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Background on the MILC Code
✦ MILC collaboration is over 20 years old.
✦ Code has been evolving as hardware and software 

change.
✦ Original code based on ‘site’ structure that contains all 

the physical variables defined at each lattice site, 
including the gluon variables that originate at the site.

✦ As cache lines got wider, this became inefficient.
✦ Field major structure: single physical variable from 

successive sites are stored in succession
• This rearrangement does not suffice for GPUs or Xeon Phi

✦ Major bottleneck in code is getting the data to the 
processor in a form it can use.  (Prefetching)

3



S. Gottlieb, ORNL,  4-29-13

MILC Code II
✦ Original MILC code developed before MPI was 

ubiquitous.
• application specific gather and scatter operations
• application specific global sums
• native communication calls hidden from user
• communication layer chosen at compilation time by selection of 

a single file containing all the communication routines:
• com_mpi.c
• com_vanilla.a
• com_qmp.c ...

✦ Looping over sites done through macros, e.g.,
• FORALLSITES(i,s) {....
• avoids four dimensional indexing
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MILC Code III
✦ Neighbors accessed through pointers
✦ Basic operations on SU(3) matrices and vectors done 

through a library.
✦ Easy to optimize library for a particular CPU, e.g., one 

supporting SSE.
• Application code looks the same, just link to the right library

✦ USQCD SciDAC software: MILC code can call the 
optimized routines.

✦ New algorithms/methods have been developed as 
needed, e.g., 
• R-algorithm ⟹RHMD/RHMC

• staggered⟹asqtad⟹HISQ
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MILC Code IV
✦ Some work on reducing communication:
✦ Gauge force calculation requires frequent gathers from 

neighbors
• augment the original MILC paradigm to pregather all off node 

values required for the entire routine rather than incremental 
gather of intermediate values

• then the entire calculation can be done with on-node data
• also much more cache friendly since then do all the work for a 

site before moving to next site
• benchmarks of S. Basak’s code on next page

✦ Domain decomposition for solvers (see DeTar, Clark,...)
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Gauge Force Comparison
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MILC Code V
✦ Can see more details in MILC entry in Encyclopedia of 

Parallel Computing, Ed. by D. Padua (Springer)
✦ Code is freely available at http://www.physics.utah.edu/

~detar/milc/
✦ Has been used for benchmarking for supercomputer 

acquisitions by NSF & DOE
✦ Part of acceptance test for Blue Waters
✦ SPEC floating point and MPI benchmarks
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Data Structures
✦ Gluon field is an element of group SU(3), i.e., a 3×3 

unitary matrix.  However, 3×3 complex matrices (non-
unitary) are also needed.
• With compressed storage only 2 rows of unitary matrix are 

stored and third row is reconstructed.  Reduces memory BW.
✦ Quark field has ‘colors.’  Different lattice formulations 

are used with various numbers of spin degrees of 
freedom.
• Wilson or Clover quarks have 4 spinor components.
• Kogut-Susskind or staggered quarks have only 1.
• Domain wall quarks have 4 spinor components and an extra 5-th 

dimension

9



S. Gottlieb, ORNL,  4-29-13

Data Structures
✦ Gluons live on the directed ‘links’ joining lattice sites.

• At each point of the space-time grid there are 4 independent 
unitary matrices describing the gluon field.

✦ Unitary matrix: 3×3=9 complex numbers = 18 reals
• float is 4 bytes, double is 8
• with compressed storage, only 12 reals

✦ Quarks live on the lattice sites.
✦ Belong to fundamental representation of SU(3)
✦ Wilson quark: 4×3=12 complex numbers = 24 reals
✦ Staggered quark: 3 complex numbers = 6 reals
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Green circles represent quarks; arrows gauge fields.
This is just a 2-dimensional lattice (grid).  Space time 
requires 4 dimensions.
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Computational Intensity
✦ Getting data to processor is key

• 320 GB/s peak Xeon Phi memory speed; 250 GB/s Nvidia K20X
✦ Single precision flop

• 8 bytes input; 4 bytes output
✦ SU(3) matrix times vector

• 36 multiplies + 30 adds = 66 flops
• (18+6)×4=96 bytes input, 24 bytes output
• 1.45 bytes/flop input; 0.36 bytes/flop output

✦ Naive staggered Dslash
• 8*66+7*6=570 flops
• 768 bytes input, 24 bytes output
• 1.35 bytes/flop input; 0.04 bytes/flop output
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Computational Intensity II
✦ With 320 GB/s bandwidth to main memory, and 1.35 

bytes/flop computational intensity, maximum 
performance is 237 GF/s.
• with 250 GB/s, maximum performance is 185 GF/s.

✦ Can cache reuse reduce required bandwidth?
✦ Can data compression of SU(3) matrices improve 

performance?
• only two rows of SU(3) matrix must be stored as third row can be 

reconstructed
• does not work for fat links
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Challenges of Exascale
✦ How will we express parallelism at the level of 100K, 1 

million or 1 billion ‘threads’?
• a 2563 × 512 configuration has 8.6 billion grid points

✦ How many levels of parallelism will be required?
• MPI
• OpenMP/pthreads
• GPU/vectorization
• something new

✦ Will the software be smart enough to do this for us?
• See next slide from Jeffrey Vetter at 2011 Keeneland tutorial.

14



  



  



  



S. Gottlieb, ORNL,  4-29-13

Some Comments from B. Dally
✦HPCwire: What do you see as the biggest challenges to 

reaching exascale?
✦Dally: Energy efficiency and programmability are the two 

biggest challenges.
✦For energy, we will need to improve from where we are with the 

NVIDIA-Kepler-based Titan machine at Oak Ridge National 
Laboratory in Tennessee, which is about 2GFLOPS/Watt 
(500pJ/FLOP) to 50GFLOPS/Watt (20pJ/FLOP), a 25x 
improvement in efficiency while at the same time increasing 
scale - which tends to reduce efficiency. Of this 25x 
improvement we expect to get only a factor of 2x to 4x from 
improved semiconductor process technology.

✦As I described before, we are optimistic that we can meet this 
challenge through a number of research advances in circuits, 
architecture and software.
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Dally (continued)
✦Making it easy to program a machine that requires 10 billion 

threads to use at full capacity is also a challenge. While a 
backward compatible path will be provided to allow existing 
MPI codes to run, MPI plus C++ or Fortran is not a productive 
programming environment for a machine of this scale. We need 
to move toward higher-level programming models where the 
programmer describes the algorithm with all available 
parallelism and locality exposed, and tools automate much of 
the process of efficiently mapping and tuning the program to a 
particular target machine.

✦A number of research projects are underway to develop more 
productive programming systems - and most importantly the 
tools that will permit automated mapping and tuning.

✦Changing a large code base, however, is a very slow process, 
so we need to start moving on this now. As with energy 
efficiency, progress will be slowed without government funding.

17



S. Gottlieb, ORNL,  4-29-13

Computing in Science & Engineering

✦November/December issue co-edited by Thomas Sterling and 
me is devoted to exascale computing
• Hardware: Drogge & Shalf
• Programming Model: Gropp & Snir
• Applications: Harrison & Heroux
• System challenges: Beckman & Sterling
• Tools: Dongarra et al.

✦At an editorial board meeting on Friday, Barry Schneider (NSF) 
said people keep asking him how are they supposed to 
prepare their codes for the next computers
• We can’t completely rewrite our codes every three or four years.
• Doug Post (DOD) reports that codes can last for 20 years and can be 

written for portability.  (I want to hear the details.)
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Other Exascale Issues
✦ Reliability/Resiliance
✦ Jitter from OS or interference of other jobs

• already seeing this on current machines
✦ Performance modeling

• We are very flop oriented; however, we are not the full 
employment program for floating point processors.  Faster 
solution with lower flop rate is better.  Goal is to get the physics 
done and get off the computer.

• Increasingly expressing performance in terms of memory 
bandwidth.

• Maybe we need an energy performance model.
• What is the real cost: hardware, electricity?
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Challenges of Acceleration
✦ We are pretty eager to chase the next new thing...
✦ First there was the Cell BE

• I worked on that with NCSA
• no long term future  (Roadrunner at LANL)

✦ GPU work started with CUDA
• details in previous talk and on next slide

✦ Xeon Phi
• graduate student working on BEACON project
• this port is much less developed than GPU
• next talk by Balint Joò covers work with Intel

✦ What is the next new thing, and will what we have 
already learned be of any value?
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GPU porting effort
✦ GPU effort started at Boston University in 2008
✦ Effort is ongoing:

• Not all of the code has been ported
• New algorithms required continued development (GPU 

algorithms can require implementation on CPU side)
• New models, e.g., Kepler
• Key developers have gone to NVIDIA and Google

✦ Of course, Xeon Phi development is comparatively in its 
infancy
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Xeon Phi
✦ The processor formerly known as MIC (Many Integrated 

Cores)
✦ Currently, ≈60 cores on a single chip
✦ Most of the floating point power comes from a vector 

floating point unit that can do 16 single precision or 8 
double precision ops using 512-bit registers

✦ This is not your father’s vector processor.  (Note my 
father was named Seymour, but not Cray.)
• There is no gather-scatter or indirection for the floating point unit, 

i.e., it is strictly SIMD, so operands must all be aligned in 
succession.

✦ Peak speed: ≈ 1 Tflop/s
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Approaches to Porting
✦ A plethora of parallel programming possibilities

• native vs. offload
• MPI
• OpenMP
• hybrid MPI/OpenMP
• hybrid host cpu/Xeon Phi

✦ In any case, to make good use of Phi, one must 
vectorize the code which requires a complete rewrite.

✦ This is not a chip on which an evolutionary approach is 
likely to succeed.
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Vectorization
✦ Without vectorizing the code on Phi, we are giving up a 

large factor (8 to 16) in peak performance.
✦ Balint Joò at Jefferson Lab working in close conjunction  

with Intel to port Wilson quark code to Phi
• Layout is key to vectorization (as it was for GPUs)

✦ MILC code (elements for single site stored together):
• typedef struct { fcomplex e[3][3]; } fsu3_matrix;
• typedef struct { fcomplex c[3]; } fsu3_vector;

✦ Phi code (vec or soa sites combined):
• typedef float SU3MatrixBlock[8][3][3][2][vec];
• typedef float SpinorBlock[3][2][soa];

✦ vec is vector length, soa is structure of arrays
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Architectural Balance
✦ Current accelerators don’t seem to have the 

architectural balance we are used to.
• Much more floating point power, but off accelerator bandwidth is 

often worse than for the cpu/node
• This can work if the problem size is large enough since required 

bandwidth usually scales like 1/L (L4 local grid)
• But being able to reduce local size L by a factor of 2, lets use 

use 24 = 16 as much hardware, with great increase in 
performance.

✦ When multiple accelerators are placed in a node this 
problem can be exacerbated.
• communication avoiding algorithms need more attention
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Personnel
✦ All this porting requires expert personnel and assistance

• ORNL’s experts can be a great help to us
• We need training for graduate students and postdocs
• We need to be informed of future developments
• Have signed many NDAs where nothing much was disclosed

✦ Concerned about career paths
• Many of the MILC developers are getting old
• Several of the young people who have development experience 

are not yet in stable jobs
• GPU developers, such as Clark and Babich have left for NVIDIA
• Shi left for Google
• For the Xeon Phi work, Intel staff is actively engaged (but I don’t 

think they will leave Intel for our world)
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Conclusion
✦ I have been a proud user of ORNL since the Grand 

Challenge Days of the Intel Paragon.
✦ Recently, Jaguar, Kraken, Keeneland, BEACON have all 

been of great use for lattice QCD.
✦ However, the road ahead may prove more challenging 

and even closer engagement will be required so that we 
can accomplish our scientific goals and demonstrate 
performance, efficiency and scaling to which we are 
used.

✦ I look forward to working with ORNL experts to rise to 
the challenge of exascale computing.
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