

Nuclei and Hadronic Interactions in LQCD

William Detmold

Massachusetts Institute of Technology

ORNL LQCD workshop, Oak Ridge, April 29th 2013

From quarks to nuclei

- Nuclear physics: an emergent phenomenon of the Standard Model
	- Like the proton, nuclei are SM eigenstates
- How *exactly* do nuclei emerge from the SM?
	- **Issues**
	- Recent progress
	- Future prospects

Quantum chromodynamics

- NP from the SM, but focus on QCD
- Lattice QCD: quarks and gluons
	- Formulate problem as functional integral over quark and gluon d.o.f. on R4
	- Discretise and compactify system
	- Integrate via importance sampling (average over "important" cfgs)
	- *Systematically* undo the harm done in previous steps

QCD Spectroscopy

• Measure correlator $(x =$ object with q# of hadron)

$$
C_2(t) = \sum_{\mathbf{x}} \langle 0 | \chi(\mathbf{x}, t) \overline{\chi}(\mathbf{0}, 0) | 0 \rangle
$$

• Unitarity: $\sum_{n} |n\rangle\langle n| = 1$

$$
=\sum_{\mathbf{x}}\sum_n\langle 0|\chi(\mathbf{x},t)|n\rangle\langle n|\overline{\chi}(\mathbf{0},0)|0\rangle
$$

• Hamiltonian evolution

$$
= \sum_{\mathbf{x}} \sum_{n} e^{-E_n t} e^{i \mathbf{p}_n \cdot \mathbf{x}} \langle 0 | \chi(\mathbf{0}, 0) | n \rangle \langle n | \overline{\chi}(\mathbf{0}, 0) | 0 \rangle
$$

Long times only ground state survives

$$
\stackrel{t\to\infty}{\longrightarrow} e^{-E_0(\mathbf{0})t} |\langle \mathbf{0}; 0 | \overline{\chi}(\mathbf{x_0}, t) | 0 \rangle|^2 = Z e^{-E_0(\mathbf{0})t}
$$

Effective mass

- Construct $M(t) = \ln \left[C_2(t) / C_2(t+1) \right] \stackrel{t \to \infty}{\longrightarrow} M$
	- Plateau corresponds to energy of ground state

• Fancier techniques able to resolve multiple eigenstates

QCD: meson/baryon spectrum

points correspond to calculations by different groups

QCD: meson/baryon spectrum

points correspond to calculations by different groups

QCD: meson/baryon spectrum

points correspond to calculations by different groups

Can we compute the mass of ²⁰⁸Pb in QCD?

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

 $\langle 0|T q_1(t) \ldots q_{624}(t) \overline{q}_1(0) \ldots \overline{q}_{624}(0) |0\rangle$

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

$$
\langle 0|Tq_1(t)\dots q_{624}(t)\overline{q}_1(0)\dots \overline{q}_{624}(0)|0\rangle
$$

Long time behaviour gives ground state energy up to EW effects

$$
\stackrel{t\rightarrow\infty}{\longrightarrow} \#\exp(-Mp_b t)
$$

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

$$
\langle 0|Tq_1(t)\dots q_{624}(t)\overline{q}_1(0)\dots \overline{q}_{624}(0)|0\rangle
$$

Long time behaviour gives ground state energy up to EW effects

$$
\stackrel{t\rightarrow\infty}{\longrightarrow} \#\exp(-Mp_b t)
$$

• But...

Complexity: number of Wick contractions = $(A+Z)!(2A-Z)!$

 $\frac{1}{a_i^{\dagger}(t_1)a_j^{\dagger}(t_1)a_j(t_1)a_i(t_1)a_i^{\dagger}(t_2)a_j^{\dagger}(t_2)a_j(t_2)a_i(t_2)}$

Complexity: number of Wick contractions = $(A+Z)!(2A-Z)!$

 $a_i^{\dagger}(t_1) a_j^{\dagger}(t_1) a_j(t_1) a_i(t_1) a_i^{\dagger}(t_2) a_j(t_2) a_j(t_2) a_i(t_2)$

• Dynamical range of scales (numerical precision important)

Complexity: number of Wick contractions = $(A+Z)!(2A-Z)!$

 $a_i^{\dagger}(t_1) a_i^{\dagger}(t_1) a_i(t_1) a_i(t_1) a_i^{\dagger}(t_2) a_i^{\dagger}(t_2) a_i(t_2) a_i(t_2)$

- Dynamical range of scales (numerical precision important)
- Small energy splittings and large objects

Complexity: number of Wick contractions = $(A+Z)!(2A-Z)!$

 $a_i^{\dagger}(t_1) a_i^{\dagger}(t_1) a_i(t_1) a_i(t_1) a_i^{\dagger}(t_2) a_i^{\dagger}(t_2) a_i(t_2) a_i(t_2)$

- Dynamical range of scales (numerical precision important)
- Small energy splittings and large objects
- Importance sampling: statistical noise exponentially increases with A

- Importance sampling of QCD functional integrals ➤ correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$
\sigma^2(C)=\langle CC^\dagger\rangle-|\langle C\rangle|^2
$$

• For nucleon:

signal $\frac{\text{signal}}{\text{noise}} \sim \exp{[-(M_N - 3/2m_\pi)t]}$

• For nucleus A:

$$
\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N - 3/2m_\pi)t\right]
$$

[Lepage '89]

- Importance sampling of QCD functional integrals ➤ correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$
\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2
$$

• For nucleon:

signal $\frac{\text{signal}}{\text{noise}} \sim \exp{[-(M_N - 3/2m_\pi)t]}$

• For nucleus A:

signal $\frac{\text{signal}}{\text{noise}} \sim \exp \left[-A (M_N - 3/2m_\pi) t \right]$

[Lepage '89]

- Importance sampling of QCD functional integrals ➤ correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$
\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2
$$

- For nucleon:
	- signal $\frac{\text{signal}}{\text{noise}} \sim \exp{[-(M_N - 3/2m_\pi)t]}$
- For nucleus A:

$$
\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N - 3/2m_\pi)t\right]
$$

- Importance sampling of QCD functional integrals ➤ correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$
\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2
$$

• For nucleon:

signal $\frac{\text{signal}}{\text{noise}} \sim \exp{[-(M_N - 3/2m_\pi)t]}$

• For nucleus A:

signal $\frac{\text{signal}}{\text{noise}} \sim \exp \left[-A (M_N - 3/2m_\pi) t \right]$

High statistics study using anisotropic lattices (fine temporal resolution)

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

Interpolator choice can be used to suppress noise

Multi-baryon systems

- Showed that the study of nuclei was feasible
	- Contractions still demanding
- Recent studies
	- NPLQCD
	- PACS-CS
	- HALQCD

Resurgence in development of formalism to understand what is measured

Bound states at finite volume

- Two particle scattering amplitude in infinite volume bound state at $p^2 = -\gamma^2$ when $\cot \delta(i\gamma) = i$ $\mathcal{A}(p) = \frac{8\pi}{M}$ *M* 1 $p \cot \delta(p) - i p$ scattering phase shift
- Scattering amplitude in finite volume (Lüscher method)

$$
\cot \delta(i\kappa) = i - i \sum_{\vec{m}\neq 0} \frac{e^{-|\vec{m}|\kappa L}}{|\vec{m}|\kappa L} \qquad \kappa \stackrel{L \to \infty}{\longrightarrow} \gamma
$$

- Need multiple volumes
- Volume dependence set by binding momentum
- More complicated for n>2 body bound states

- H dibaryon (first B=2 bound state seen), di-neutron and deuteron
- More exotic channels also considered (Ξ E and Ω Ω)
- More work needed at lighter masses

- H dibaryon (first B=2 bound state seen), di-neutron and deuteron
- More exotic channels also considered (Ξ E and Ω Ω)
- More work needed at lighter masses

Multi-baryon systems

- Many baryon correlator construction is messy and expensive, but now feasible
	- Efficient contraction algorithms developed in many-pion studies (up to 72 pions!) [WD & M. Savage; WD,, K Orginos, Z. Shi; T. Doi & M. Endres.; WD, K Orginos]
- Enables study of few (and many) baryon systems
- NPLQCD collaboration
	- Unphysical SU(3) symmetric world $@$ m_sphys
	- Multiple big volumes, single lattice spacing

NB: SU(3) symmetry leads to unphysical degeneracies

NPLQCD Phys.Rev. D87 (2013) 034506

NPLQCD Phys.Rev. D87 (2013) 034506

 $\color{red} \blacklozenge$

- Empirically investigate volume dependence
- Need to ask if this is a $2+1$ or $3+1$ or $2+2$ etc scattering state

Periodic table

Significant competition from PACS-CS and HALQCD (Japan) Also from groups in Germany

Nuclei (A=4,8,12,...)

Quark determinant based contraction method

(low statistics, single volume)

WD, Kostas Orginos,1207.1452

Quark determinant based contraction method

(low statistics, single volume)

WD, Kostas Orginos, I207.1452

Nuclei (A=4,8,12,...)

 t/a

(low statistics, single volume)

WD, Kostas Orginos, I207.1452

(low statistics, single volume)

WD, Kostas Orginos, I207.1452

(low statistics, single volume)

WD, Kostas Orginos, I207.1452

(low statistics, single volume)

WD, Kostas Orginos, I207.1452

Hyperon-nucleon interactions

Hyperon-nucleon interactions

Observation of 1.97 M n-star [Demorest et al., Nature, 2010] "*effectively rules out the presence of hyperons, bosons, or free quarks"*

Hyperon-nucleon interactions

Observation of 1.97 M n-star [Demorest et al., Nature, 2010] "*effectively rules out the presence of hyperons, bosons, or free quarks"*

Relies significantly on poorly known hadronic interactions at high density: hyperon-nucleon, nnn, ...

Σ*- n interactions*

- Scattering in Euclidean space?
- Two particles in a box
	- Eigen-energies depend on interactions (Lüscher method)

 E_{BB} , $E_B \longrightarrow q_{\text{scat}} \longrightarrow p \cot \delta(p)|_{p=q_{\text{scat}}}$

- Use finite volume energy levels to determine hyperon-nucleon phase shift from QCD The ³ *S*1- *D*¹ *n*⌃ coupled channel is found to be highly 3 relemme hyperon-nucleon phase $S_{\rm c}$ core, if Δ core, if Δ core, if Δ condition re-
- Match to effective field theory to extract phase shift at physical mass **R** interaction to effective field theory to Secondary equation in finite volume to reproduce the volume to reproduce the volume to reproduce the volume to represent the volume of \mathbb{R}^n .

Phys. Rev. Lett. 109 (2012) 172001 pulsive core is found to be large, and formally precludes

Σ*- n interactions* that the exponential corrections to L¨uscher's relation are *S*¹ *n* interact shift at the physical pion mass. pulsive components of the *n*⌃ interaction, we adopt a impurity in a non-interaction \mathcal{L}_1 in a non-interaction \mathcal{L}_2 in a non-interaction \mathcal{L}_3 impurity in a non-interacting Fermi system [47]: impurity in a non-interaction $\sum_{i=1}^n \frac{1}{i}$ ³*S*¹ (*k*) + ¹ i

, (2)

*^S*⁰ (*k*)

, (2)

1

• Influence on EoS is complicated pulsive components of the *n*⌃ interaction, we adopt a *dk k* ^h ³ C ³*S*¹ (*k*) + ¹ \overline{C} 1 *^S*⁰ (*k*) where \mathcal{U} is the reduced mass in the reduced mass in the reduced mass in the \mathcal{U} **influence on LOS is complications** • Influence on EoS is complicated

1

• Crude approx: Fumi's theorem \cup a a a suppront farms theore where *nude* approx Fumi's theorem. ing our LQC determinations of the phase shifts, and $\frac{100}{2}$ allowing for a 30° theoretical uncertainty, the resulting \sim • Crude approx: Fumi's theorem $\overline{}_{100}$ ing our LQCD determinations of the phase shifts, and α the phase shifts, and α

phase shifts that agree within uncertainties, indicating

The *n*⌃ interactions presented here are the crucial

*^S*⁰ (*k*)

$$
\Delta E = -\frac{1}{\pi \mu} \int_0^{k_f} dk \, k \left[\frac{3}{2} \delta_{3S_1}(k) + \frac{1}{2} \delta_{1S_0}(k) \right]_{\text{N}} \quad \text{so} \quad \text{so} \quad \text{on} \quad \text{on}
$$

• For
$$
\rho_n \sim 0.4 \text{ fm}^{-3}
$$
,
\n $\mu_n + \mu_e - \sim 1290 \text{ MeV}$

 $|f|$ $\int f(x) dx$

result due to Fumi for the energy shift due to a static

³*S*¹ (*k*) + ¹

dk k ^h ³

result due to Fumi for the energy shift due to a static

dk k ^h ³

Z *^k^f*

$$
\mu_{\Sigma^{-}} = M_{\Sigma} + \Delta E \lesssim 1290 \text{ MeV}
$$
\n
$$
\text{then } \Sigma^{-} \text{s may be relevant to}
$$
\n
$$
\text{n-star structure}
$$

n-star structure is, *E <* n-star structure

100 MeV, then the strange the strange

Phys. Rev. Lett. 109 (2012) 172001 relevance of hyperons in dense neutron matter, and we

NN Phase shifts

Future Prospects

- What does the future hold?
	- Physical quark masses, isospin breaking, E&M(?)
	- Precision YN, YY phase shifts
	- *p*-shell and larger nuclei
	- Three body information: nnn, YNN, ...
	- Properties of light nuclei (moments/structure) and electroweak interactions
	- Nuclear reactions(?): eg d+d in ⁴He channel

From quarks to nuclei

- Nuclear physics is an emergent phenomenon of the Standard Model
- *• What does it take to make this a quantitative statement?*
	- Big computers and good ideas
- New endeavor in LQCD with a promising future
	- Strong connections to experimental programs at JLab, FRIB, and FAIR
	- Answer questions that experiments have not and can not

[FIN]

thanks to

Silas Beane, Emmanuel Chang, Saul Cohen, Parry Junnarkar,Huey-wen Lin, Tom Luu, Kostas Orginos, Assumpta Parreño, Martin Savage, Andre Walker-Loud

