
Steven Gottlieb
Indiana University

Lattice QCD Computational Science Workshop
ORNL

April 29-30, 2013

Software Developments for
Lattice QCD Calculations on

Heterogenous Machines

S. Gottlieb, ORNL, 4-29-13

Outline
✦ Background on the MILC Code
✦ Evolution of the MILC Code

• Data structures and methods
• MILC code

✦ Challenges of Exascale
✦ Challenges of Acceleration
✦ Personnel/Programming Expertise

2

S. Gottlieb, ORNL, 4-29-13

Background on the MILC Code
✦ MILC collaboration is over 20 years old.
✦ Code has been evolving as hardware and software

change.
✦ Original code based on ‘site’ structure that contains all

the physical variables defined at each lattice site,
including the gluon variables that originate at the site.

✦ As cache lines got wider, this became inefficient.
✦ Field major structure: single physical variable from

successive sites are stored in succession
• This rearrangement does not suffice for GPUs or Xeon Phi

✦ Major bottleneck in code is getting the data to the
processor in a form it can use. (Prefetching)

3

S. Gottlieb, ORNL, 4-29-13

MILC Code II
✦ Original MILC code developed before MPI was

ubiquitous.
• application specific gather and scatter operations
• application specific global sums
• native communication calls hidden from user
• communication layer chosen at compilation time by selection of

a single file containing all the communication routines:
• com_mpi.c
• com_vanilla.a
• com_qmp.c ...

✦ Looping over sites done through macros, e.g.,
• FORALLSITES(i,s) {....
• avoids four dimensional indexing

4

S. Gottlieb, ORNL, 4-29-13

MILC Code III
✦ Neighbors accessed through pointers
✦ Basic operations on SU(3) matrices and vectors done

through a library.
✦ Easy to optimize library for a particular CPU, e.g., one

supporting SSE.
• Application code looks the same, just link to the right library

✦ USQCD SciDAC software: MILC code can call the
optimized routines.

✦ New algorithms/methods have been developed as
needed, e.g.,
• R-algorithm ⟹RHMD/RHMC

• staggered⟹asqtad⟹HISQ
5

S. Gottlieb, ORNL, 4-29-13

MILC Code IV
✦ Some work on reducing communication:
✦ Gauge force calculation requires frequent gathers from

neighbors
• augment the original MILC paradigm to pregather all off node

values required for the entire routine rather than incremental
gather of intermediate values

• then the entire calculation can be done with on-node data
• also much more cache friendly since then do all the work for a

site before moving to next site
• benchmarks of S. Basak’s code on next page

✦ Domain decomposition for solvers (see DeTar, Clark,...)

6

S. Gottlieb, ORNL, 4-29-13

0

1000

2000

3000

M
Fl

op
s /

 c
or

e

0 4 8 12
L (box size per core = L4)

0

1000

2000

M
Fl

op
s /

 c
or

e

0 4 8 12 16
L (box size per core = L4)

BigRed (new)
Kaon (new)
Ranger (new)
BigRed (old)
Kaon (old)
Ranger (old)

Number of core(s): 1 Number of core(s): 2

Number of core(s): 4 Number of core(s): 16

Comparison of two versions of Gauge Force (no SSE / QOP) between BigRed, Kaon & Ranger

Gauge Force Comparison

7

S. Gottlieb, ORNL, 4-29-13

MILC Code V
✦ Can see more details in MILC entry in Encyclopedia of

Parallel Computing, Ed. by D. Padua (Springer)
✦ Code is freely available at http://www.physics.utah.edu/

~detar/milc/
✦ Has been used for benchmarking for supercomputer

acquisitions by NSF & DOE
✦ Part of acceptance test for Blue Waters
✦ SPEC floating point and MPI benchmarks

8

http://www.physics.utah.edu/~detar/milc/
http://www.physics.utah.edu/~detar/milc/
http://www.physics.utah.edu/~detar/milc/
http://www.physics.utah.edu/~detar/milc/

S. Gottlieb, ORNL, 4-29-13

Data Structures
✦ Gluon field is an element of group SU(3), i.e., a 3×3

unitary matrix. However, 3×3 complex matrices (non-
unitary) are also needed.
• With compressed storage only 2 rows of unitary matrix are

stored and third row is reconstructed. Reduces memory BW.
✦ Quark field has ‘colors.’ Different lattice formulations

are used with various numbers of spin degrees of
freedom.
• Wilson or Clover quarks have 4 spinor components.
• Kogut-Susskind or staggered quarks have only 1.
• Domain wall quarks have 4 spinor components and an extra 5-th

dimension

9

S. Gottlieb, ORNL, 4-29-13

Data Structures
✦ Gluons live on the directed ‘links’ joining lattice sites.

• At each point of the space-time grid there are 4 independent
unitary matrices describing the gluon field.

✦ Unitary matrix: 3×3=9 complex numbers = 18 reals
• float is 4 bytes, double is 8
• with compressed storage, only 12 reals

✦ Quarks live on the lattice sites.
✦ Belong to fundamental representation of SU(3)
✦ Wilson quark: 4×3=12 complex numbers = 24 reals
✦ Staggered quark: 3 complex numbers = 6 reals

10

Green circles represent quarks; arrows gauge fields.
This is just a 2-dimensional lattice (grid). Space time
requires 4 dimensions.

S. Gottlieb, ORNL, 4-29-13

Computational Intensity
✦ Getting data to processor is key

• 320 GB/s peak Xeon Phi memory speed; 250 GB/s Nvidia K20X
✦ Single precision flop

• 8 bytes input; 4 bytes output
✦ SU(3) matrix times vector

• 36 multiplies + 30 adds = 66 flops
• (18+6)×4=96 bytes input, 24 bytes output
• 1.45 bytes/flop input; 0.36 bytes/flop output

✦ Naive staggered Dslash
• 8*66+7*6=570 flops
• 768 bytes input, 24 bytes output
• 1.35 bytes/flop input; 0.04 bytes/flop output

12

S. Gottlieb, ORNL, 4-29-13

Computational Intensity II
✦ With 320 GB/s bandwidth to main memory, and 1.35

bytes/flop computational intensity, maximum
performance is 237 GF/s.
• with 250 GB/s, maximum performance is 185 GF/s.

✦ Can cache reuse reduce required bandwidth?
✦ Can data compression of SU(3) matrices improve

performance?
• only two rows of SU(3) matrix must be stored as third row can be

reconstructed
• does not work for fat links

13

S. Gottlieb, ORNL, 4-29-13

Challenges of Exascale
✦ How will we express parallelism at the level of 100K, 1

million or 1 billion ‘threads’?
• a 2563 × 512 configuration has 8.6 billion grid points

✦ How many levels of parallelism will be required?
• MPI
• OpenMP/pthreads
• GPU/vectorization
• something new

✦ Will the software be smart enough to do this for us?
• See next slide from Jeffrey Vetter at 2011 Keeneland tutorial.

14

S. Gottlieb, ORNL, 4-29-13

Some Comments from B. Dally
✦HPCwire: What do you see as the biggest challenges to

reaching exascale?
✦Dally: Energy efficiency and programmability are the two

biggest challenges.
✦For energy, we will need to improve from where we are with the

NVIDIA-Kepler-based Titan machine at Oak Ridge National
Laboratory in Tennessee, which is about 2GFLOPS/Watt
(500pJ/FLOP) to 50GFLOPS/Watt (20pJ/FLOP), a 25x
improvement in efficiency while at the same time increasing
scale - which tends to reduce efficiency. Of this 25x
improvement we expect to get only a factor of 2x to 4x from
improved semiconductor process technology.

✦As I described before, we are optimistic that we can meet this
challenge through a number of research advances in circuits,
architecture and software.

16

S. Gottlieb, ORNL, 4-29-13

Dally (continued)
✦Making it easy to program a machine that requires 10 billion

threads to use at full capacity is also a challenge. While a
backward compatible path will be provided to allow existing
MPI codes to run, MPI plus C++ or Fortran is not a productive
programming environment for a machine of this scale. We need
to move toward higher-level programming models where the
programmer describes the algorithm with all available
parallelism and locality exposed, and tools automate much of
the process of efficiently mapping and tuning the program to a
particular target machine.

✦A number of research projects are underway to develop more
productive programming systems - and most importantly the
tools that will permit automated mapping and tuning.

✦Changing a large code base, however, is a very slow process,
so we need to start moving on this now. As with energy
efficiency, progress will be slowed without government funding.

17

S. Gottlieb, ORNL, 4-29-13

Computing in Science & Engineering

✦November/December issue co-edited by Thomas Sterling and
me is devoted to exascale computing
• Hardware: Drogge & Shalf
• Programming Model: Gropp & Snir
• Applications: Harrison & Heroux
• System challenges: Beckman & Sterling
• Tools: Dongarra et al.

✦At an editorial board meeting on Friday, Barry Schneider (NSF)
said people keep asking him how are they supposed to
prepare their codes for the next computers
• We can’t completely rewrite our codes every three or four years.
• Doug Post (DOD) reports that codes can last for 20 years and can be

written for portability. (I want to hear the details.)

18

S. Gottlieb, ORNL, 4-29-13

Other Exascale Issues
✦ Reliability/Resiliance
✦ Jitter from OS or interference of other jobs

• already seeing this on current machines
✦ Performance modeling

• We are very flop oriented; however, we are not the full
employment program for floating point processors. Faster
solution with lower flop rate is better. Goal is to get the physics
done and get off the computer.

• Increasingly expressing performance in terms of memory
bandwidth.

• Maybe we need an energy performance model.
• What is the real cost: hardware, electricity?

19

S. Gottlieb, ORNL, 4-29-13

Challenges of Acceleration
✦ We are pretty eager to chase the next new thing...
✦ First there was the Cell BE

• I worked on that with NCSA
• no long term future (Roadrunner at LANL)

✦ GPU work started with CUDA
• details in previous talk and on next slide

✦ Xeon Phi
• graduate student working on BEACON project
• this port is much less developed than GPU
• next talk by Balint Joò covers work with Intel

✦ What is the next new thing, and will what we have
already learned be of any value?

20

S. Gottlieb, ORNL, 4-29-13

GPU porting effort
✦ GPU effort started at Boston University in 2008
✦ Effort is ongoing:

• Not all of the code has been ported
• New algorithms required continued development (GPU

algorithms can require implementation on CPU side)
• New models, e.g., Kepler
• Key developers have gone to NVIDIA and Google

✦ Of course, Xeon Phi development is comparatively in its
infancy

21

S. Gottlieb, ORNL, 4-29-13

Xeon Phi
✦ The processor formerly known as MIC (Many Integrated

Cores)
✦ Currently, ≈60 cores on a single chip
✦ Most of the floating point power comes from a vector

floating point unit that can do 16 single precision or 8
double precision ops using 512-bit registers

✦ This is not your father’s vector processor. (Note my
father was named Seymour, but not Cray.)
• There is no gather-scatter or indirection for the floating point unit,

i.e., it is strictly SIMD, so operands must all be aligned in
succession.

✦ Peak speed: ≈ 1 Tflop/s

22

S. Gottlieb, ORNL, 4-29-13

Approaches to Porting
✦ A plethora of parallel programming possibilities

• native vs. offload
• MPI
• OpenMP
• hybrid MPI/OpenMP
• hybrid host cpu/Xeon Phi

✦ In any case, to make good use of Phi, one must
vectorize the code which requires a complete rewrite.

✦ This is not a chip on which an evolutionary approach is
likely to succeed.

23

S. Gottlieb, ORNL, 4-29-13

Vectorization
✦ Without vectorizing the code on Phi, we are giving up a

large factor (8 to 16) in peak performance.
✦ Balint Joò at Jefferson Lab working in close conjunction

with Intel to port Wilson quark code to Phi
• Layout is key to vectorization (as it was for GPUs)

✦ MILC code (elements for single site stored together):
• typedef struct { fcomplex e[3][3]; } fsu3_matrix;
• typedef struct { fcomplex c[3]; } fsu3_vector;

✦ Phi code (vec or soa sites combined):
• typedef float SU3MatrixBlock[8][3][3][2][vec];
• typedef float SpinorBlock[3][2][soa];

✦ vec is vector length, soa is structure of arrays
24

S. Gottlieb, ORNL, 4-29-13

Architectural Balance
✦ Current accelerators don’t seem to have the

architectural balance we are used to.
• Much more floating point power, but off accelerator bandwidth is

often worse than for the cpu/node
• This can work if the problem size is large enough since required

bandwidth usually scales like 1/L (L4 local grid)
• But being able to reduce local size L by a factor of 2, lets use

use 24 = 16 as much hardware, with great increase in
performance.

✦ When multiple accelerators are placed in a node this
problem can be exacerbated.
• communication avoiding algorithms need more attention

25

S. Gottlieb, ORNL, 4-29-13

Personnel
✦ All this porting requires expert personnel and assistance

• ORNL’s experts can be a great help to us
• We need training for graduate students and postdocs
• We need to be informed of future developments
• Have signed many NDAs where nothing much was disclosed

✦ Concerned about career paths
• Many of the MILC developers are getting old
• Several of the young people who have development experience

are not yet in stable jobs
• GPU developers, such as Clark and Babich have left for NVIDIA
• Shi left for Google
• For the Xeon Phi work, Intel staff is actively engaged (but I don’t

think they will leave Intel for our world)
26

S. Gottlieb, ORNL, 4-29-13

Conclusion
✦ I have been a proud user of ORNL since the Grand

Challenge Days of the Intel Paragon.
✦ Recently, Jaguar, Kraken, Keeneland, BEACON have all

been of great use for lattice QCD.
✦ However, the road ahead may prove more challenging

and even closer engagement will be required so that we
can accomplish our scientific goals and demonstrate
performance, efficiency and scaling to which we are
used.

✦ I look forward to working with ORNL experts to rise to
the challenge of exascale computing.

27

