GPU Optimization Fundamentals

Cliff Woolley, NVIDIA
Developer Technology Group
Main Requirements for GPU Performance

- Expose sufficient parallelism
- Use memory efficiently
 - Coalesce global memory accesses
 - Use shared memory where possible
- Have coherent execution within warps of threads
GPU Optimization Fundamentals

- Find ways to parallelize sequential code
- Adjust kernel launch configuration to maximize device utilization
- Ensure global memory accesses are coalesced
- Minimize redundant accesses to global memory
- Avoid different execution paths within the same warp
- Minimize data transfers between the host and the device

GPU Optimization Fundamentals

- Find ways to parallelize sequential code

- Kernel optimizations
 - Launch configuration
 - Global memory throughput
 - Shared memory access
 - Instruction throughput / control flow

- Optimization of CPU-GPU interaction
 - Maximizing PCIe throughput
 - Overlapping kernel execution with memory copies
A POD: A Systematic Path to Performance

- Assess
- Parallelize
- Optimize
- Deploy
Identify hotspots (total time, number of calls)
Understand scaling (strong and weak)
Parallelize

Applications

Libraries

OpenACC Directives

Programming Languages
Optimize

Profile-driven optimization

Tools:
- **nsight** Visual Studio Edition or Eclipse Edition
- **nvvp** NVIDIA Visual Profiler
- **nvprof** Command-line profiling
Deploy

Productize

- Check API return values
- Run cuda-memcheck tools
- Library distribution
- Cluster management

Early gains
Subsequent changes are evolutionary
PARALLELIZE
Parallelism Needed

- GPU is a parallel machine
 - Lots of arithmetic pipelines
 - Multiple memory banks

- To get good performance, your code must expose sufficient parallelism for 2 reasons:
 - To actually give work to all the pipelines
 - To hide latency of the pipelines

- Rough rule of thumb for Tesla K20X:
 - You want to have 14K or more threads running concurrently
Case Study: Matrix Transpose

void transpose(float in[][[]], float out[][[]], int N)
{
 for(int j=0; j < N; j++)
 for(int i=0; i < N; i++)
 out[j][i] = in[i][j];
}
An Initial CUDA Version

```
__global__ void transpose(float in[], float out[], int N) {
    for(int j=0; j < N; j++)
        for(int i=0; i < N; i++)
            out[i*N+j] = in[j*N+i];
}

float in[N*N], out[N*N];
...
transpose<<<1,1>>>(in, out, N);
```

+ Quickly implemented
- Performance weak
⇒ Need to expose parallelism!
CUDA Execution Model

- **Thread**: Sequential execution unit
 - All threads execute same sequential program
 - Threads execute in parallel

- **Threads Block**: a group of threads
 - Executes on a single Streaming Multiprocessor (SM)
 - Threads within a block can cooperate
 - Light-weight synchronization
 - Data exchange

- **Grid**: a collection of thread blocks
 - Thread blocks of a grid execute across multiple SMs
 - Thread blocks do not synchronize with each other
 - Communication between blocks is expensive
Kepler Streaming Multiprocessor (SMX)

Per SMX:
- 192 SP CUDA Cores
- 64 DP CUDA Cores
- 4 warp schedulers
 - Up to 2048 concurrent threads
 - One or two instructions issued per scheduler per clock from a single warp
- Register file (256KB)
- Shared memory (48KB)
Execution Model

Software
- Thread
- Thread Block
- Grid

Hardware
- CUDA Core
- Multiprocessor
- Device

Threads are executed by scalar CUDA Cores

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks
An Initial CUDA Version

```c
__global__ void transpose(float in[], float out[], int N) {
    for(int j=0; j < N; j++)
        for(int i=0; i < N; i++)
            out[i*N+j] = in[j*N+i];
}

float in[N*N], out[N*N];
...
transpose<<<1,1>>>(in, out, N);
```

+ Quickly implemented
- Performance weak
⇒ Need to expose parallelism!
Parallelize across matrix elements

Process elements independently

```c
__global__ transpose(float in[], float out[]) {
    int tid = threadIdx.x;
    int bid = blockIdx.x;

    out[tid*N+bid] = in[bid*N+tid];
}
```

```c
float in[], out[];
...
transpose<<<N,N>>>(in, out);
```
Kernel Optimizations: *Launch Configuration*
Launch Configuration

Launch configuration is the number of blocks and number of threads per block, expressed in CUDA with the <<< >>> notation:

\[
\text{mykernel}<<<\text{num_blocks}, \text{threads_per_block}>>> (...) ;
\]

What values should we pick for these?
- Need enough total threads to process entire input
- Need enough threads to keep the GPU busy
- Selection of block size is an optimization step involving *warp occupancy*
A thread block consists of 32-thread warps.

A warp is executed physically in parallel (SIMD) on a multiprocessor.
Occupancy

Need enough independent threads per SM to hide latencies:
- Instruction latencies
- Memory access latencies

Hardware resources determine number of threads that fit per SM

Occupyancy = \(\frac{N_{\text{actual}}}{N_{\text{max}}} \)
Occupancy

Occupancy: number of concurrent threads per SM, expressed as:
- Number of concurrent warps of threads, or
- Percentage of maximum concurrent threads

Determined by several factors:
- Registers per thread
 - SM registers are partitioned among the threads
- Shared memory per thread block
 - SM shared memory is partitioned among the blocks
- Threads per thread block
 - Threads are allocated at thread block granularity

Kepler SM resources:
- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 2048 concurrent threads
- Up to 16 concurrent thread blocks
Low Latency or High Throughput?

CPU
- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution

GPU
- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation
Low Latency or High Throughput?

- **CPU** architecture must minimize latency within each thread
- **GPU** architecture hides latency with computation from other (warps of) threads
Occupancy and Performance

- Note that 100% occupancy isn’t needed to reach maximum performance
 - Once the “needed” occupancy is reached, further increases won’t improve performance

- Needed occupancy depends on the code
 - More independent work per thread -> less occupancy is needed
 - Memory-bound codes tend to need more occupancy
 - Higher latency than for arithmetic, need more work to hide it
Occupyance

- Limiting resources:
 - Number of threads
 - Number of registers per thread
 - Number of blocks
 - Amount of shared memory per block

- Don’t need for 100% occupancy for maximum performance
Thread Block Size and Occupancy

- Thread block size is a multiple of warp size (32)
 - Even if you request fewer threads, HW rounds up

- Thread blocks can be too small
 - Kepler SM can run up to 16 thread blocks concurrently
 - SM may reach the block limit before reaching good occupancy
 - E.g.: 1-warp thread blocks -> 16 warps per Kepler SM (probably not enough)

- Thread blocks can be too big
 - Enough SM resources for more threads, but not enough for a whole block
 - A thread block isn’t started until resources are available for all of its threads
Thread Block Sizing

Number of warps allowed by SM resources

SM resources:
- Registers
- Shared memory

Too few threads per block

Too many threads per block
Occupancy Example

Occupancy here is limited by grid size and number of threads per block

<table>
<thead>
<tr>
<th></th>
<th>Start</th>
<th>End</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>612.702 ms</td>
<td>629.292 ms</td>
<td>16.59 ms</td>
</tr>
<tr>
<td>Grid Size</td>
<td>[1,1,1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block Size</td>
<td>[1024,1,1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registers/Thread</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Memory/Block</td>
<td></td>
<td>0 bytes</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Load Efficiency</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Store Efficiency</td>
<td>12.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Memory Overhead</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branch Divergence Overhead</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Replay Overhead</td>
<td>87.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Memory Replay Overhead</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Memory Replay Overhead</td>
<td>87.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Cache Replay Overhead</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Cache Replay Overhead</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achieved</td>
<td></td>
<td></td>
<td>49.8%</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
CUDA Occupancy Calculator

Analyze effect of resource consumption on occupancy
General Guidelines

Thread block size choice:
- Start with 128-256 threads per block
 - Adjust up/down by what best matches your function
 - Example: stencil codes prefer larger blocks to minimize halos
- Multiple of warp size (32 threads)
- If occupancy is critical to performance:
 - Check that block size isn’t precluding occupancy allowed by register and shared memory resources

Grid size:
- 1,000 or more thread blocks
 - 10s of “waves” of thread blocks: no need to think about tail effect
 - Makes your code ready for several generations of future GPUs
Kepler: Level of Parallelism Needed

To saturate instruction bandwidth:
- Fp32 math: \(~1.7K\) independent instructions per SM
- Lower for other, lower-throughput instructions
- Keep in mind that Kepler can track up to 2048 threads per SM

To saturate memory bandwidth:
- \(100+\) concurrent independent 128-byte lines per SM
OPTIMIZE

Kernel Optimizations: *Global Memory Throughput*
CUDA Memory Architecture

Host

- CPU
- Chipset
- DRAM

Device

- DRAM
 - Local
 - Global
 - Constant
 - Texture

GPU

- Multiprocessor
 - Registers
 - Shared Memory

- L1 / L2 Cache

- Constant and Texture Caches
Kepler Memory Hierarchy

- **SM-0**: Registers
 - L1
 - SMEM (Read only)

- **SM-1**: Registers
 - L1
 - SMEM (Read only)

- **SM-N**: Registers
 - L1
 - SMEM (Read only)

- **L2**: Intermediate level

- **Global Memory**: Top level
Kepler Memory Hierarchy

- **Registers**
 - Storage local to each threads
 - Compiler-managed

- **Shared memory / L1 cache**
 - 64 KB, program-configurable into shared:L1
 - Program-managed
 - Accessible by all threads in the same thread block
 - Low latency, high bandwidth: ~2.5 TB/s

- **Read-only cache**
 - Up to 48 KB per Kepler SM
 - Hardware-managed (also used by texture units)
 - Used for read-only GMEM accesses (not coherent with writes)
Kepler Memory Hierarchy

- **L2**
 - 1.5 MB
 - Hardware-managed: all accesses to global memory go through L2, including CPU and peer GPU

- **Global memory**
 - 6 GB, accessible by all threads, host (CPU), other GPUs in the same system
 - Higher latency (400-800 cycles)
 - 250 GB/s
Load Operation

Memory operations are issued **per warp** (32 threads)
- Just like all other instructions

Operation:
- Threads in a warp provide memory addresses
- Determine which lines/segments are needed
- Request the needed lines/segments
Memory Throughput Analysis

Two perspectives on the throughput:
- Application’s point of view:
 - count only bytes requested by application
- HW point of view:
 - count all bytes moved by hardware

The two views can be different:
- Memory is accessed at 32 byte granularity
 - Scattered/offset pattern: application doesn’t use all the hw transaction bytes
 - Broadcast: the same small transaction serves many threads in a warp

Two aspects to inspect for performance impact:
- Address pattern
- Number of concurrent accesses in flight
Global Memory Operation

- Memory operations are executed per warp
 - 32 threads in a warp provide memory addresses
 - Hardware determines into which lines those addresses fall
 - Memory transaction granularity is 32 bytes
 - There are benefits to a warp accessing a contiguous aligned region of 128 or 256 bytes

- Access word size
 - Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes
 - Assumes that each thread’s address is aligned on the word size boundary
 - If you are accessing a data type that’s of non-native size, compiler will generate several load or store instructions with native sizes
Access Patterns vs. Memory Throughput

Scenario:
- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 4 segments
- Warp needs 128 bytes
- 128 bytes move across the bus
- Bus utilization: 100%

addresses from a warp

Memory addresses
Scenario:
- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus
 - Bus utilization: 100%
Access Patterns vs. Memory Throughput

Scenario:
- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within at most 5 segments
 - Warp needs 128 bytes
 - At most 160 bytes move across the bus
 - Bus utilization: at least 80%
 - Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

Memory addresses

© NVIDIA 2013
Access Patterns vs. Memory Throughput

Scenario:
- All threads in a warp request the same 4-byte word
- Addresses fall within a single segment
- Warp needs 4 bytes
- 32 bytes move across the bus
- Bus utilization: 12.5%
Access Patterns vs. Memory Throughput

Scenario:
- Warp requests 32 scattered 4-byte words
- **Addresses fall within N segments**
 - Warp needs 128 bytes
 - $N \times 32$ bytes move across the bus
 - Bus utilization: $128 / (N \times 32)$

![Diagram showing memory addresses and addresses from a warp](image-url)
Say we are reading a 12-byte structure per thread

```c
struct Position {
    float x, y, z;
};
...
__global__ void kernel( Position *data, ... )
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    Position temp = data[idx];
    ...
}
```
Compiler converts $\text{temp} = \text{data}[\text{idx}]$ into 3 loads:

- Each loads 4 bytes
- Can’t do an 8 and a 4 byte load: 12 bytes per element means that every other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:

- Successive threads read 4 bytes at 12-byte stride
First Load Instruction

addresses from a warp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 ...

© NVIDIA 2013
Second Load Instruction

addresses from a warp
Third Load Instruction

addresses from a warp
Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes than application requests

- We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

- Change data layout from array of structures to structure of arrays
 - In this case: 3 separate arrays of floats
 - The most reliable approach (also ideal for both CPUs and GPUs)
- Use loads via read-only cache
 - As long as lines survive in the cache, performance will be nearly optimal
- Stage loads via shared memory
Global Memory Access Patterns

SoA vs AoS:
- **Good**: point.x[i]
- **Not so good**: point[i].x

Strided array access:
- ~**OK**: x[i] = a[i+1] – a[i]
- **Slower**: x[i] = a[64*i] – a[i]

Random array access:
- **Slower**: a[rand(i)]
Summary: GEMM Optimization

- Strive for perfect address coalescing per warp
 - Align starting address (may require padding)
 - A warp will ideally access within a contiguous region
 - Avoid scattered address patterns or patterns with large strides between threads

- Analyze and optimize address patterns:
 - Use profiling tools (included with CUDA toolkit download)
 - Compare the transactions per request to the ideal ratio
 - Choose appropriate data layout (prefer SoA)
 - If needed, try read-only loads, staging accesses via SMEM
Optimizing Access Concurrency

Goal: utilize all available memory bandwidth

Little’s Law:
\[\# \text{bytes delivered} = \text{latency} \times \text{bandwidth} \]

⇒ **Increase parallelism** (bytes delivered)
 (or)
⇒ **Reduce latency** (time between requests)
Exposing Sufficient Parallelism

What memory system hardware ultimately needs:
- Sufficient requests in flight to saturate bandwidth

Two ways to increase parallelism:
- More independent accesses within a thread (warp)
- More concurrent threads (warps)
Memory-Level Parallelism = Bandwidth

In order to saturate memory bandwidth, SM must issue enough independent memory requests concurrently.
Memory-Level Parallelism: Requests in flight

- Achieved Kepler memory throughput
 - Shown as a function of number of concurrent requests per SM with 128-byte lines
Requests per Thread and Performance

- **Experiment**: vary size of accesses by threads of a warp, check performance
 - Memcopy kernel: each warp has 2 concurrent requests (one write and the read following it)

 Accesses by a warp:
 - 4B words: 1 line
 - 8B words: 2 lines
 - 16B words: 4 lines

To achieve same throughput at lower occupancy or with smaller words, need more independent requests per warp.
Optimizing Access Concurrency

Have enough concurrent accesses to saturate the bus
- Little’s law: need \((\text{mem_latency}) \times (\text{bandwidth})\) bytes

Ways to increase concurrent accesses:
- Increase occupancy (run more warps concurrently)
 - Adjust thread block dimensions
 - To maximize occupancy at given register and smem requirements
 - If occupancy is limited by registers per thread:
 - Reduce register count (\(-\text{maxrregcount} \) option, or \(\text{__launch_bounds} \))
- Modify code to process several elements per thread
 - Doubling elements per thread doubles independent accesses per thread
A note about caches

- L1 and L2 caches
 - Ignore in software design
 - Thousands of concurrent threads – cache blocking difficult at best

- Read-only Data Cache
 - Shared with texture pipeline
 - Useful for uncoalesced reads
 - Handled by compiler when `const __restrict__` is used, or use `__ldg()` primitive
Read-only Data Cache

Go through the read-only cache
- Not coherent with writes
- Thus, addresses must not be written by the same kernel

Two ways to enable:
- Decorating pointer arguments as hints to compiler:
 - Pointer of interest: `const __restrict__`
 - All other pointer arguments: `__restrict__`
 - Conveys to compiler that no aliasing will occur
- Using `__ldg()` intrinsic
 - Requires no pointer decoration
Go through the read-only cache

- Not coherent with writes
- Thus, addresses must not be written by the same kernel

Two ways to enable:

- Decorating pointer arguments as hints to compiler:
 - Pointer of interest: `const __restrict__`
 - All other pointer arguments: `__restrict__`
 - Conveys to compiler that no aliasing will occur
- Using `__ldg()` intrinsic
 - Requires no pointer decoration

```
__global__ void kernel(
    int* __restrict__ output,
    const int* __restrict__ input )
{
    ... 
    output[idx] = input[idx];
}
```
Read-only Data Cache

- Go through the read-only cache
 - Not coherent with writes
 - Thus, addresses must not be written by the same kernel

Two ways to enable:

- Decorating pointer arguments as hints to compiler:
 - Pointer of interest: `const __restrict__`
 - All other pointer arguments: `__restrict__`
 - Conveys to compiler that no aliasing will occur
 - Using `__ldg()` intrinsic
 - Requires no pointer decoration

```c
__global__ void kernel( int *output, int *input )
{
    ...
    output[idx] = __ldg( &input[idx] );
}
```
Blocking for L1, Read-only, L2 Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches
 Smaller size (especially per thread), so not aimed at temporal reuse
 Intended to smooth out some access patterns, help with spilled registers, etc.

Usually not worth trying to cache-block like you would on CPU
 100s to 1,000s of run-time scheduled threads competing for the cache
 If it is possible to block for L1 then it’s possible block for SMEM
 Same size
 Same or higher bandwidth
 Guaranteed locality: hw will not evict behind your back
OPTIMIZE

Kernel Optimizations: *Shared Memory Accesses*
Shared Memory

- Accessible by all threads in a block
- Fast compared to global memory
 - Low access latency
 - High bandwidth
- Common uses:
 - Software managed cache
 - Data layout conversion

Global Memory (DRAM)

SM-0
- Registers
- SMEM

...

SM-N
- Registers
- SMEM
Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB
- Program-configurable split:
 - Fermi: 48:16, 16:48
 - Kepler: 48:16, 16:48, 32:32
- CUDA API: `cudaDeviceSetCacheConfig()`, `cudaFuncSetCacheConfig()`

Large L1 can improve performance when:
- Spilling registers (more lines in the cache -> fewer evictions)

Large SMEM can improve performance when:
- Occupancy is limited by SMEM
Shared Memory

Uses:
- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns

Organization:
- 32 banks, 4-byte (or 8-byte) banks
- Successive words accessed through different banks
Shared Memory

Uses:
- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns

Performance:
- smem accesses are issued per warp
- Throughput is 4 (or 8) bytes per bank per clock per multiprocessor
- **serialization:** if N threads of 32 access different words in the same bank, N accesses are executed serially
- **multicast:** N threads access the same word in one fetch
 - Could be different bytes within the same word
Shared Memory Organization

- Organized in 32 independent banks
- Optimal access: no two words from same bank
 - Separate banks per thread
 - Banks can multicast
- Multiple words from same bank serialize

Any 1:1 or multicast pattern
Bank Addressing Examples

- No Bank Conflicts

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Bank 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread 1</td>
<td>Bank 1</td>
</tr>
<tr>
<td>Thread 2</td>
<td>Bank 2</td>
</tr>
<tr>
<td>Thread 3</td>
<td>Bank 3</td>
</tr>
<tr>
<td>Thread 4</td>
<td>Bank 4</td>
</tr>
<tr>
<td>Thread 5</td>
<td>Bank 5</td>
</tr>
<tr>
<td>Thread 6</td>
<td>Bank 6</td>
</tr>
<tr>
<td>Thread 7</td>
<td>Bank 7</td>
</tr>
</tbody>
</table>

| Thread 31 | Bank 31 |

- No Bank Conflicts

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Bank 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread 1</td>
<td>Bank 1</td>
</tr>
<tr>
<td>Thread 2</td>
<td>Bank 2</td>
</tr>
<tr>
<td>Thread 3</td>
<td>Bank 3</td>
</tr>
<tr>
<td>Thread 4</td>
<td>Bank 4</td>
</tr>
<tr>
<td>Thread 5</td>
<td>Bank 5</td>
</tr>
<tr>
<td>Thread 6</td>
<td>Bank 6</td>
</tr>
<tr>
<td>Thread 7</td>
<td>Bank 7</td>
</tr>
</tbody>
</table>

| Thread 31 | Bank 31 |
Bank Addressing Examples

- **2-way Bank Conflicts**
 - Thread 0
 - Thread 1
 - Thread 2
 - Thread 3
 - Thread 4
 - Thread 5
 - Thread 6
 - Bank 0
 - Bank 1
 - Bank 2
 - Bank 3
 - Bank 4
 - Bank 5
 - Bank 6
 - Bank 7
 - Bank 31

- **8-way Bank Conflicts**
 - Thread 0
 - Thread 1
 - Thread 2
 - Thread 3
 - Thread 4
 - Thread 5
 - Thread 6
 - Thread 7
 - Bank 0
 - Bank 1
 - Bank 2
 - Bank 3
 - Bank 4
 - Bank 5
 - Bank 6
 - Bank 7
 - Bank 8
 - Bank 9
 - Bank 31
Case Study: Matrix Transpose

- Coalesced read
- Scattered write (stride N)

⇒ Process matrix tile, not single row/column, per block

⇒ Transpose matrix tile within block
Case Study: Matrix Transpose

- Coalesced read
- Scattered write (stride N)
- Transpose matrix tile within block

⇒ Need threads in a block to cooperate: use shared memory
Transpose with coalesced read/write

```c
__global__ transpose(float in[], float out[])
{
    __shared__ float tile[TILE][TILE];

    int glob_in = xIndex + (yIndex)*N;
    int glob_out = xIndex + (yIndex)*N;

    tile[threadIdx.y][threadIdx.x] = in[glob_in];

    __syncthreads();

    out[glob_out] = tile[threadIdx.x][threadIdx.y];
}
```

Fixed GMEM coalescing, but introduced SMEM bank conflicts

```c
transpose<<<grid, threads>>>(in, out);
```
Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:
- 32-way bank conflicts (threads in a warp access the same bank)

![Diagram showing 32x32 SMEM array with bank conflicts]

Bank 0
Bank 1
...
Bank 31
Shared Memory: Avoiding Bank Conflicts

- **Add a column for padding:**
 - 32x33 SMEM array

- **Warp accesses a column:**
 - 32 different banks, no bank conflicts

```
<table>
<thead>
<tr>
<th>Bank 0</th>
<th>Bank 1</th>
<th>...</th>
<th>Bank 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>
```

Warp accesses:
- 32 different banks, no bank conflicts

Banking:
- Each warp accesses a column of the SMEM array.
- Padding is added to avoid bank conflicts.

© NVIDIA 2013
OPTIMIZE

Kernel Optimizations: *Instruction Throughput / Control Flow*
Exposing Sufficient Parallelism

What SMX ultimately needs:
- Sufficient number of independent instructions
- Kepler GK110 is “wider” than Fermi or GK104; needs more parallelism

Two ways to increase parallelism:
- More independent instructions (ILP) within a thread (warp)
- More concurrent threads (warps)
Independent Instructions: ILP vs. TLP

- SMX can leverage available Instruction-Level Parallelism more or less interchangeably with Thread-Level Parallelism.

- Sometimes easier to increase ILP than to increase TLP
 - E.g., # of threads may be limited by algorithm or by HW resource limits
 - But if each thread has some degree of independent operations to do, Kepler SMX can leverage that. (E.g., a small loop that is unrolled.)

- In fact, some degree of ILP is actually required to approach theoretical max Instructions Per Clock (IPC)
Runtime Math Library and Intrinsics

Two types of runtime math library functions

- **__func()**: many map directly to hardware ISA
 - Fast but lower accuracy (see CUDA Programming Guide for full details)
 - Examples: __sinf(x), __expf(x), __powf(x, y)

- **func()**: compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: sin(x), exp(x), pow(x, y)

A number of additional intrinsics:

- __sincosf(), __frcp_rz(), ...
- Explicit IEEE rounding modes (rz,rn,ru,rd)
Control Flow

- Instructions are issued per 32 threads (warp)

- Divergent branches:
 - Threads within a single warp take different paths
 - `if-else, ...`
 - Different execution paths within a warp are serialized

- Different warps can execute different code with no impact on performance
Avoid diverging within a warp

Example with divergence:

```c
if (threadIdx.x > 2) {...} else {...}
```

Branch granularity < warp size

Example without divergence:

```c
if (threadIdx.x / warpSize > 2) {...} else {...}
```

Branch granularity is a whole multiple of warp size
Control Flow

```c
if (...)
{
    // then-clause

}
else
{
    // else-clause

}
```
Execution within warps is coherent

Warp ("vector" of threads)
Execution diverges within a warp
Execution diverges within a warp

Solution: Group threads with similar control flow
OPTIMIZE

Optimizing CPU-GPU Interaction: Maximizing PCIe Throughput
Maximizing PCIe Throughput

- Use transfers that are of reasonable size (a few MB, at least)
- Use pinned system memory
- Overlap memcopies with useful computation
Pinned (non-pageable) memory

Pinned memory enables:
- faster PCIe copies
- memcopies asynchronous with CPU
- memcopies asynchronous with GPU

Usage
- `cudaHostAlloc / cudaFreeHost`
 - instead of malloc / free
- `cudaHostRegister / cudaHostUnregister`
 - pin regular memory after allocation

Implication:
- pinned memory is essentially removed from host virtual memory
Asynchronicity in CUDA

Default:
- Kernel launches are asynchronous with CPU
- Memcopies (D2H, H2D) block CPU thread
- CUDA calls are serialized by the driver

Streams and async functions provide additional asynchronicity:
- Memcopies (D2H, H2D) asynchronous with CPU
- Ability to concurrently execute kernels and memcopies

Stream: sequence of ops that execute in issue-order on GPU
- Operations from different streams may be interleaved
- Kernels and memcopies from different streams can be overlapped
OPTIMIZE

Optimizing CPU-GPU Interaction: Overlapping Kernel Execution with Memory Copies
Overlap kernel and memory copy

Requirements:
- D2H or H2D memcopy from pinned memory
- Kernel and memcopy in different, non-0 streams

Code:
```c
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudamemcpyAsync( dst, src, size, dir, stream1 );
kernel<<<grid, block, 0, stream2>>>(...);
```

potentially overlapped
Call Sequencing for Optimal Overlap

- CUDA calls are dispatched in the sequence they were issued.
- Kepler can concurrently execute:
 - Up to 32 kernels
 - Up to 2 memcopies, as long as they are in different directions (D2H, H2D)
- A call is dispatched if both are true:
 - Resources are available
 - Preceding calls in the same stream have completed
- Scheduling:
 - Kernels are executed in the order in which they were issued
 - Thread blocks for a given kernel are scheduled if all thread blocks for preceding kernels have been scheduled and SM resources still available
Hyper-Q Enables Efficient Scheduling

- Grid Management Unit selects most appropriate task from up to 32 hardware queues (CUDA streams)
- Improves scheduling of concurrently executed grids
- Particularly interesting for MPI applications when combined with CUDA Proxy (though not limited to MPI applications)
void foo(void)
{
 kernel_A<<<g,b,s, stream_1>>>()
 kernel_B<<<g,b,s, stream_1>>>()
 kernel_C<<<g,b,s, stream_1>>>()
}

void bar(void)
{
 kernel_P<<<g,b,s, stream_2>>>()
 kernel_Q<<<g,b,s, stream_2>>>()
 kernel_R<<<g,b,s, stream_2>>>()
}
Stream Dependencies without Hyper-Q

stream_1
- kernel_A
- kernel_B
- kernel_C

stream_2
- kernel_P
- kernel_Q
- kernel_R

Hardware Work Queue

R→Q→P→C→B→A
Stream Dependencies with Hyper-Q

Hyper-Q allows 32-way concurrency
Avoids inter-stream dependencies

Multiple Hardware Work Queues
Hyper-Q Example: Building a Pipeline

- Heterogeneous system: overlap work and data movement
- Kepler + CUDA 5: Hyper-Q and CPU Callbacks
for (unsigned int i = 0; i < nIterations; ++i) {
 // Copy data from host to device
 cudaMemcpyAsync(d_data, h_data, cpybytes, cudaMemcpyHostToDevice, *r_streams.active());

 // Launch device kernel A
 kernel_A<<<gdim, bdim, 0, *r_streams.active()>>()

 // Copy data from device to host
 cudaMemcpyAsync(h_data, d_data, cpybytes, cudaMemcpyDeviceToHost, *r_streams.active());

 // Launch host post-process
 cudaStreamAddCallback(*r_streams.active(), cpu_callback, r_streamids.active(), 0);

 // Rotate streams
 r_streams.rotate(); r_streamids.rotate();
}
False dependencies prevent overlap

Breadth-first launch gives overlap, requires more complex code
Pipeline With Hyper-Q

- Full overlap of all engines
- Simple to program
Hyper-Q also enables CUDA Proxy

- No application modifications necessary
 - Start proxy daemon by setting \texttt{CRAY_CUDA_PROXY=1} in batch script
 - CUDA driver detects daemon and routes GPU accesses through it

- Combines requests from several processes into one GPU context (shared virtual memory space, concurrent kernels possible, etc.)

- Allows for overlap of kernels with memcopies \textit{without explicit use of streams}
But Hyper-Q != CUDA Proxy

- **One process: No proxy required!**
 - Automatically utilized
 - One or many host threads no problem
 - Just need multiple CUDA streams
 - Removes false dependencies among CUDA streams that reduce effective concurrency on earlier GPUs

- **Multi-process: Use CUDA Proxy**
 - Leverages task-level parallelism across processes (e.g., MPI ranks)
 - MPI is not required for proxy – it’s just the common case for HPC
APOD: A Systematic Path to Performance
Additional Information

nvidia.com/cuda
nvidia.com/kepler
docs.nvidia.com/cuda
gputechconf.com

GPUs from mobile to HPC
Comprehensive tools, large ecosystem
High performance CUDA platform
Program with directives, libraries and languages
Additional Information: GTC

Kepler architecture:
- GTC 2012 S0642: Inside Kepler

Assessing performance limiters:
- GTC 2012 S0514: GPU Performance Analysis and Optimization

Profiling tools:
- GTC 2012 S0419: CUDA Performance Tools
- GTC 2012 S0420: Nsight IDE for Linux and Mac

GPU computing webinars:
- developer.nvidia.com/gpu-computing-webinars

GTC On-Demand
Discover the Power of GPU Computing! Relive all of the Sessions from GTC 2012