives are the easy path to accelerate compute

 intensive applications

Open: OpenACC is an open GPU directives standard, making GPU

 programming straightforward and portable across parallel

 and multi-core processors

Powerful: GPU Directives allow complete access to the massive

 parallel power of a GPU

OpenACC

The Standard for GPU Directives

High-level

Compiler directives to specify parallel regions in C & Fortran

Offload parallel regions

Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogeneous programs

Without explicit accelerator initialization

Without explicit data or program transfers between host and accelerator

High-level… with low-level access

Programming model allows programmers to start simple

Compiler gives additional guidance

Loop mappings, data location, and other performance details

Compatible with other GPU languages and libraries

Interoperate between CUDA C/Fortran and GPU libraries

e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Directives: Easy & Powerful

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Focus on Exposing Parallelism

With Directives, tuning work focuses on exposing parallelism,

which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

S3D
Research more efficient
combustion with next-
generation fuels

CAM-SE
Answer questions about specific
climate change adaptation and
mitigation scenarios

• Tuning top 3 kernels (90% of runtime)
• 3 to 6x faster on CPU+GPU vs. CPU+CPU
• But also improved all-CPU version by 50%

• Tuning top key kernel (50% of runtime)
• 6.5x faster on CPU+GPU vs. CPU+CPU
• Improved performance of CPU version by 100%

OpenACC Specification and Website

Full OpenACC 1.0 Specification available online

www.openacc.org

Quick reference card also available

Compilers available now from PGI, Cray, and CAPS

http://www.openacc.org/

Exposing Parallelism

with OpenACC

subroutine saxpy(n, a, x, y)

 real :: x(n), y(n), a

 integer :: n, i

$!acc kernels

 do i=1,n

 y(i) = a*x(i)+y(i)

 enddo

$!acc end kernels

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x_d,

y_d)

...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY
SAXPY in C SAXPY in Fortran

subroutine saxpy(n, a, x, y)

 real :: x(n), y(n), a

 integer :: n, i

!$omp parallel do

 do i=1,n

 y(i) = a*x(i)+y(i)

 enddo

!$omp end parallel do

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x_d,

y_d)

...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma omp parallel for

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY OpenMP
SAXPY in C SAXPY in Fortran

subroutine saxpy(n, a, x, y)

 real :: x(n), y(n), a

 integer :: n, i

!$acc parallel loop

 do i=1,n

 y(i) = a*x(i)+y(i)

 enddo

!$acc end parallel loop

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x_d,

y_d)

...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc parallel loop

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY OpenACC
SAXPY in C SAXPY in Fortran

OpenACC is not

GPU Programming.

OpenACC is

Exposing Parallelism

in your code.

OpenACC Execution Model

Application Code

GPU CPU Generate Parallel Code for GPU

Compute-Intensive Functions

Rest of Sequential
CPU Code

$acc parallel

$acc end parallel

Directive Syntax

Fortran
!$acc directive [clause [,] clause] …]
...often paired with a matching end directive surrounding a structured code block:

!$acc end directive

C
#pragma acc directive [clause [,] clause] …]
…often followed by a structured code block

Common Clauses

if(condition), async(handle)

OpenACC parallel Directive

Programmer identifies a loop as having parallelism, compiler

generates a parallel kernel for that loop.

$!acc parallel loop

 do i=1,n

 y(i) = a*x(i)+y(i)

 enddo

$!acc end parallel loop

*Most often parallel will be used as parallel loop.

Parallel

kernel

Kernel:
A parallel function

that runs on the GPU

Complete SAXPY example code

Trivial first example

Apply a loop directive

Learn compiler commands

#include <stdlib.h>

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc parallel loop

for (int i = 0; i < n; ++i)

 y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

 int N = 1<<20; // 1 million floats

 if (argc > 1)

 N = atoi(argv[1]);

 float *x = (float*)malloc(N * sizeof(float));

 float *y = (float*)malloc(N * sizeof(float));

 for (int i = 0; i < N; ++i) {

 x[i] = 2.0f;

 y[i] = 1.0f;

 }

 saxpy(N, 3.0f, x, y);

 return 0;

}

Compile (PGI)

C:
pgcc –acc [-Minfo=accel] [-ta=nvidia] –o saxpy_acc saxpy.c

Fortran:
pgf90 –acc [-Minfo=accel] [-ta=nvidia] –o saxpy_acc saxpy.f90

Compiler output:

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c

saxpy:

 11, Accelerator kernel generated

 13, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

 11, Generating present_or_copyin(x[0:n])

 Generating present_or_copy(y[0:n])

 Generating NVIDIA code

 Generating compute capability 1.0 binary

 Generating compute capability 2.0 binary

 Generating compute capability 3.0 binary

Run

The PGI compiler provides automatic instrumentation when
PGI_ACC_TIME=1 at runtime

Accelerator Kernel Timing data

/home/jlarkin/kernels/saxpy/saxpy.c

 saxpy NVIDIA devicenum=0

 time(us): 3,256

 11: data copyin reached 2 times

 device time(us): total=1,619 max=892 min=727 avg=809

 11: kernel launched 1 times

 grid: [4096] block: [256]

 device time(us): total=714 max=714 min=714 avg=714

 elapsed time(us): total=724 max=724 min=724 avg=724

 15: data copyout reached 1 times

 device time(us): total=923 max=923 min=923 avg=923

Run

The Cray compiler provides automatic instrumentation when
CRAY_ACC_DEBUG=<1,2,3> at runtime

ACC: Initialize CUDA

ACC: Get Device 0

ACC: Create Context

ACC: Set Thread Context

ACC: Start transfer 2 items from saxpy.c:17

ACC: allocate, copy to acc 'x' (4194304 bytes)

ACC: allocate, copy to acc 'y' (4194304 bytes)

ACC: End transfer (to acc 8388608 bytes, to host 0 bytes)

ACC: Execute kernel saxpy$ck_L17_1 blocks:8192 threads:128 async(auto) from saxpy.c:17

ACC: Wait async(auto) from saxpy.c:18

ACC: Start transfer 2 items from saxpy.c:18

ACC: free 'x' (4194304 bytes)

ACC: copy to host, free 'y' (4194304 bytes)

ACC: End transfer (to acc 0 bytes, to host 4194304 bytes)

Another approach: kernels construct

The kernels construct expresses that a region may contain

parallelism and the compiler determines what can safely be

parallelized.
!$acc kernels

 do i=1,n

 a(i) = 0.0

 b(i) = 1.0

 c(i) = 2.0

 end do

 do i=1,n

 a(i) = b(i) + c(i)

 end do

!$acc end kernels

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

OpenACC parallel vs. kernels

PARALLEL

• Requires analysis by

programmer to ensure safe

parallelism

• Straightforward path from

OpenMP

KERNELS

• Compiler performs parallel

analysis and parallelizes what

it believes safe

• Can cover larger area of code

with single directive

Both approaches are equally valid and can perform

equally well.

OpenACC by

Example

Example: Jacobi Iteration

Iteratively converges to correct value (e.g. Temperature), by

computing new values at each point from the average of

neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i+1,j)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Jacobi Iteration: C Code
while (err > tol && iter < iter_max) {

 err=0.0;

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);

 }

 }

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

Jacobi Iteration: OpenMP C Code
while (err > tol && iter < iter_max) {

 err=0.0;

#pragma omp parallel for shared(m, n, Anew, A) reduction(max:err)

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma omp parallel for shared(m, n, Anew, A)

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Parallelize loop across

CPU threads

Parallelize loop across

CPU threads

Jacobi Iteration: OpenACC C Code
while (err > tol && iter < iter_max) {

 err=0.0;

#pragma acc parallel loop reduction(max:err)

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc parallel loop

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Parallelize loop nest on

GPU

Parallelize loop nest on

GPU

PGI Accelerator Compiler output (C)
pgcc -Minfo=all -ta=nvidia:5.0,cc3x -acc -Minfo=accel -o laplace2d_acc laplace2d.c

main:

 56, Accelerator kernel generated

 57, #pragma acc loop gang /* blockIdx.x */

 59, #pragma acc loop vector(256) /* threadIdx.x */

 56, Generating present_or_copyin(A[0:][0:])

 Generating present_or_copyout(Anew[1:4094][1:4094])

 Generating NVIDIA code

 Generating compute capability 3.0 binary

 59, Loop is parallelizable

 68, Accelerator kernel generated

 69, #pragma acc loop gang /* blockIdx.x */

 71, #pragma acc loop vector(256) /* threadIdx.x */

 68, Generating present_or_copyout(A[1:4094][1:4094])

 Generating present_or_copyin(Anew[1:4094][1:4094])

 Generating NVIDIA code

 Generating compute capability 3.0 binary

 71, Loop is parallelizable

Performance

Execution Time (s) Speedup

CPU 1 OpenMP thread 109.7 --

CPU 2 OpenMP threads 71.6 1.5x

CPU 4 OpenMP threads 53.7 2.0x

CPU 8 OpenMP threads 65.5 1.7x

CPU 16 OpenMP threads 66.7 1.6x

OpenACC GPU 180.9 0.6x FAIL! Speedup vs. 4 OpenMP Threads

Speedup vs. 1 CPU core

CPU: AMD IL-16

@ 2.2 GHz
GPU: NVIDIA Tesla K20X

What went wrong?
Set PGI_ACC_TIME environment variable to ‘1’
Accelerator Kernel Timing data

/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c

 main

 69: region entered 1000 times

 time(us): total=109,998,808 init=262 region=109,998,546

 kernels=1,748,221 data=109,554,793

 w/o init: total=109,998,546 max=110,762 min=109,378 avg=109,998

 69: kernel launched 1000 times

 grid: [4094] block: [256]

 time(us): total=1,748,221 max=1,820 min=1,727 avg=1,748

/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c

 main

 57: region entered 1000 times

 time(us): total=71,790,531 init=491,553 region=71,298,978

 kernels=2,369,807 data=68,968,929

 w/o init: total=71,298,978 max=75,603 min=70,486 avg=71,298

 57: kernel launched 1000 times

 grid: [4094] block: [256]

 time(us): total=2,347,795 max=3,737 min=2,343 avg=2,347

 58: kernel launched 1000 times

 grid: [1] block: [256]

 time(us): total=22,012 max=1,400 min=19 avg=22

 total: 181.792123 s

109.5 seconds

68.9 seconds

1.7 seconds

Huge Data Transfer Bottleneck!
Computation: 4.1 seconds

Data movement: 178.4 seconds

2.4 seconds

Basic Concepts

PCI Bus

Transfer data

Offload computation

For efficiency, decouple data movement and compute off-load

GPU

GPU Memory

CPU

CPU Memory

Excessive Data Transfers

while (err > tol && iter < iter_max) {

 err=0.0;

 ...

}

#pragma acc parallel loop reduction(max:err)

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);

 }

 }

A, Anew resident on host

A, Anew resident on host

A, Anew resident on accelerator

A, Anew resident on accelerator

These copies happen

every iteration of the

outer while loop!*

Copy

Copy

And note that there are two #pragma acc parallel, so there are 4 copies per while loop iteration!

Data Management

with OpenACC

Defining data regions

The data construct defines a region of code in which GPU arrays

remain on the GPU and are shared among all kernels in that

region.
!$acc data

 do i=1,n

 a(i) = 0.0

 b(i) = 1.0

 c(i) = 2.0

 end do

 do i=1,n

 a(i) = b(i) + c(i)

 end do

!$acc end data

Data Region

Arrays a, b, and c will

remain on the GPU until the

end of the data region.

Data Clauses

copy (list) Allocates memory on GPU and copies data from host

to GPU when entering region and copies data to the

host when exiting region.

copyin (list) Allocates memory on GPU and copies data from host

to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the

host when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another

containing data region.

and present_or_copy[in|out], present_or_create, deviceptr.

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C
#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran
!$acc data copyin(a(1:end)), copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

Jacobi Iteration: Data Directives

Task: use acc data to minimize transfers in the Jacobi example

Jacobi Iteration: OpenACC C Code
#pragma acc data copy(A), create(Anew)

while (err > tol && iter < iter_max) {

 err=0.0;

#pragma acc parallel loop reduction(max:err)

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc parallel loop

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Copy A in at beginning of

loop, out at end. Allocate

Anew on accelerator

Did it help?
Accelerator Kernel Timing data

/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c

 main

 69: region entered 1000 times

 time(us): total=1,791,050 init=217 region=1,790,833

 kernels=1,742,066

 w/o init: total=1,790,833 max=1,950 min=1,773 avg=1,790

 69: kernel launched 1000 times

 grid: [4094] block: [256]

 time(us): total=1,742,066 max=1,809 min=1,725 avg=1,742

/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c

 main

 57: region entered 1000 times

 time(us): total=2,710,902 init=182 region=2,710,720

 kernels=2,361,193

 w/o init: total=2,710,720 max=4,163 min=2,697 avg=2,710

 57: kernel launched 1000 times

 grid: [4094] block: [256]

 time(us): total=2,339,800 max=3,709 min=2,334 avg=2,339

 58: kernel launched 1000 times

 grid: [1] block: [256]

 time(us): total=21,393 max=1,321 min=19 avg=21

/lustre/scratch/jlarkin/openacc-workshop/exercises/001-laplace2D-kernels/laplace2d.c

 main

 51: region entered 1 time

 time(us): total=5,063,688 init=489,133 region=4,574,555

 data=68,993

 w/o init: total=4,574,555 max=4,574,555 min=4,574,555 avg=4,574,555

0.69 seconds

Performance

Execution Time (s) Speedup

CPU 1 OpenMP thread 109.7 --

CPU 2 OpenMP threads 71.6 1.5x

CPU 4 OpenMP threads 53.7 2.0x

CPU 8 OpenMP threads 65.5 1.7x

CPU 16 OpenMP threads 66.7 1.6x

OpenACC GPU 4.96 10.8x
Speedup vs. 4 OpenMP Threads

Speedup vs. 1 CPU core

CPU: AMD IL-16

@ 2.2 GHz
GPU: NVIDIA Tesla K20X

Further speedups

OpenACC gives us more detailed control over parallelization

Via gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

More on this in the Advanced OpenACC session this afternoon.

OpenACC Tips

& Tricks

C tip: the restrict keyword

Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

 float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

Limits the effects of pointer aliasing

Compilers often require restrict to determine independence

(true for OpenACC, OpenMP, and vectorization)

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict

Tips and Tricks

Nested loops are best for parallelization

Large loop counts (1000s) needed to offset GPU/memcpy overhead

Iterations of loops must be independent of each other

To help compiler: use restrict keyword in C

Compiler must be able to figure out sizes of data regions

Can use directives to explicitly control sizes

Inline function calls in directives regions

(PGI): -Minline or –Minline=levels:<N>

(Cray): -hpl=<dir/>

This has been improved in OpenACC 2.0

Tips and Tricks (cont.)

Use time option to learn where time is being spent

(PGI) PGI_ACC_TIME=1 (runtime environment variable)

(Cray) CRAY_ACC_DEBUG=<1,2,3> (runtime environment variable)

(CAPS) HMPPRT_LOG_LEVEL=info (runtime environment variable)

Pointer arithmetic should be avoided if possible

Use subscripted arrays, rather than pointer-indexed arrays.

Use contiguous memory for multi-dimensional arrays

Use data regions to avoid excessive memory transfers

Conditional compilation with _OPENACC macro

Thank you

