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Standard Model

I Well established, but incomplete.

I We know there is more to
discover.

I Dark matter
I Matter/antimatter asymmetry
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Intensity Frontier

I Major goal of the US High Energy Physics program:
Search for physics beyond the Standard Model. AKA “New Physics.”

I High precision experimental effort to detect discrepancies with SM
predictions.

I Lattice calculations are needed to support this effort

I I will give some examples and then discuss computational challenges.
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Why lattice QCD?

I Fully nonperturbative.

I Fully QCD (all relevant sea
quarks)

I ab initio i.e. can be indefinitely
improved by taking the lattice
spacing to zero and the box size
to infinity.

[Figure credit Guido Cossu]
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CKM Matrix: Unitarity



Vud Vus Vub

π → `ν K → `ν B → `ν
K → π`ν

Vcd Vcs Vcb

D → `ν Ds → `ν B → D`ν
D → π`ν D → K`ν B → D∗`ν
Vtd Vts Vtb

〈Bd |B̄d〉 〈Bs |B̄s〉


I This Standard Model 3× 3 unitary matrix (bold elements) controls

transitions between (decays of) quark “flavors”.

I Also shown are processes used in experiment and theory to measure their
magnitudes.

I 2008 Physics Nobel Prize: Nambu, Kobayashi, Maskawa
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Examples of weak processes studied
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High precision result: K → π`ν
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I New FNAL/MILC result [arXiV:1212.4993]

|Vus | = 0.2238± 0.0009thy ± 0.0005expt

I Unitarity check

∆CKM ≡ |Vud |2 + |Vus |2 + |Vub|2 − 1 = −0.0008(6) .
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High precision example: fK/fπ
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I New HPQCD result [arXiv:1303.1670]

fK+/fπ+ = 1.1916(21)

I To do better, we must now take into account electromagnetic effects
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Beyond the Standard Model Bs → µ+µ−

B

s

b

µ

+

−

µ

s t,c,u

f

B
s

I The rare decay Bs → µ+µ− is considered one of the promising places to
look for new physics.

I We need the decay constant fBs to get the Standard Model prediction.
I New HPQCD result [arXiv:1302.2644]

fBs = 224(5)MeV

I The Standard Model predicts (Buras et al [arXiv:1208.0934])

BR(Bs → µ+µ−) = (3.17± 0.15other ± 0.09fBs
)× 10−9

I Error from fBs is now smaller than from other sources.
I First measurement (LHCb) [PRL 110, 021801 (2012)]:

BR(Bs → µ+µ−) = (3.2+1.5
−1.2)× 10−9.

I So no evidence for new physics, yet.
I Smaller errors will come from LHCb.
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CKM Matrix: Unitarity

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0
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[Figure credit - PDG review]
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Unitarity triangle

Figure: arXiv:1204.0791

I Each band corresponds to a combination of experiment and theory for
some quantity.

I Width combines uncertainties in theory and experiment.
I Standard Model says bands must overlap at a single point. Here they

disagree by about 3σ.
I But not enough to say we have something new here.
I Goal is to narrow the width of the error bands.
I Uncertainty of theory typically lags that of experiment.
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|Vcb| from B → D∗`ν

I As usual we get the CKM matrix element from the ratio of experiment
to theory

|Vcb| =
|Vcb|F(1)expt
F(1)thy

I The Heavy Flavor Averaging Group [arXiv:1207.1158] compiles results
from an average of several recent experiments:

|Vcb|F(1)expt = (35.90± 0.45)× 10−3

I The FNAL/MILC Collaborations reported preliminary results
[arXiv:1011.2166] (final result very soon):

F(1)thy = 0.908± 0.017

I This yields
|Vcb| = 39.54± 0.50expt ± 0.74thy .

I LHCb will reduce the experimental error significantly. Theory needs to
keep up!
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|Vcb| from B → D`ν

I The exclusive D`ν channel can also be used.

I Here we look at the full form factor.

I The red lines give the theoretical prediction with error band.

I Theory has small errors at low recoil parameter w . Experiment has small
errors at larger w .

I Ongoing project. Results will be reported soon.
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Beyond the Standard Model: B → Dτν

I B → Dτν vs. B → Dµν

I The ratio of the branching ratios

R(D) =
BR(B → Dτν)

BR(B → Dµν)

is sensitive to new physics — e.g., decays mediated by a charged Higgs
boson.

I Previous Standard Model predictions for this ratio were done using
approximate phenomenological models.

I Experimental measurements by the Babar Collaboration
[arXiV:1205.5442] disagreed at 2.0σ with those predictions.

I A new lattice calculation by the FNAL/MILC [PRL 109, 071802 (2012)]
reduces this discrepancy to 1.7σ.

I The analogous decay of the D∗ has a 2.7σ disagreement with
approximate models.

I A lattice calculation for this one is in progress.
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Computational campaigns – current practice

I Step 1. Generate gauge configuration files. e.g., MILC HISQ ensembles.

≈ a (fm) ml/ms N3
s × Nt MπL Mπ (MeV) Nlats Nlats

(2012) (2013)

0.15 1/5 163 × 48 3.78 306.9(5) 1021 1021

0.15 1/10 243 × 48 3.99 214.5(2) 1000 1000

0.15 1/27 323 × 48 3.30 131.0(1) 1020 1020

0.12 1/5 243 × 64 4.54 305.3(4) 1040 1040

0.12 1/10 243 × 64 3.22 218.1(4) 1020 1020

0.12 1/10 323 × 64 4.29 216.9(2) 1000 1000

0.12 1/10 403 × 64 5.36 217.0(2) 1029 1029

0.12 1/27 483 × 64 3.88 131.7(1) 840 1000

0.09 1/5 323 × 96 4.50 312.7(6) 1011 1011

0.09 1/10 483 × 96 4.71 220.3(2) 1000 1000

0.09 1/27 643 × 96 3.66 128.2(1) 529 702

0.06 1/5 483 × 144 4.51 319.3(5) 1000 1000

0.06 1/10 643 × 144 4.25 229.2(4) 589 662

0.06 1/27 963 × 192 3.95 135.5(2) 31 240

0.045 1/5 643 × 192 4.50* 315* 0 51

0.045 1/27 1283 × 256 3.95* 135* 0 0

0.03 1/5 963 × 288 4.50* 315* 0 0
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Computational campaigns – current practice

I MILC HISQ ensembles. Graphical view.
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Computational campaigns – current practice

I Step 1. Generate gauge configuration files.
I Monte Carlo process, so need good statistics to reduce errors.
I Need some two-dozen ensembles of typically 1000 gauge configurations

each.
I Lattice spacings (grid size) 0.045 − 0.15 fm.
I Box size 3 − 5 fm on a side. (cf. proton size 1 fm).
I Varying light quark masses with mu,d ranging down to physical values.

I Step 2. Calculate the necessary matrix elements with these
configurations

I Cost: of the order 100 M core-hours per year in recent years.

C. DeTar (U Utah) LQCD Computational Science Workshop 2013 April 29, 2013 18 / 23



Algorithmic Challenges

I Improved fermion formulations (e.g., better discretizations of
derivatives) reduce lattice artifacts.

I Dramatic improvements in the computational power of lattice QCD have
come equally from algorithmic improvements and more powerful
computers.
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Algorithmic Challenges

I Greatest calculational cost: large sparse matrix problem Ax = b (Dirac
equation). Typically ill-conditioned.

I Nonstandard matrix format: So we must develop our own solvers.

I Start with standard methods: e.g., conjugate gradient, biconjugate
gradient

I Improvements
I Multishift Krylov methods for multiple masses.
I “Mixed” precision (i.e., low precision preconditioners)
I Deflation methods help for smaller problems (EigCG )
I Multigrid methods help for larger problems
I Additive-Schwartz domain-decomposition preconditioners.

I USQCD Collaboration: DOE SciDAC software effort plus SciDAC
Institutes.
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Contemporary computational challenges

I Jobs require up to several thousand processors.

I Network contention with other users could cause erratic performance

I Some parallel I/O issues. Performance of I/O systems have not scaled
with system size.

I New, diverse architectures have us scrambling to reoptimize codes.
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Looking ahead: computational challenges

I Scale disparities in our physics
I More emphasis on b quark physics.
I Small pion mass requires large box size (e.g., L = 5 fm).
I Large b quark mass requires small lattice spacing (e.g., a ≤ 0.05 fm) to

reduce lattice artifacts.
I Then number of lattice points should be greater than L/a ≈ 100.

I We are currently experimenting with lattice sizes of 1443 × 288 (250 GB
gauge configuration files and 1 TB propagator files!)
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Conclusions

I Thanks to improved computer resources and algorithms, lattice QCD
has brought dramatic progress in high precision flavor physics.

I Further progress in searches for physics beyond the Standard Model
requires a concerted effort by both experiment and theory.

I To meet the challenge requires continued improvement in resources and
algorithms.

I We look forward to exciting discoveries to come.
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