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Local Machine Setup 

Install Cuda 5.0 

https://developer.nvidia.com/cuda-downloads 

Download and unpack exercises 

http://users.nccs.gov/~jluitjen/HandsOn.zip 

 

 

 

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://users.nccs.gov/~jluitjen/HandsOn.zip
http://users.nccs.gov/~jluitjen/HandsOn.zip
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ORNL Setup 

Log into Chester 
%> ssh username@home.ccs.ornl.gov 

%> ssh chester 

Grab an interactive node 
%> qsub –I –l nodes=1,walltime=4:00 -A TRN001  

Load the cuda module 
%> module load cudatoolkit 

Change to your lustre directory 
%> cd /lustre/scratch/username/ 

Download and unpack the exercise  

http://users.nccs.gov/~jluitjen/HandsOn.zip 

http://users.nccs.gov/~jluitjen/HandsOn.zip
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Exercise 

Today we have a progressive exercise 

The exercise is broken into 5 steps 

If you get lost you can always catch up by grabbing the 

corresponding directory 

If you need to peak at the solution for each step it is found in the 

directory named “solution” 

 

To start make a copy of the step1 directory 

We will now review the code 
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void transpose(float in[][], float out[][], int N) 

{ 

  for(int j=0; j < N; j++) 

    for(int i=0; i < N; i++) 

      out[j][i] = in[i][j]; 

} 

Case Study: Matrix Transpose 

i 

j 

 Commonly used in applications 

 BLAS and FFT 

 Stresses memory systems  

 Strided reads or writes 
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2D to 1D indexing 
 

 

 

 

 

 

 

 

 

void transpose(float in[], float out[], int N) 

{ 

  for(int j=0; j < N; j++) 

    for(int i=0; i < N; i++) 

      out[i*N+j] = in[j*N+i]; 

} 

 

i 

j 

 

 

 This indexing is often used in 

numerical codes 

 We will use this indexing during this 

presentation 

 

 

 



© NVIDIA 2013 

Parallelization for CPU 

void transpose(float in[], float out[], int N) 

{ 

  #pragma omp parallel for 

  for(int j=0; j < N; j++) 

    #pragma omp parallel for 

    for(int i=0; i < N; i++) 

      out[i*N+j] = in[j*N+i]; 

} 

 

Kernel Throughput 

CPU+OMP 4.9 GB/s 
%> export OMP_NUM_THREADS=16 

%> aprun –n 1 –d 16 ./transpose   
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Exercise: Compile with NVCC 

Modify make file to build with nvcc 

For CUDA filenames must end in .cu 

Specify architecture   

–arch=sm_35 

Pass an argument to the host compiler using –Xcompiler 

-Xcompiler –fopenmp  

Recompile and run 
%> module load cudatoolkit 

%> make clean 

%> make  

%> aprun –n 1 –d 16 ./transpose 

Notice nvcc can build CPU only applications 

It actually passes host code through to the host compiler 
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Exercise: Add CUDA APIs 

Search for “TODO” and fill in cuda code 

Start with the host code 

Create separate pointers for CUDA memory 

Allocate & free memory device memory 

cudaMalloc(**ptr, size_t size) 

cudaFree(*ptr) 

Copy data between CPU and GPU 

cudaMemcpy(*dst, *src, size_t size, cudaMemcpyKind) 

cudaMemcpyKind:  cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost 

Synchronize the device to ensure timing is correct 

cudaDeviceSynchronize() 

Pass device pointers into transpose function 
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Exercise: Write Our First Kernel 

i 

j 

Create transpose kernel 

__global__ says this is a kernel 

Parallelize over rows 

1 thread per row 

Replace outer loop with index 

calculation 

1D indexing 

– blockDim.x*blockIdx.x+threadIdx.x 

Launch kernel 

<<<gridDim,blockDim>>> 

blockDim = 256 threads 
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CPU Solution 

void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  for ( i=0; i<rows; i++)  

    for ( j=0; j<cols; j++) 

      out [ i * rows + j ] = in [ j * cols + i ]; 

} 
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__global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  for ( j=0; j<cols; j++) 

    out [ i * rows + j ] = in [ j * cols + i ]; 

} 

Step1 Solution 
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Results 

Kernel Throughput 

CPU+OMP 4.9 GB/s 

CUDA-1D 7.2 GB/s 

Initial implementation 1.5x faster 

K20X theoretical bandwidth is 250 

GB/s 

Low percent of peak 

Why? 
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Tools for Profiling 

Profile-driven optimization 

 

Tools: 

nsight: Visual Studio Edition or Eclipse Edition 

nvvp: NVIDIA Visual Profiler 

nvprof: Command-line profiling 
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Introducing NVVP 

Cuda profiling tool 

Analyzes performance 

Identifies hotspots 

Suggests improvements 

Let’s open NVVP  

Import profiles 

Interpret results 
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Profiling on Titan 

Currently due to X11 NVVP cannot collect profiles on Titan 

However, you can collect profiles using nvprof and import them into 

NVVP 

%> nvprof –o nvprof.log ./command 

We have pre-generated profiles for each version 

Find them in the profiles directory 

These profiles were created using NVVP 

Unfortunately nvprof cannot generate profiles with this level of detail 

This will be fixed in the next release of CUDA 
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NVVP: Step1 

Always look at occupancy first! 

Each block is scheduled on an SM 

There are 14 SMs on K20X 

Only 4 blocks!   

Bottleneck 

Grid size 

Most of the GPU is idle 

Solution 

Express more parallelism 

 

profiles/step1.nvvp 
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Exercise: Express More Parallelism 

 
 

 

 

 

 

 

 

 

 

i 

j 

The CPU version parallelizes over 

rows and columns 

Lets do the same on the GPU 

Replace columns loop with an index 

calculation 

Change launch configuration to 2D 

blockSize = 32x32 

<<<gridDim,blockDim>>> 

dim3(xdim,ydim) 

Don’t forget to update both gridDim 

and blockDim 
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Step1 Solution  

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  for ( j=0; j<cols; j++) 

    out [ i * rows + j ] = in [ j * cols + i ]; 

} 
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Step2 Solution 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  out [ i * rows + j ] = in [ j * cols + i ]; 

} 
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Results 

Kernel Throughput 

CPU+OMP 4.9 GB/s 

GPU-1D 7.2 GB/s 

GPU-2D 59 GB/s 

We are now at a 12x speedup over 

the parallel CPU version 

But how are we doing overall? 

Peak for K20X is 250 GB/s 

~24% of peak 

Why is bandwidth utilization low? 

 

Back to NVVP 
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NVVP Profile: Step2 

Occupancy is now much better 

All SMs have work 

DRAM utilization is low 

Global store efficiency is low 

Global memory replay overhead is 

high 

Bottleneck 

Uncoalesced stores 

profiles/step2.nvvp 
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Use NVVP to Find Coalescing Problems 

Compile with -lineinfo 
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What is an Uncoalesced Global Store? 

Global memory access happens 

in transactions of 32 or 128 

bytes 

Coalesced access: 

A group of 32 contiguous 

threads (“warp”) accessing 

adjacent words 

Few transactions and high 

utilization 

Uncoalesced access: 

A warp of 32 threads 

accessing scattered words 

Many transactions and low 

utilization 

0 1 31 

0 1 31 
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Memory Coalescing 
 

 

 

 

 

 

 

 

 

i 

j 

When we write column j  memory 

access pattern is strided 

Solution 

Read coalesced into shared memory 

Transpose in shared memory 

Write coalesced from shared memory 
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Shared memory 

Accessible by all threads in a block 

 

Fast compared to global memory 

Low access latency  

High bandwidth  

 

Common uses: 

Software managed cache 

Data layout conversion 

Global Memory (DRAM) 

Registers 

SM-0 

Registers 

SM-N 

SMEM SMEM 
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Transposing with Shared Memory 

Read block coalesced 

into shared memory 

 

i 

j 

Global 

Memory 

Shared 

Memory 
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Transposing with Shared Memory 

Read block coalesced 

into shared memory 

Transpose shared 

memory indices 

 

i 

j 

Global 

Memory 

Shared 

Memory 
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Transposing with Shared Memory 

Read block_ij 

coalesced into shared 

memory 

Transpose shared 

memory indices 

Write transposed 

block to global 

memory  

 

i 

j 

Global 

Memory 

Shared 

Memory 
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Exercise: Stage Through Shared Memory 

Allocate a static 2D array using __shared__ keyword 

Read from global to shared memory 

Global read indices are unchanged 

Shared write indices use threadIdx.{x,y}  

Write from shared to global memory 

Global write indices: transpose block 

Shared read indices: transpose threads 

Sync between read and write:  __syncthreads() 
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Step3 Solution:  Allocate Shared Memory 

#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  ... 

 

} 
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Step3 Solution : Read & Write Coalesced 

#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  ... 

  ... = in [ j * cols + i ]; 

  ... 

  out[ j * rows + i ] = ... 

} 
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Step3 Solution: Stage Through Shared Memory 

#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  ... 

  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 

  ... 

  out[ j * rows + i ] = tile[ threadIdx.y ] [ threadIdx.x ];  

} 
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Step3 Solution : Transpose Shared Memory 

#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  ... 

  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 

  ... 

  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  

} 



© NVIDIA 2013 

Step3 Solution: Transpose Block Indices 

#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 

  i = blockIdx.y * blockDim.y + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  

} 
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Step3 Solution: Synchronize 

#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 

  __syncthreads(); 

  i = blockIdx.y * blockDim.y + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  

} 



© NVIDIA 2013 

Results 

Kernel Throughput 

CPU+OMP 4.9 GB/s 

GPU-1D 7.2 GB/s 

GPU-2D 59 GB/s 

GPU-Shared 73 GB/s 

We got a small improvement but we 

are still low compared to peak 

 

Back to NVVP 
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NVVP Profile: Step3 

Global Store Efficiency is now 100% 

Global memory replay are much 

lower 

Shared memory replays are much 

higher 

 

Bottleneck 

Shared memory bank conflicts 

profiles/step3.nvvp 
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Shared Memory Organization 

Organized in 32 independent banks 
 

Optimal access: all words from different 

banks 

Separate banks per thread 

Banks can multicast 

 

Multiple words from same bank serialize 
 

C 

Bank 

Any 1:1 or multicast pattern 

C C C 

Bank Bank Bank 

C 

Bank 

C C C 

Bank Bank Bank 
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Shared Memory: Avoiding Bank Conflicts 

Example: 32x32 SMEM array 

Warp accesses a column: 

32-way bank conflicts (threads in a warp access the same bank) 

 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

warps: 

0         1         2              31 

Bank 0 

Bank 1 

  … 

Bank 31 
2 0 1 

31 

Accesses along row 

produces 0 bank 

conflicts 

Accesses along 

column produces 32 

bank conflicts 
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Shared Memory: Avoiding Bank Conflicts 

Add a column for padding: 

32x33 SMEM array 

Warp accesses a column: 

32 different banks, no bank conflicts 

 

31 2 1 0 

31 2 1 0 

31 2 1 0 

warps: 

0         1         2             31       padding 

Bank 0 

Bank 1 

  … 

Bank 31 

31 2 0 1 

Accesses along row 

produces 0 bank 

conflicts 

Accesses along 

column produces 0 

bank conflicts 
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Exercise: Fix bank conflicts 

Add padding 
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Step3 Solution 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 

  __syncthreads();   

  i = blockIdx.y * blockDim.y + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ]; 

} 
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_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 

  __syncthreads();   

  i = blockIdx.y * blockDim.y + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ]; 

} 

Step4 Solution 



© NVIDIA 2013 

Results 

Getting much better 

 

Back to NVVP 

 

Kernel Throughput 

CPU+OMP 4.9 GB/s 

GPU-1D 7.2 GB/s 

GPU-2D 59 GB/s 

GPU-Shared 73 GB/s 

GPU-no-conflicts 114 GB/s 
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NVVP Profile:  Step4 

Bank conflicts are fixed 

DRAM utilization is >50% 

 

 

 

Can we do better? 

 

 

profiles/step4.nvvp 
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NVVP Profile:  Step4 

DRAM Utilization is still a little low.   

Aim for 70%-80% of peak  

Problem: 

Kepler requires 100+ lines in flight per 

SM to saturate DRAM 

1 line-in-flight per warp @ 100% 

occupancy = 64 lines in flight 

Solution: 

Process multiple elements per thread 

Instruction-level parallelism 

More lines-in-flight  

Less __syncthreads overhead 

Amortize cost of indexing and thread 

launch 

 

profiles/step4.nvvp 
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Exercise:  Multiple Elements Per Thread 

Change block size to 32 x 4  

BLOCKY = 4 

NUM_ELEMS_PER_THREAD = 8 

Should the grid size also change? 

Loop over 8 elements on input 

Update indexing whenever you see threadIdx.y and threadDim.y 

Loop over 8 elements on output 

Update indexing whenever you see threadIdx.y and threadDim.y 

Unroll all loops using #pragma unroll 
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Step5 Solution :  Loop over Multiple Indices 
_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) { 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

 

  for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) { 

    ... 

  } 

  __syncthreads(); 

  i = blockIdx.y * blockDim.y + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

 

  for(int e=0; e < NUM_ELEMSN_PER_THREAD; e++) { 

   ... 

  } 

} 
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Step5 Solution:  Update Indexing for y-dimension 
_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) { 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y * NUM_ELEMS_PER_THREAD + threadIdx.y; 

   

  for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) { 

    tile[threadIdx.y + e*BLOCKY] [threadIdx.x] = in[(j+e*BLOCKY)*cols + i]; 

  } 

  __syncthreads(); 

  i = blockIdx.y * blockDim.y * NUM_ELEMS_PER_THREAD + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

 

  for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) { 

    out[(j+e*BLOCKY)*rows + i] = tile[threadIdx.x][threadIdx.y + e*BLOCKY]; 

  } 

} 
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Step5 Solution: Unroll Loops 
_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) { 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1]; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y * NUM_THREADS_PER_ELEM + threadIdx.y; 

  #pragma unroll 

  for(int e=0; e < NUM_ELEMS_PER_THREAD; e++) { 

    tile[threadIdx.y + e*BLOCKY] [threadIdx.x] = in[(j+e*BLOCKY)*cols + i]; 

  } 

  __syncthreads(); 

  i = blockIdx.y * blockDim.y * NUM_THREADS_PER_ELEM + threadIdx.x; 

  j = blockIdx.x * blockDim.x + threadIdx.y; 

  #pragma unroll 

  for(int e=0; e < NUM_ELEMSN_PER_THREAD; e++) { 

    out[(j+e*BLOCKY)*rows + i] = tile[threadIdx.x][threadIdx.y + e*BLOCKY]; 

  } 

} 
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NVVP Profile: Step5 

80% of peak bandwidth 

Occupancy dropped 

This is not a problem 

ILP makes up for loss in 

occupancy 

In general ILP is as good as high 

occupancy 

 

 

profiles/step5.nvvp 
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Final Results 

Kernel Throughput 

CPU+OMP 4.9 GB/s 

GPU-1D 7.2 GB/s 

GPU-2D 59 GB/s 

GPU-Shared 73 GB/s 

GPU-no-conflicts 114 GB/s 

GPU-multi-element 173 GB/s 

Use NVVP to identify bottlenecks 

Use optimization techniques to  

eliminate bottlenecks 

Refer to GTC archives for  

complete optimization  

techniques 

 

 

 

www.gputechconf.com/gtcnew/on-demand-gtc.php 

Search “GPU Performance Analysis and Optimization” 
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