Titan Workshop

Hands-on CUDA Optimization

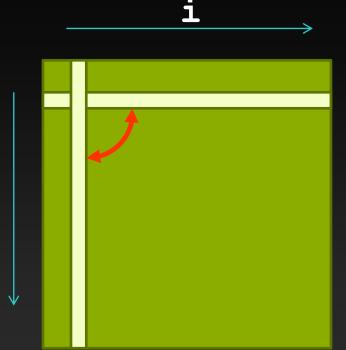
Local Machine Setup

- Install Cuda 5.0
 - https://developer.nvidia.com/cuda-downloads
- Download and unpack exercises
 - http://users.nccs.gov/~jluitjen/HandsOn.zip

ORNL Setup

Log into Chester

- %> ssh username@home.ccs.ornl.gov
- %> ssh chester
- Grab an interactive node
 - > qsub -I -l nodes=1,walltime=4:00 -A TRN001
- Load the cuda module
 - %> module load cudatoolkit
- Change to your lustre directory
 - > cd /lustre/scratch/username/
- Download and unpack the exercise
 - http://users.nccs.gov/~jluitjen/HandsOn.zip

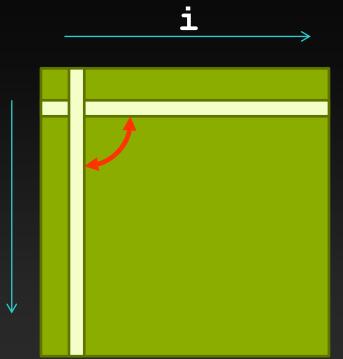

Exercise

- Today we have a progressive exercise
- The exercise is broken into 5 steps
- If you get lost you can always catch up by grabbing the corresponding directory
- If you need to peak at the solution for each step it is found in the directory named "solution"
- To start make a copy of the step1 directory
- We will now review the code

Case Study: Matrix Transpose

```
void transpose(float in[][], float out[][], int N)
{
    for(int j=0; j < N; j++)
        for(int i=0; i < N; i++)
            out[j][i] = in[i][j];
}</pre>
```

- Commonly used in applications
 - BLAS and FFT
- Stresses memory systems
 - Strided reads or writes



j

2D to 1D indexing

```
void transpose(float in[], float out[], int N)
{
    for(int j=0; j < N; j++)
        for(int i=0; i < N; i++)
            out[i*N+j] = in[j*N+i];
}</pre>
```

- This indexing is often used in numerical codes
- We will use this indexing during this presentation

j

Parallelization for CPU

```
void transpose(float in[], float out[], int N)
{
    #pragma omp parallel for
    for(int j=0; j < N; j++)
        #pragma omp parallel for
        for(int i=0; i < N; i++)
            out[i*N+j] = in[j*N+i];
}</pre>
```

%> export OMP_NUM_THREADS=16
%> aprun -n 1 -d 16 ./transpose

Kernel	Throughput
CPU+OMP	4.9 GB/s

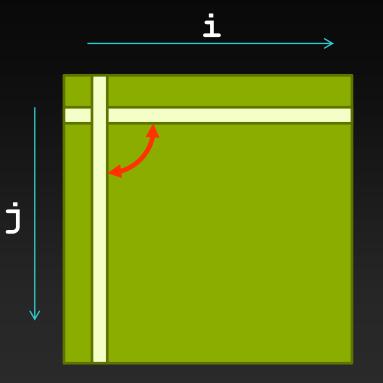
Exercise: Compile with NVCC

Modify make file to build with nvcc

- For CUDA filenames must end in .cu
- Specify architecture
 - –arch=sm_35
- Pass an argument to the host compiler using –Xcompiler
 - -Xcompiler –fopenmp

Recompile and run

- %> module load cudatoolkit
- %> make clean
- %> make
- %> aprun -n 1 -d 16 ./transpose
- Notice nvcc can build CPU only applications
- It actually passes host code through to the host compiler


Exercise: Add CUDA APIs

- Search for "TODO" and fill in cuda code
- Start with the host code
 - Create separate pointers for CUDA memory
 - Allocate & free memory device memory
 - cudaMalloc(**ptr, size_t size)
 - cudaFree(*ptr)
 - Copy data between CPU and GPU
 - cudaMemcpy(*dst, *src, size_t size, cudaMemcpyKind)
 - cudaMemcpyKind: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 - Synchronize the device to ensure timing is correct
 - cudaDeviceSynchronize()
 - Pass device pointers into transpose function

Exercise: Write Our First Kernel

Create transpose kernel

- __global__ says this is a kernel
- Parallelize over rows
 - 1 thread per row
 - Replace outer loop with index calculation
 - ID indexing
 - blockDim.x*blockIdx.x+threadIdx.x
- Launch kernel
 - <<<gridDim,blockDim>>>
 - blockDim = 256 threads

CPU Solution

void

}

```
gpuTranspose_kernel(int rows, int cols, float *in, float *out)
{
    int i, j;
    for ( i=0; i<rows; i++)
        for ( j=0; j<cols; j++)
            out [ i * rows + j ] = in [ j * cols + i ];
    }
}</pre>
```

Step1 Solution

}

```
global____void
gpuTranspose_kernel(int rows, int cols, float *in, float *out)
{
    int i, j;
    i = blockIdx.x * blockDim.x + threadIdx.x;
    for ( j=0; j<cols; j++)
        out [ i * rows + j ] = in [ j * cols + i ];</pre>
```

Results

- Initial implementation 1.5x faster
- K20X theoretical bandwidth is 250 GB/s
 - Low percent of peak
 - Why?

Kernel	Throughput
CPU+OMP	4.9 GB/s
CUDA-1D	7.2 GB/s

Tools for Profiling

Profile-driven optimization

Tools:

- nsight: Visual Studio Edition or Eclipse Edition
- nvvp: NVIDIA Visual Profiler
- nvprof: Command-line profiling

Introducing NVVP

Cuda profiling tool

- Analyzes performance
- Identifies hotspots
- Suggests improvements

Let's open NVVP

- Import profiles
- Interpret results

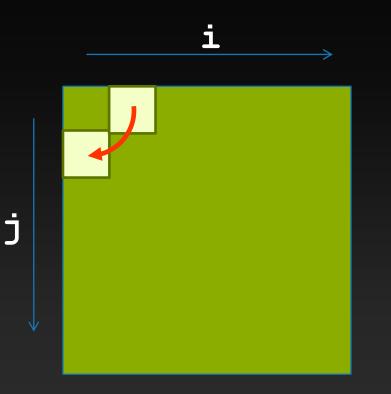
SO NVI	DIA Visual Profile										
📑 🖬 🖳	🖪 🖬 🗣 🕀	Q 🗶 🔣 🗸									
step1-all	Session		💺 *New Sessio	New Session	*New Session 83				Properties 23 🕞 Detail Graphs		
Step Patt											
	s		0.05 s	0.1 s	0.15 s	0.2 s	0.25 s		gpuTranspose_kernel(int, int, float*, float*)		
Process 2444 Thread 18									Name	Value	
Runtin			cuda	Malloc		cudaDevi	ceSynchronize		Start	175.661 ms	
Driver						coopen		_	End	176.862 ms	
Profiling	Overhead								Duration	1.201 ms	
🖃 [0] Tesla K20									Grid Size	[4,1,1]	
Context 1									Block Size	[256,1,1]	
MemC									Registers/Thread	16	
Compu								a de la composición d	Shared Memory/Block	0 bytes	
	0.0% [100] gpu								Memory		
E Stream									Global Load Efficiency	100%	
	eam 2								Global Store Efficiency	▲ 12.5%	
									Local Memory Overhead	0%	
									DRAM Utilization	å 10.9% (21.5	5 GB/s)
									▼ Instruction		
									Branch Divergence Overhead	0%	
									Total Replay Overhead	å 82.6%	
									Shared Memory Replay Overhead	0%	
									Global Memory Replay Overhead	82.6%	
									Global Cache Replay Overhead	0%	
									Local Cache Replay Overhead	0%	
									Occupancy Occupanc		
									Achieved	â 12.5%	
									Theoretical	100%	
									Limiter	Grid Size	
									* L1 Cache Configuration		
									Shared Memory Requested	48 KB	
									Shared Memory Executed	48 KB	
_		\ \									
🖃 Analysis 😂	🖸 Details 🖬 🕻	onsole 📑 Settings									⊾ ⊓
Scope				sults							
🖲 Analyze Er	ntire Application			Low Compute Utiliz	ration [120.122 ms / 294.69 m	ns = 40.8%]					
O Analyze Ke	ernel (select in time	line)		The multiprocessors	of one or more GPUs are mos	tly idle.					More
				Low Memcov/Comp	ute Overlap [0 ns / 1.368 ms	s = 0% 1					
Stages				The percentage of tir	me when memcpy is being perf	formed in parallel with cor	noute is low.				More
	🖪 Reset All	📑 Analyze All				erres in paramet merres					
Timeline					ap [0 ns / 637.615 µs = 0%]		- Halla law				
Timeune			• •	The percentage of the	me when two memory copies a	ire being performed in pai	rattet is low.				More
Multiproces	sor		0								
Kernel Mem	iory		S								
Kernel Instr	ruction		0								

Profiling on Titan

Currently due to X11 NVVP cannot collect profiles on Titan

- However, you can collect profiles using nvprof and import them into NVVP
- > nvprof -o nvprof.log ./command
- We have pre-generated profiles for each version
 - Find them in the profiles directory
- These profiles were created using NVVP
 - Unfortunately nvprof cannot generate profiles with this level of detail
 - This will be fixed in the next release of CUDA

NVVP: Step1


- Always look at occupancy first!
- Each block is scheduled on an SM
 - There are 14 SMs on K20X
 - Only 4 blocks!
- Bottleneck
 - Grid size
 - Most of the GPU is idle
- Solution
 - Express more parallelism

Duration		1.201 ms
Grid Size		[4,1,1]
Block Size		[256,1,1]
Registers/Thread		16
Shared Memory/Block		0 bytes
Memory		
Global Load Efficiency		100%
Global Store Efficiency	۵	12.5%
Local Memory Overhead		0%
DRAM Utilization	۵	10.9% (21.55 GB/s)
Instruction		
Branch Divergence Overhead		0%
Total Replay Overhead	۵	82.6%
Shared Memory Replay Overhead		0%
Global Memory Replay Overhead	۵	82.6%
Global Cache Replay Overhead		0%
Local Cache Replay Overhead		0%
Occupancy		
Achieved	♨	12.5%
Theoretical		100%
Limite r		Grid Size

profiles/step1.nvvp

Exercise: Express More Parallelism

- The CPU version parallelizes over rows and columns
- Lets do the same on the GPU
 - Replace columns loop with an index calculation
 - Change launch configuration to 2D
 - blockSize = 32x32
 - <<<gridDim,blockDim>>>
 - dim3(xdim,ydim)
 - Don't forget to update both gridDim and blockDim

Step1 Solution

```
_global__ void
gpuTranspose_kernel(int rows, int cols, float *in, float *out)
{
    int i, j;
    i = blockIdx.x * blockDim.x + threadIdx.x;
    for ( j=0; j<cols; j++)
        out [ i * rows + j ] = in [ j * cols + i ];
}
```

Step2 Solution

```
_global__ void
gpuTranspose_kernel(int rows, int cols, float *in, float *out)
{
    int i, j;
    i = blockIdx.x * blockDim.x + threadIdx.x;
    j = blockIdx.y * blockDim.y + threadIdx.y;
    out [ i * rows + j ] = in [ j * cols + i ];
}
```

Results

- We are now at a 12x speedup over the parallel CPU version
- But how are we doing overall?
 - Peak for K20X is 250 GB/s
 - ~24% of peak
- Why is bandwidth utilization low?

Back to NVVP

Kernel	Throughput
CPU+OMP	4.9 GB/s
GPU-1D	7.2 GB/s
GPU-2D	59 GB/s

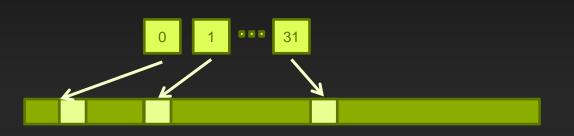
NVVP Profile: Step2

- Occupancy is now much better
- All SMs have work
- DRAM utilization is low
- Global store efficiency is low
- Global memory replay overhead is high
- Bottleneck
 - Uncoalesced stores

Duration	157.508 µs
Grid Size	[32,32,1]
Block Size	[32,32,1]
Registers/Thread	8
Shared Memory/Block	0 bytes
Memory	
Global Load Efficiency	100%
Global Store Efficiency	12.5%
Local Memory Overhead	0%
DRAM Utilization	35.3% (70.06 GB/s)
Instruction	
Branch Divergence Overhead	0%
Total Replay Overhead	▲ 64.5%
Shared Memory Replay Overhead	0%
Global Memory Replay Overhead	li 64.5%
Global Cache Replay Overhead	0%
Local Cache Replay Overhead	0%
Occupancy	
Achieved	75%
Theoretical	100%

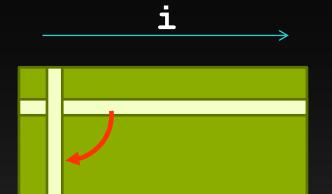
profiles/step2.nvvp

Use NVVP to Find Coalescing Problems

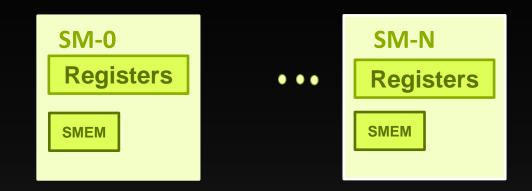

Analysis 😫 🗔 Details 📮 Console 🗔 Settings Scope O Analyze Entire Application	Compile with -lineinfo
Analyze Kernel (select in timeline)	
Stages Reset All Analyze All	<pre>{ int i; int j; </pre>
Uncoalesced Global Memory	<pre>i = blockIdx.x * blockDim.x + threadIdx.x;</pre>
Divergent Branch	<pre>j = blockIdx.y * blockDim.y + threadIdx.y;</pre>
	<pre>ut[i*cols + j] = in[j*cols + i]; }</pre>

19 dec				
Uncoalesced Global Memory Accesses Global memory loads and stores have poor access patterns, leading to inefficient use of global memory bandwidth Select from the table below to see the source code which generates the inefficient global loads and stores.				
Location	Description			
▼ File: main.c				
Line: 41	Global Store L2 Transactions/Access = 32.0 [1048576 L2 transactions for 32768 total executions]			

What is an Uncoalesced Global Store?


- Global memory access happens in transactions of 32 or 128 bytes
- Coalesced access:
 - A group of 32 contiguous threads ("warp") accessing adjacent words
 - Few transactions and high utilization
- Uncoalesced access:
 - A warp of 32 threads accessing scattered words
 - Many transactions and low utilization

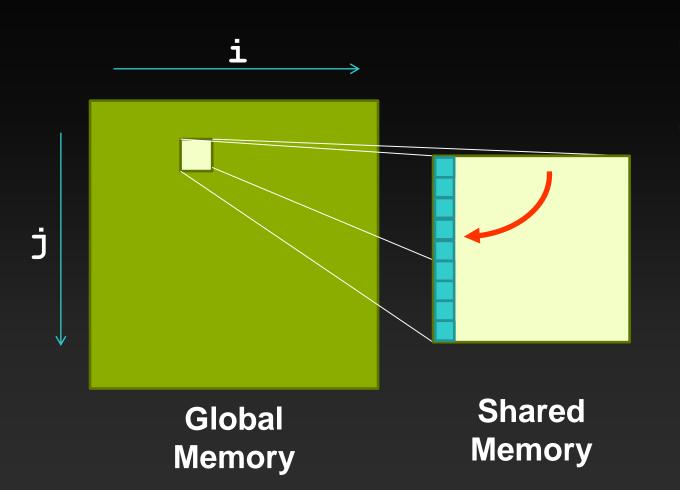
Memory Coalescing


- When we write column j memory access pattern is strided
- Solution
 - Read coalesced into shared memory
 - Transpose in shared memory
 - Write coalesced from shared memory

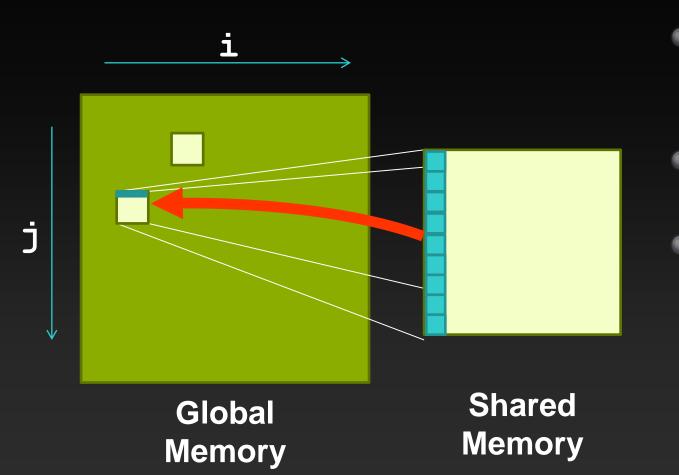
j

Shared memory

- Accessible by all threads in a block
- Fast compared to global memory
 - Low access latency
 - High bandwidth
- Common uses:
 - Software managed cache
 - Data layout conversion


Global Memory (DRAM)

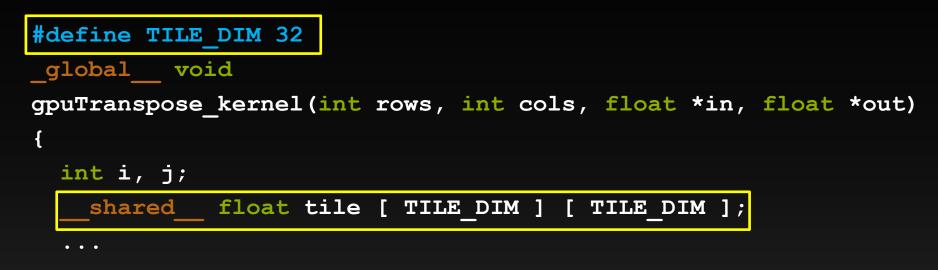
Transposing with Shared Memory


Read block coalesced into shared memory

Transposing with Shared Memory

- Read block coalesced into shared memory
- Transpose shared memory indices

Transposing with Shared Memory


Read block_ij coalesced into shared memory

- Transpose shared memory indices
- Write transposed block to global memory

Exercise: Stage Through Shared Memory

- Allocate a static 2D array using __shared__ keyword
- Read from global to shared memory
 - Global read indices are unchanged
 - Shared write indices use threadIdx.{x,y}
- Write from shared to global memory
 - Global write indices: transpose block
 - Shared read indices: transpose threads
- Sync between read and write: ___syncthreads()

Step3 Solution: Allocate Shared Memory

}

Step3 Solution : Read & Write Coalesced

```
#define TILE DIM 32
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
    shared___ float tile [ TILE_DIM ] [ TILE_DIM ];
  • • •
  \dots = in [j * cols + i];
  • • •
  out[ j * rows + i ] = ...
}
```

Step3 Solution: Stage Through Shared Memory

```
#define TILE DIM 32
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
    shared float tile [ TILE DIM ] [ TILE DIM ];
  • • •
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ];
  • • •
  out[ j * rows + i ] = tile[ threadIdx.y ] [ threadIdx.x ];
}
```

Step3 Solution : Transpose Shared Memory

```
#define TILE DIM 32
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
  shared float tile [ TILE DIM ] [ TILE DIM ];
  • • •
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ];
  • • •
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];
}
```

Step3 Solution: Transpose Block Indices

```
#define TILE DIM 32
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
  shared float tile [ TILE DIM ] [ TILE DIM ];
  i = blockIdx.x * blockDim.x + threadIdx.x;
  j = blockIdx.y * blockDim.y + threadIdx.y;
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ];
  i = blockIdx.y * blockDim.y + threadIdx.x;
  j = blockIdx.x * blockDim.x + threadIdx.y;
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];
```

}

Step3 Solution: Synchronize

}

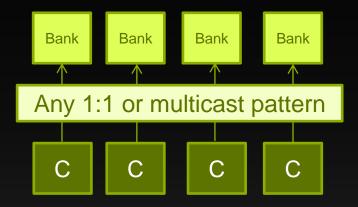
```
#define TILE DIM 32
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
   shared float tile [ TILE DIM ] [ TILE DIM ];
  i = blockIdx.x * blockDim.x + threadIdx.x;
  j = blockIdx.y * blockDim.y + threadIdx.y;
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ];
    syncthreads();
  i = blockIdx.y * blockDim.y + threadIdx.x;
  j = blockIdx.x * blockDim.x + threadIdx.y;
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];
```

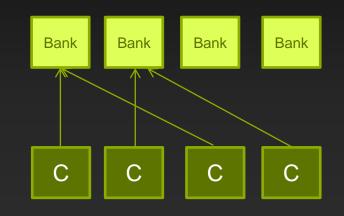
Results

We got a small improvement but we are still low compared to peak

Back to NVVP

Kernel	Throughput
CPU+OMP	4.9 GB/s
GPU-1D	7.2 GB/s
GPU-2D	59 GB/s
GPU-Shared	73 GB/s

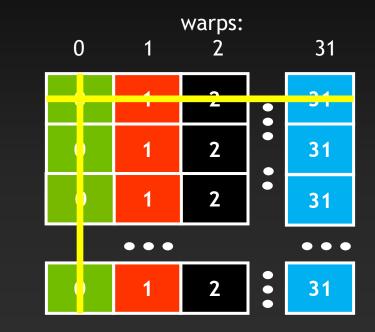

- Global Store Efficiency is now 100%
- Global memory replay are much lower
- Shared memory replays are much higher
- Bottleneck
 - Shared memory bank conflicts


Duration		128.163 µs
Grid Size		[32,32,1]
Block Size		[32,32,1]
Registers/Thread		10
Shared Memory/Block		4 KB
Memory		
Global Load Efficiency		100%
Global Store Efficiency		100%
Local Memory Overhead		0%
DRAM Utilization	۵	37.9% (75.18 GB/s)
Instruction		
Branch Divergence Overhead		0%
Total Replay Overhead	۵	36.5%
Shared Memory Replay Overhead	۵	30.7%
Global Memory Replay Overhead		5.8%
Global Cache Replay Overhead		0%
Local Cache Replay Overhead		0%
Occupancy		
Achieved		86.2%
Theoretical		100%

profiles/step3.nvvp

Shared Memory Organization

- Organized in 32 independent banks
- Optimal access: all words from different banks
 - Separate banks per thread
 - Banks can multicast
- Multiple words from same bank serialize

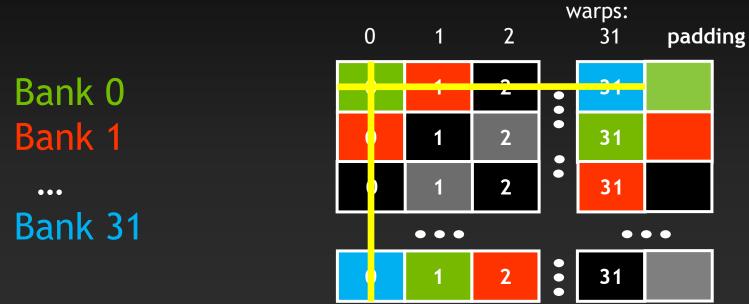


Shared Memory: Avoiding Bank Conflicts

- Example: 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Accesses along row produces 0 bank conflicts

Accesses along column produces 32 bank conflicts


Shared Memory: Avoiding Bank Conflicts

Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

Accesses along row produces 0 bank conflicts

Accesses along column produces 0 bank conflicts

Exercise: Fix bank conflicts

Add padding

Step3 Solution

```
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
  shared float tile [ TILE DIM ] [ TILE DIM ];
  i = blockIdx.x * blockDim.x + threadIdx.x;
  j = blockIdx.y * blockDim.y + threadIdx.y;
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ];
  syncthreads();
  i = blockIdx.y * blockDim.y + threadIdx.x;
  j = blockIdx.x * blockDim.x + threadIdx.y;
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];
}
```

Step4 Solution

```
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out)
{
  int i, j;
  shared float tile [ TILE DIM ] [ TILE DIM + 1];
  i = blockIdx.x * blockDim.x + threadIdx.x;
  j = blockIdx.y * blockDim.y + threadIdx.y;
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ];
  syncthreads();
  i = blockIdx.y * blockDim.y + threadIdx.x;
  j = blockIdx.x * blockDim.x + threadIdx.y;
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];
}
```

Results

- Getting much better
- Back to NVVP

Kernel	Throughput
CPU+OMP	4.9 GB/s
GPU-1D	7.2 GB/s
GPU-2D	59 GB/s
GPU-Shared	73 GB/s
GPU-no-conflicts	114 GB/s

- Bank conflicts are fixed
- DRAM utilization is >50%

Can we do better?

Duration	90.146 µs
Grid Size	[32,32,1]
Block Size	[32,32,1]
Registers/Thread	10
Shared Memory/Block	4.125 KB
Memory	
Global Load Efficiency	100%
Global Store Efficiency	100%
Local Memory Overhead	0%
DRAM Utilization	57.1% (113.34 GB/s)
Instruction	
Branch Divergence Overhead	0%
Total Replay Overhead	9.1%
Shared Memory Replay Overhead	0%
Global Memory Replay Overhead	9.1%
Global Cache Replay Overhead	0%
Local Cache Replay Overhead	0%
Occupancy	
Achieved	86.5%

profiles/step4.nvvp

- DRAM Utilization is still a little low.
 - Aim for 70%-80% of peak
- Problem:
 - Kepler requires 100+ lines in flight per SM to saturate DRAM
 - 1 line-in-flight per warp @ 100% occupancy = 64 lines in flight
- Solution:
 - Process multiple elements per thread
 - Instruction-level parallelism
 - More lines-in-flight
 - Less __syncthreads overhead
 - Amortize cost of indexing and thread launch

	Duration	90.146 µs
	Grid Size	[32,32,1]
	Block Size	[32,32,1]
	Registers/Thread	10
	Shared Memory/Block	4.125 KB
▼	Memory	
	Global Load Efficiency	100%
	Global Store Efficiency	100%
	Local Memory Overhead	0%
	DRAM Utilization	57.1% (113.34 GB/s)
▼	Instruction	
▼	Instruction Branch Divergence Overhead	0%
•		0% 9.1%
~	Branch Divergence Overhead	
•	Branch Divergence Overhead Total Replay Overhead	9.1%
•	Branch Divergence Overhead Total Replay Overhead Shared Memory Replay Overhead	9.1% 0%
•	Branch Divergence Overhead Total Replay Overhead Shared Memory Replay Overhead Global Memory Replay Overhead	9.1% 0% 9.1%
▼ ▼	 Branch Divergence Overhead Total Replay Overhead Shared Memory Replay Overhead Global Memory Replay Overhead Global Cache Replay Overhead 	9.1% 0% 9.1% 0%
▼	 Branch Divergence Overhead Total Replay Overhead Shared Memory Replay Overhead Global Memory Replay Overhead Global Cache Replay Overhead Local Cache Replay Overhead 	9.1% 0% 9.1% 0%

profiles/step4.nvvp

Exercise: Multiple Elements Per Thread

- Change block size to 32 x 4
 - BLOCKY = 4
 - NUM_ELEMS_PER_THREAD = 8
 - Should the grid size also change?
- Loop over 8 elements on input
 - Update indexing whenever you see threadIdx.y and threadDim.y
- Loop over 8 elements on output
 - Update indexing whenever you see threadIdx.y and threadDim.y
- Unroll all loops using #pragma unroll

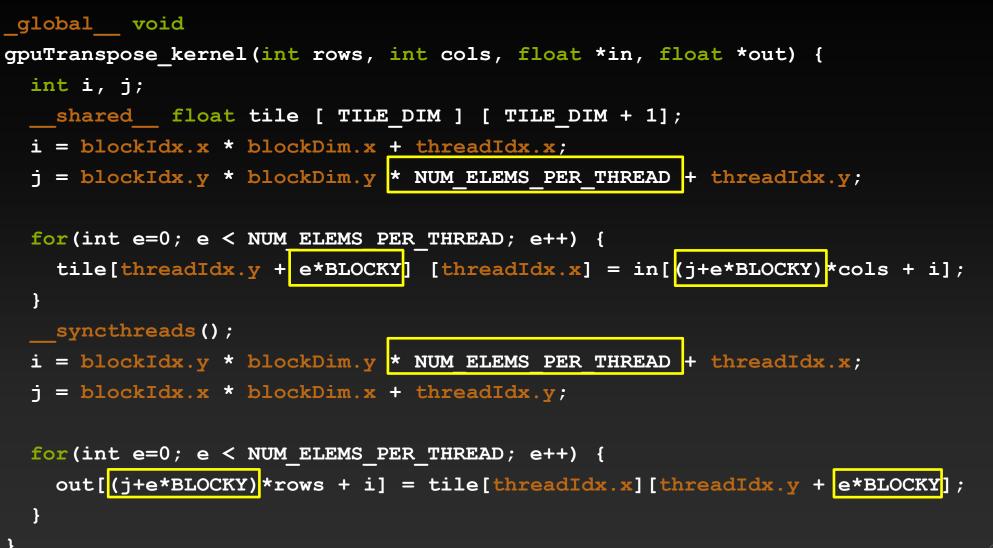
Step5 Solution : Loop over Multiple Indices

_global__ void

```
gpuTranspose_kernel(int rows, int cols, float *in, float *out) {
```

int i, j;

• • •


```
__shared___float tile [ TILE_DIM ] [ TILE_DIM + 1];
```

- i = blockIdx.x * blockDim.x + threadIdx.x;
- j = blockIdx.y * blockDim.y + threadIdx.y;

for(int e=0; e < NUM ELEMS PER THREAD; e++)</pre>

for(int e=0; e < NUM ELEMSN PER THREAD; e++)</pre>

Step5 Solution: Update Indexing for y-dimension

Step5 Solution: Unroll Loops

```
global void
gpuTranspose kernel(int rows, int cols, float *in, float *out) {
  int i, j;
   shared float tile [ TILE DIM ] [ TILE DIM + 1];
  i = blockIdx.x * blockDim.x + threadIdx.x;
  j = blockIdx.y * blockDim.y * NUM THREADS PER ELEM + threadIdx.y;
  #pragma unroll
  for(int e=0; e < NUM ELEMS PER THREAD; e++) {</pre>
    tile[threadIdx.y + e*BLOCKY] [threadIdx.x] = in[(j+e*BLOCKY)*cols + i];
  }
    syncthreads();
  i = blockIdx.y * blockDim.y * NUM THREADS PER ELEM + threadIdx.x;
  j = blockIdx.x * blockDim.x + threadIdx.y;
  #pragma unroll
  for(int e=0; e < NUM ELEMSN PER THREAD; e++) {</pre>
    out[(j+e*BLOCKY)*rows + i] = tile[threadIdx.x][threadIdx.y + e*BLOCKY];
```

- 80% of peak bandwidth
- Occupancy dropped
 - This is not a problem
 - ILP makes up for loss in occupancy
 - In general ILP is as good as high occupancy

Duration	56.13 µs
Grid Size	[32,32,1]
Block Size	[32,4,1]
Registers/Thread	24
Shared Memory/Block	4.125 KB
Memory	
Global Load Efficiency	100%
Global Store Efficiency	100%
Local Memory Overhead	0%
DRAM Utilization	79.9% (158.5 GB/SD
▼ Instruction	
Branch Divergence Overhead	0%
Branch Divergence Overhead Total Replay Overhead	0% 9.9%
-	
Total Replay Overhead	9.9%
Total Replay Overhead Shared Memory Replay Overhead	9.9% 0%
Total Replay Overhead Shared Memory Replay Overhead Global Memory Replay Overhead	9.9% 0% 9.9%
Total Replay Overhead Shared Memory Replay Overhead Global Memory Replay Overhead Global Cache Replay Overhead	9.9% 0% 9.9% 0%
Total Replay Overhead Shared Memory Replay Overhead Global Memory Replay Overhead Global Cache Replay Overhead Local Cache Replay Overhead	9.9% 0% 9.9% 0%

profiles/step5.nvvp

Final Results

- Use NVVP to identify bottlenecks
- Use optimization techniques to eliminate bottlenecks
- Refer to GTC archives for complete optimization techniques

Kernel	Throughput
CPU+OMP	4.9 GB/s
GPU-1D	7.2 GB/s
GPU-2D	59 GB/s
GPU-Shared	73 GB/s
GPU-no-conflicts	114 GB/s
GPU-multi-element	173 GB/s

- www.gputechconf.com/gtcnew/on-demand-gtc.php
- Search "GPU Performance Analysis and Optimization"