
Titan Workshop

Hands-on CUDA Optimization

© NVIDIA 2013

Local Machine Setup

Install Cuda 5.0

https://developer.nvidia.com/cuda-downloads

Download and unpack exercises

http://users.nccs.gov/~jluitjen/HandsOn.zip

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://users.nccs.gov/~jluitjen/HandsOn.zip
http://users.nccs.gov/~jluitjen/HandsOn.zip

© NVIDIA 2013

ORNL Setup

Log into Chester
%> ssh username@home.ccs.ornl.gov

%> ssh chester

Grab an interactive node
%> qsub –I –l nodes=1,walltime=4:00 -A TRN001

Load the cuda module
%> module load cudatoolkit

Change to your lustre directory
%> cd /lustre/scratch/username/

Download and unpack the exercise

http://users.nccs.gov/~jluitjen/HandsOn.zip

http://users.nccs.gov/~jluitjen/HandsOn.zip

© NVIDIA 2013

Exercise

Today we have a progressive exercise

The exercise is broken into 5 steps

If you get lost you can always catch up by grabbing the

corresponding directory

If you need to peak at the solution for each step it is found in the

directory named “solution”

To start make a copy of the step1 directory

We will now review the code

© NVIDIA 2013

void transpose(float in[][], float out[][], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[j][i] = in[i][j];

}

Case Study: Matrix Transpose

i

j

 Commonly used in applications

 BLAS and FFT

 Stresses memory systems

 Strided reads or writes

© NVIDIA 2013

2D to 1D indexing

void transpose(float in[], float out[], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[i*N+j] = in[j*N+i];

}

i

j

 This indexing is often used in

numerical codes

 We will use this indexing during this

presentation

© NVIDIA 2013

Parallelization for CPU

void transpose(float in[], float out[], int N)

{

 #pragma omp parallel for

 for(int j=0; j < N; j++)

 #pragma omp parallel for

 for(int i=0; i < N; i++)

 out[i*N+j] = in[j*N+i];

}

Kernel Throughput

CPU+OMP 4.9 GB/s
%> export OMP_NUM_THREADS=16

%> aprun –n 1 –d 16 ./transpose

© NVIDIA 2013

Exercise: Compile with NVCC

Modify make file to build with nvcc

For CUDA filenames must end in .cu

Specify architecture

–arch=sm_35

Pass an argument to the host compiler using –Xcompiler

-Xcompiler –fopenmp

Recompile and run
%> module load cudatoolkit

%> make clean

%> make

%> aprun –n 1 –d 16 ./transpose

Notice nvcc can build CPU only applications

It actually passes host code through to the host compiler

© NVIDIA 2013

Exercise: Add CUDA APIs

Search for “TODO” and fill in cuda code

Start with the host code

Create separate pointers for CUDA memory

Allocate & free memory device memory

cudaMalloc(**ptr, size_t size)

cudaFree(*ptr)

Copy data between CPU and GPU

cudaMemcpy(*dst, *src, size_t size, cudaMemcpyKind)

cudaMemcpyKind: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost

Synchronize the device to ensure timing is correct

cudaDeviceSynchronize()

Pass device pointers into transpose function

© NVIDIA 2013

Exercise: Write Our First Kernel

i

j

Create transpose kernel

__global__ says this is a kernel

Parallelize over rows

1 thread per row

Replace outer loop with index

calculation

1D indexing

– blockDim.x*blockIdx.x+threadIdx.x

Launch kernel

<<<gridDim,blockDim>>>

blockDim = 256 threads

© NVIDIA 2013

CPU Solution

void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 for (i=0; i<rows; i++)

 for (j=0; j<cols; j++)

 out [i * rows + j] = in [j * cols + i];

}

© NVIDIA 2013

__global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 i = blockIdx.x * blockDim.x + threadIdx.x;

 for (j=0; j<cols; j++)

 out [i * rows + j] = in [j * cols + i];

}

Step1 Solution

© NVIDIA 2013

Results

Kernel Throughput

CPU+OMP 4.9 GB/s

CUDA-1D 7.2 GB/s

Initial implementation 1.5x faster

K20X theoretical bandwidth is 250

GB/s

Low percent of peak

Why?

© NVIDIA 2013

Tools for Profiling

Profile-driven optimization

Tools:

nsight: Visual Studio Edition or Eclipse Edition

nvvp: NVIDIA Visual Profiler

nvprof: Command-line profiling

© NVIDIA 2013

Introducing NVVP

Cuda profiling tool

Analyzes performance

Identifies hotspots

Suggests improvements

Let’s open NVVP

Import profiles

Interpret results

© NVIDIA 2013

Profiling on Titan

Currently due to X11 NVVP cannot collect profiles on Titan

However, you can collect profiles using nvprof and import them into

NVVP

%> nvprof –o nvprof.log ./command

We have pre-generated profiles for each version

Find them in the profiles directory

These profiles were created using NVVP

Unfortunately nvprof cannot generate profiles with this level of detail

This will be fixed in the next release of CUDA

© NVIDIA 2013

NVVP: Step1

Always look at occupancy first!

Each block is scheduled on an SM

There are 14 SMs on K20X

Only 4 blocks!

Bottleneck

Grid size

Most of the GPU is idle

Solution

Express more parallelism

profiles/step1.nvvp

© NVIDIA 2013

Exercise: Express More Parallelism

i

j

The CPU version parallelizes over

rows and columns

Lets do the same on the GPU

Replace columns loop with an index

calculation

Change launch configuration to 2D

blockSize = 32x32

<<<gridDim,blockDim>>>

dim3(xdim,ydim)

Don’t forget to update both gridDim

and blockDim

© NVIDIA 2013

Step1 Solution

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 i = blockIdx.x * blockDim.x + threadIdx.x;

 for (j=0; j<cols; j++)

 out [i * rows + j] = in [j * cols + i];

}

© NVIDIA 2013

Step2 Solution

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 out [i * rows + j] = in [j * cols + i];

}

© NVIDIA 2013

Results

Kernel Throughput

CPU+OMP 4.9 GB/s

GPU-1D 7.2 GB/s

GPU-2D 59 GB/s

We are now at a 12x speedup over

the parallel CPU version

But how are we doing overall?

Peak for K20X is 250 GB/s

~24% of peak

Why is bandwidth utilization low?

Back to NVVP

© NVIDIA 2013

NVVP Profile: Step2

Occupancy is now much better

All SMs have work

DRAM utilization is low

Global store efficiency is low

Global memory replay overhead is

high

Bottleneck

Uncoalesced stores

profiles/step2.nvvp

© NVIDIA 2013

Use NVVP to Find Coalescing Problems

Compile with -lineinfo

© NVIDIA 2013

What is an Uncoalesced Global Store?

Global memory access happens

in transactions of 32 or 128

bytes

Coalesced access:

A group of 32 contiguous

threads (“warp”) accessing

adjacent words

Few transactions and high

utilization

Uncoalesced access:

A warp of 32 threads

accessing scattered words

Many transactions and low

utilization

0 1 31

0 1 31

© NVIDIA 2013

Memory Coalescing

i

j

When we write column j memory

access pattern is strided

Solution

Read coalesced into shared memory

Transpose in shared memory

Write coalesced from shared memory

© NVIDIA 2013

Shared memory

Accessible by all threads in a block

Fast compared to global memory

Low access latency

High bandwidth

Common uses:

Software managed cache

Data layout conversion

Global Memory (DRAM)

Registers

SM-0

Registers

SM-N

SMEM SMEM

© NVIDIA 2013

Transposing with Shared Memory

Read block coalesced

into shared memory

i

j

Global

Memory

Shared

Memory

© NVIDIA 2013

Transposing with Shared Memory

Read block coalesced

into shared memory

Transpose shared

memory indices

i

j

Global

Memory

Shared

Memory

© NVIDIA 2013

Transposing with Shared Memory

Read block_ij

coalesced into shared

memory

Transpose shared

memory indices

Write transposed

block to global

memory

i

j

Global

Memory

Shared

Memory

© NVIDIA 2013

Exercise: Stage Through Shared Memory

Allocate a static 2D array using __shared__ keyword

Read from global to shared memory

Global read indices are unchanged

Shared write indices use threadIdx.{x,y}

Write from shared to global memory

Global write indices: transpose block

Shared read indices: transpose threads

Sync between read and write: __syncthreads()

© NVIDIA 2013

Step3 Solution: Allocate Shared Memory

#define TILE_DIM 32

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 ...

}

© NVIDIA 2013

Step3 Solution : Read & Write Coalesced

#define TILE_DIM 32

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 ...

 ... = in [j * cols + i];

 ...

 out[j * rows + i] = ...

}

© NVIDIA 2013

Step3 Solution: Stage Through Shared Memory

#define TILE_DIM 32

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 ...

 tile[threadIdx.y] [threadIdx.x] = in [j * cols + i];

 ...

 out[j * rows + i] = tile[threadIdx.y] [threadIdx.x];

}

© NVIDIA 2013

Step3 Solution : Transpose Shared Memory

#define TILE_DIM 32

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 ...

 tile[threadIdx.y] [threadIdx.x] = in [j * cols + i];

 ...

 out[j * rows + i] = tile[threadIdx.x] [threadIdx.y];

}

© NVIDIA 2013

Step3 Solution: Transpose Block Indices

#define TILE_DIM 32

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 tile[threadIdx.y] [threadIdx.x] = in [j * cols + i];

 i = blockIdx.y * blockDim.y + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 out[j * rows + i] = tile[threadIdx.x] [threadIdx.y];

}

© NVIDIA 2013

Step3 Solution: Synchronize

#define TILE_DIM 32

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 tile[threadIdx.y] [threadIdx.x] = in [j * cols + i];

 __syncthreads();

 i = blockIdx.y * blockDim.y + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 out[j * rows + i] = tile[threadIdx.x] [threadIdx.y];

}

© NVIDIA 2013

Results

Kernel Throughput

CPU+OMP 4.9 GB/s

GPU-1D 7.2 GB/s

GPU-2D 59 GB/s

GPU-Shared 73 GB/s

We got a small improvement but we

are still low compared to peak

Back to NVVP

© NVIDIA 2013

NVVP Profile: Step3

Global Store Efficiency is now 100%

Global memory replay are much

lower

Shared memory replays are much

higher

Bottleneck

Shared memory bank conflicts

profiles/step3.nvvp

© NVIDIA 2013

Shared Memory Organization

Organized in 32 independent banks

Optimal access: all words from different

banks

Separate banks per thread

Banks can multicast

Multiple words from same bank serialize

C

Bank

Any 1:1 or multicast pattern

C C C

Bank Bank Bank

C

Bank

C C C

Bank Bank Bank

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

2 1 0

31 2 1 0

31 2 1 0

warps:

0 1 2 31

Bank 0

Bank 1

 …

Bank 31
2 0 1

31

Accesses along row

produces 0 bank

conflicts

Accesses along

column produces 32

bank conflicts

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

31 2 1 0

31 2 1 0

31 2 1 0

warps:

0 1 2 31 padding

Bank 0

Bank 1

 …

Bank 31

31 2 0 1

Accesses along row

produces 0 bank

conflicts

Accesses along

column produces 0

bank conflicts

© NVIDIA 2013

Exercise: Fix bank conflicts

Add padding

© NVIDIA 2013

Step3 Solution

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 tile[threadIdx.y] [threadIdx.x] = in [j * cols + i];

 __syncthreads();

 i = blockIdx.y * blockDim.y + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 out[j * rows + i] = tile[threadIdx.x] [threadIdx.y];

}

© NVIDIA 2013

_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out)

{

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM + 1];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 tile[threadIdx.y] [threadIdx.x] = in [j * cols + i];

 __syncthreads();

 i = blockIdx.y * blockDim.y + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 out[j * rows + i] = tile[threadIdx.x] [threadIdx.y];

}

Step4 Solution

© NVIDIA 2013

Results

Getting much better

Back to NVVP

Kernel Throughput

CPU+OMP 4.9 GB/s

GPU-1D 7.2 GB/s

GPU-2D 59 GB/s

GPU-Shared 73 GB/s

GPU-no-conflicts 114 GB/s

© NVIDIA 2013

NVVP Profile: Step4

Bank conflicts are fixed

DRAM utilization is >50%

Can we do better?

profiles/step4.nvvp

© NVIDIA 2013

NVVP Profile: Step4

DRAM Utilization is still a little low.

Aim for 70%-80% of peak

Problem:

Kepler requires 100+ lines in flight per

SM to saturate DRAM

1 line-in-flight per warp @ 100%

occupancy = 64 lines in flight

Solution:

Process multiple elements per thread

Instruction-level parallelism

More lines-in-flight

Less __syncthreads overhead

Amortize cost of indexing and thread

launch

profiles/step4.nvvp

© NVIDIA 2013

Exercise: Multiple Elements Per Thread

Change block size to 32 x 4

BLOCKY = 4

NUM_ELEMS_PER_THREAD = 8

Should the grid size also change?

Loop over 8 elements on input

Update indexing whenever you see threadIdx.y and threadDim.y

Loop over 8 elements on output

Update indexing whenever you see threadIdx.y and threadDim.y

Unroll all loops using #pragma unroll

© NVIDIA 2013

Step5 Solution : Loop over Multiple Indices
_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out) {

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM + 1];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) {

 ...

 }

 __syncthreads();

 i = blockIdx.y * blockDim.y + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 for(int e=0; e < NUM_ELEMSN_PER_THREAD; e++) {

 ...

 }

}

© NVIDIA 2013

Step5 Solution: Update Indexing for y-dimension
_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out) {

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM + 1];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y * NUM_ELEMS_PER_THREAD + threadIdx.y;

 for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) {

 tile[threadIdx.y + e*BLOCKY] [threadIdx.x] = in[(j+e*BLOCKY)*cols + i];

 }

 __syncthreads();

 i = blockIdx.y * blockDim.y * NUM_ELEMS_PER_THREAD + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) {

 out[(j+e*BLOCKY)*rows + i] = tile[threadIdx.x][threadIdx.y + e*BLOCKY];

 }

}

© NVIDIA 2013

Step5 Solution: Unroll Loops
_global__ void

gpuTranspose_kernel(int rows, int cols, float *in, float *out) {

 int i, j;

 __shared__ float tile [TILE_DIM] [TILE_DIM + 1];

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y * NUM_THREADS_PER_ELEM + threadIdx.y;

 #pragma unroll

 for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) {

 tile[threadIdx.y + e*BLOCKY] [threadIdx.x] = in[(j+e*BLOCKY)*cols + i];

 }

 __syncthreads();

 i = blockIdx.y * blockDim.y * NUM_THREADS_PER_ELEM + threadIdx.x;

 j = blockIdx.x * blockDim.x + threadIdx.y;

 #pragma unroll

 for(int e=0; e < NUM_ELEMSN_PER_THREAD; e++) {

 out[(j+e*BLOCKY)*rows + i] = tile[threadIdx.x][threadIdx.y + e*BLOCKY];

 }

}

© NVIDIA 2013

NVVP Profile: Step5

80% of peak bandwidth

Occupancy dropped

This is not a problem

ILP makes up for loss in

occupancy

In general ILP is as good as high

occupancy

profiles/step5.nvvp

© NVIDIA 2013

Final Results

Kernel Throughput

CPU+OMP 4.9 GB/s

GPU-1D 7.2 GB/s

GPU-2D 59 GB/s

GPU-Shared 73 GB/s

GPU-no-conflicts 114 GB/s

GPU-multi-element 173 GB/s

Use NVVP to identify bottlenecks

Use optimization techniques to

eliminate bottlenecks

Refer to GTC archives for

complete optimization

techniques

www.gputechconf.com/gtcnew/on-demand-gtc.php

Search “GPU Performance Analysis and Optimization”

http://www.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

