Introduction to GPU Computing

Computing is Integral to Science

Drug Design Molecular Dynamics

Seismic Imaging Reverse Time Migration

Automotive Design Computational Fluid Dynamics

Medical Imaging Computed Tomography

Astrophysics n-body

Options Pricing Monte Carlo

Product Development

Finite Difference Time Domain

Local cooling under a slow moving stom Ambient werning is a slow moving store in a slow moving store Ambient werning is a slow moving store in a slow moving store Ambient werning is a slow moving store a slow moving store Bistar

Weather Forecasting Atmospheric Physics

GPUs Accelerate Computing

Understand Risk Faster than Competition

Calculate risk in minutes instead of overnight

Discovering Oil with More Accuracy

From one to four jobs per month for deeper insight

Schlumberger

Understand Effects of Global Warming

From three months to one year of simulation per computing day

If Computing is Integral to Science ... And GPUs accelerate Computing. ... Then GPUs accelerate Science!

But GPUs are niche! WRONG!

GPUs are Everywhere!

Over 375,000,000 CUDA-capable GPUs have been shipped in products from laptops, to workstations, to supercomputers.

GPU-Computing is Taught Everywhere!

Explosive Growth of GPU Computing

2008 2012

GPUs are Mainstream

CUDA Apps Grows 60%, Accelerating Key

POPULAR GPU-ACCELERATED APPLICATIONS

CONTENTS	
02 Research: Higher Education and Supercent	DL-POLY
NUMERICAL ANALYTICS	CHARMM
WEATHER AND CLIMATE FORECASTING	
06 Defense and Intelligence	GROMACS
07 Computational Finance	
08 Manufacturing: CAD and CAE	HOOMD-BI
COMPUTER AIDED DESIGN COMPUTATIONAL FLUID DYNAMICS COMPUTATIONAL STRUCTURAL MECHANICS ELECTRONIC DESIGN AUTOMATION	LAMMPS
10 Media and Entertainment	
ANIMATION, MODELING AND RENOLITION COLOR CORRECTION AND GRAIN MANAGEMENT COMPOSITING, FINISHING AND EFFECTS	AMD
EDITING ENCODING AND DIGITAL DISTRIBUTION	enMM
ON-ADR ON AND STERED TOOLS	
SIMULATION	
WEATHER .	DES AR OF

14 Oil and Gas

Research: Higher Education and Supercomputing COMPUTATIONAL CHEMISTRY AND BIOLOGY

Defense and In

Bioinformatics						
APPLICATION	DESCRIPTION	SUPPORTED FEATURES	EXPECTED SPEED UP-	RECOMMENDED GPU **	MULTI-EPU SUPPOR	T RELEASE STATUS
BarraCUDA	Sequence mapping software	Alignment of short sequencing reads	6-10x	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 0.6.2
CUDASW++	Open source software far Smith- Waterman protein database searches on SPUs	Parallel search of Smith- Waterman database	10-50x	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 2.0.8
CUSHAW	Parallelized short read aligner	Parallel, accurate long read aligner - gapped alignments to large genomes	10x	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 1.0.40
GPU-BLAST	Local search with fast k-tuple heuristic	Protein alignment according to blastp, multi cpu threads	3-4x	T 2075, 2090, K10, K20, K20X	Single only	Available now Version 2.2.26
GPU-HMMER	Parallelized local and global search with profile Hidden Markov models	Parallel local and global search of Hidden Markov Models	60-100x	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 2.3.2
mCUDA-MEME	Ultrafast scalable motif discovery algorithm based on MEME	Scalable motif discovery algorithm based on MEME	4-10x	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 3.0.12
SeqNFind	A GPU Accelerated Sequence Analysis Toolset	Reference assembly, blast, smith-waterman, hmm, de novo assembly	400x	T 2075, 2090, K10, K20, K20X	Yes	Available now
UGENE	Opensource Smith-Waterman for SSE/CUDA, Suffix array based repeats finder and dotplot	Fast short read alignment	6-8x	T 2075, 2090, K10, K20, K20X	Yes	Available now Versian 1.11
WideLM	Fits numerous linear models to a fixed design and response	Parallel linear regression on multiple similarly-shaped models	150x	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 0.1-1

Manufacturing: CAD and CAE

Media and Entertain

Molecular Dynamics

APPLICATION	BESCHPTION	SUPPORTED FEATURES	EXPECTED SPEED SP	AECOMMENDED OF C **	MULTI-EPO SUPPOR	T ABLEASE STATUS
Abalone	Medets molecular dynamics of biopolymers for simulations of proteins, DNA and ligands	Simulations (on 1060 GPU)	4-29x	T 2075, 2090, K10, K20, K20X	Single Only	Available now Version 1.8.48
ACEMD	GPU simulation of molecular mechanics force fields, implicit and explicit solvent	Written for use on GPUs	160 ns/day GPU version only	T 2075, 2090, K10, K20, K20X	Yes	Available now
AMBER	Suite of programs to simulate molecular dynamics on biomolecule	PMEMD: explicit and implicit solvent	89,44 ns/day JAC NVE	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 12 + bugfix9
DL-POLY	Simulate macromolecules, polymers, ionic systems, etc on a distributed memory parallel computer	Two-body forces, Link-cell pairs, Ewald SPME forces, Shake W	4x	T 2075, 2090, K10, K20, K20X	Yes	Available now, Version4.0 Source only
CHARMM	MD package to simulate molecular dynamics on biomolecule.	Implicit (5x), Explicit (2x) Solvent via OpenMM	TBD	T 2075, 2090, K10, K20, K20X	Yes	In Development 04/12
GROMACS	Simulation of biochemical molecules with complicated bond interactions	implicit (5x), Explicit(2x) solvent	165 ns/Day DHFR	T 2075, 2090. K10, K20, K20X	Single only	Available now Version 4.6 in D4/12
HOOMD-Blue	Particle dynamics package written grounds up for GPUs	Written for GPUs	2x	T 2075, 2090, K10, K20, K20X	Yes	Available now
LAMMPS	Classical molecular dynamics package	Lennard-Jones, Morse, Buckingham, CHARMM, Tabulated, Course grain SDK, Anisotropic Gay- Bern, RE-squared, "Hybrid"combinations	3-18к	Т 2075, 2090, К10, К20, К20X	Yes	Available now
AMD	Designed for high-performance simulation of large molecular systems	100M atom capable	6.44 ns/days STMV 585x 2050s	T 2075, 2090, K10, K20, K20X	Yes	Available now, Version 2.9
enMM	Library and application for molecular dynamics for HPC with GPUs	Implicit and explicit solvent, custom forces	Implicit: 127-213 ns/ day: Explicit 18-55 ns/lay DHFR	T 2075, 2090, K10, K20, K20X	Yes	Available now Version 4.1.1

	A A A A A A A A A A A A A A A A A A A
-	a caller aller
1. C	
nt	
-	
-	Allel .
	Libr
_	1 Alexandre

U-Accelerated Applications www.nvidia.com/appscatalog

ACCELERATED APPLICATIONS GROAL III II OCTU

It's Not Just About CUDA

GPU Accelerated Libraries "Drop-in" Acceleration for your Applications

OpenACC Open Programming Standard for Parallel Computing

"OpenACC will enable programmers to easily develop portable applications that maximize the performance and power efficiency benefits of the hybrid CPU/GPU architecture of Titan."

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

"OpenACC is a technically impressive initiative brought together by members of the OpenMP Working Group on Accelerators, as well as many others. We look forward to releasing a version of this proposal in the next release of OpenMP."

--Michael Wong, CEO OpenMP Directives Board

Get Computing! developer.nvidia.com

