

Heidi Poxon
Cray Inc.

● Node performance
●  Highly tuned routines at the low-level (ex. BLAS)

● Network performance
●  Optimized for network performance
●  Overlap between communication and computation
●  Use the best available low-level mechanism
●  Use adaptive parallel algorithms

● Highly adaptive software
●  Use auto-tuning and adaptation to give the user the known best

(or very good) codes at runtime

● Productivity features
●  Simple interfaces into complex software

What Makes Cray Libraries Special?

OLCF Workshop, February 2013 Cray Inc.
2

LibSci Usage

●  LIbSci
●  The drivers should do it all for you. No need to explicitly link.
●  CCE will automatically pattern match to select scientific libraries
●  For threads, set OMP_NUM_THREADS

●  Threading is used within libsci.
●  If you call within a parallel region, single thread used

●  FFTW

●  module load fftw (there are also wisdom files available)

●  PETSc
●  module load petsc (or module load petsc-complex)
●  Use as you would your normal PETSc build

●  Trilinos
●  module load trilinos

●  CASK – no need to do anything, you get optimizations free

OLCF Workshop, February 2013 Cray Inc.
3

●  Sparse matrix operations in PETSc and Trilinos on Cray systems are
optimized via CASK

●  CASK is a product developed at Cray using the Cray Auto-tuning
Framework

●  Offline
●  ATF program builds many thousands of sparse kernel
●  Testing program defines matrix categories based on density, dimension etc
●  Each kernel variant is tested against each matrix class
●  Performance table is built and adaptive library constructed

●  Runtime
●  Scan matrix at very low cost
●  Map user’s calling sequence to nearest table match
●  Assign best kernel to the calling sequence
●  Optimized kernel used in iterative solver execution

Cray Adaptive Sparse Kernel (CASK)

OLCF Workshop, February 2013 Cray Inc.
4

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
FL

O
PS

/s
 (h

ig
he

r i
s

be
tte

r)

of cores

PETSc, Linear System Solution
 2D Laplacian Problem

Weak Scalability
N=262,144 --- 268M

AMD Bulldozer 2.1G :: July 2012

PETSC-3.2-p2 (Original source)

PETSc-3.2.2 CCE(CASK)

OLCF Workshop, February 2013 Cray Inc.
5

.//main.o: reference to dgemm_
/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):
definition of dgemm_

● Add options to the linker to make sure you have the
correct library loaded.

●  -Wl adds a command to the linker from the driver
● You can ask for the linker to tell you where an object

was resolved from using the –y option.
●  E.g. –Wl, -ydgemm_

Note : explicitly linking “-lsci” is bad! This won’t be found from
libsci 11+ (and means single core library for 10.x!)

Check You Got the Right Library!

OLCF Workshop, February 2013 Cray Inc.
6

LibSci for Accelerators: libsci_acc

Cray Inc.
7

● Provide basic libraries for accelerators, tuned for Cray

● Must be independent to OpenACC, but fully compatible

● Multiple use case support
●  Get the base use of accelerators with no code change
●  Get extreme performance of GPU with or without code change
●  Extra tools for support of complex code

●  Incorporate the existing GPU libraries into libsci

● Provide additional performance and usability

● Maintain the Standard APIs where possible!

OLCF Workshop, February 2013

Why libsci_acc ?

Cray Inc.
8

● Code modification is required to use existing GPU
libraries!

● Several scientific library packages are already there
●  CUBLAS, CUFFT, CUSPARSE (NVIDIA), MAGMA (U Tennessee),

CULA (EM Photonics)

● No Compatibility to Legacy APIs
●  cublasDgemm(….)
●  magma_dgetrf(…)
●  culaDgetrf(…)
●  Why not dgemm(), dgetrf()?

● Not focused on Fortran API (C/C++)
●  Require CUDA data types, primitives and functions in order to call

them

● Performance
OLCF Workshop, February 2013

Auto-tuning

Cray Inc.
9

● Cray Autotuning framework has been built to tune BLAS
for accelerators
●  GPU kernel codes are built using code generator

●  Enormous offline auto-tuning is used to build a map of performance to
input

●  An adaptive library is built from the results of the auto-tuning

●  At run-time, your code is mapped to training set of input

●  Best kernel for your problem is used

OLCF Workshop, February 2013

Three Interfaces For Three Use Cases

Cray Inc.
10

● Simple interface

dgetrf(M, N, A, lda, ipiv, &info)

dgetrf(M, N, d_A, lda, ipiv, &info)

● Device interface

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

● CPU interface

 dgetrf_cpu(M, N, A, lda, ipiv, &info)

GPU

CPU

GPU + CPU

GPU

CPU

OLCF Workshop, February 2013

Simple Interface

Cray Inc.
11

● You can pass either host pointers or device pointers to
simple interface

● Host memory pointer
●  Performs hybrid operation on GPU
●  If problem is too small, performs host operation

● Device memory pointer
●  Performs operation on GPU

● BLAS 1 and 2 perform computation local to the data
location
●  CPU-GPU data transfer is too expensive to exploit hybrid execution

OLCF Workshop, February 2013

Device Interface

Cray Inc.
12

● Device interface gives higher degrees of control

● Requires that you have already copied your data to the
device memory

● API
●  Every routine in libsci has a version with _acc suffix
●  E.g. dgetrf_acc
●  This resembles standard API except for the suffix and the device

pointers

OLCF Workshop, February 2013

CPU Interface

Cray Inc.
13

● Sometimes apps may want to force ops on the CPU
●  Need to preserve GPU memory
●  Want to perform something in parallel
●  Don’t want to incur transfer cost for a small op

● Can force any operation to occur on CPU with _cpu
version

● Every routine has a _cpu entry-point

● API is exactly standard otherwise

OLCF Workshop, February 2013

Usage - Basics

Cray Inc.
14

● Supports Cray and GNU compilers.

●  Fortran and C interfaces (column-major assumed)
●  Load the module craype-accel-nvidia35.
●  Compile as normal (dynamic libraries used)

●  To enable threading in the CPU library, set
OMP_NUM_THREADS
●  E.g. export OMP_NUM_THREADS=16

● Assign 1 single MPI process per node
●  Multiple processes cannot share the single GPU

● Execute your code as normal

OLCF Workshop, February 2013

libsci_acc DGEMM Example

Cray Inc.
15

●  Starting with a code
that relies on dgemm.

●  The library will check
the parameters at
runtime.

●  If the size of the matrix
multiply is large
enough, the library will
run it on the GPU,
handling all data
movement behind the
scenes.

●  NOTE: Input and Output
data are in CPU
memory.

call dgemm('n','n',m,n,k,alpha,&

a,lda,b,ldb,beta,c,ldc)

OLCF Workshop, February 2013

libsci_acc Interaction with OpenACC

Cray Inc.
16

●  If the rest of the code
uses OpenACC, it’s
possible to use the
library with
directives.

● All data management
performed by
OpenACC.

● Calls the device
version of dgemm.

● All data is in CPU
memory before and
after data region.

!$acc data copy(a,b,c)

!$acc parallel
!Do Something
!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&
 alpha,a,lda,&
 b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

OLCF Workshop, February 2013

libsci_acc Interaction with OpenACC

Cray Inc.
17

●  libsci_acc is a bit
smarter that this.

● Since ‘a,’ ‘b’, and ‘c’
are device arrays, the
library knows it
should run on the
device.

● So just dgemm is
sufficient.

!$acc data copy(a,b,c)

!$acc parallel
!Do Something
!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&
 alpha,a,lda,&
 b,ldb,beta,c,ldc)

!$acc end host_data
!$acc end data

OLCF Workshop, February 2013

Advanced Controls

Cray Inc.
18

●  The communication avoidance (CA) version of DGETRF/
ZGETRF can be enabled by setting the environment
variable LIBSCI_ACC_DLU = CALU / LIBSCI_ACC_ZLU =
CALU

● Change Split Ratio of Hybrid GEMM routines
●  LIBSCI_SGEMM_SPLIT=0.9
●  LIBSCI_DGEMM_SPLIT=0.8
●  LIBSCI_CGEMM_SPLIT=0.9
●  LIBSCI_ZGEMM_SPLIT=0.8

●  Force simple API to always call CPU routine
●  CRAY_LIBSCI_ACC_MODE=2

OLCF Workshop, February 2013

OLCF Workshop, February 2013 Cray Inc.
19

0

200

400

600

800

1000

1200

1400

G
Fl

op
/s

Matrix Multiplication :: Double (DGEMM)

 XK7 Kepler :: Nov 2012

 LIBSCI_ACC GFLop/s
 LIBSCI GFlop/s
 LIBSCI_ACC Hybrid GFLop/s

OLCF Workshop, February 2013 Cray Inc.
20

0

50

100

150

200

250

300

32, 16 40, 20 1024,
512

2048,
1024

3080,
1540

4096,
2048

5000,
2500

6144,
3072

7168,
3584

8192,
4096

9024,
4512

9984,
4992

G
Fl

op
s

Matrix Dimension M = N

LAPACK QR factorization :: DGEQRF
XK7 Kepler :: Nov 2012

Magma GPU

Magma Hybrd

Libsci_acc GPU

Libsci_acc Hybrid

CPU

0

100

200

300

400

500

600

700

800

900

32 40 1024 2048 3072 4096 5000 6144 7168 8192 9024 9984

G
Fl

op
s

Matrix Dimension

LAPACK LU factorization :: double complex (ZGETRF)
XK7 Kepler :: Nov 2012

Magma GPU

Magma Hybrid

Libsci_acc GPU

Libsci_acc Hybrid

CPU

OLCF Workshop, February 2013 Cray Inc.
21

libsci_acc BLAS Routines Available

OLCF Workshop, February 2013 Cray Inc.
22

● BLAS 3 - Full HYBRID Implementations
●  [s,d,c,z]GEMM
●  [s,d,c,z]GEMM
●  [s,d,c,z]TRSM
●  [z,c]HEMM
●  [s,d,c,z]SYMM
●  [s,d,c,z]SYRK
●  [z,d]HERK
●  [s,d,c,z]SYR2K
●  [s,d,c,z]TRMM

●  The following are supported without HYBRID
implementations because there is no performance
advantage
●  All BLAS 2 Routines
●  All BLAS 1 Routines

libsci_acc LAPACK Routines Available

OLCF Workshop, February 2013 Cray Inc.
23

●  Full HYBRID Implementations:
●  [d,z]GETRF (LU Factorization)
●  [d,z]POTRF (Cholesky Factorization)
●  [d,z]GETRS (System Solver)
●  [d,z]POTRS (System Solver)
●  [d,z]GESDD* (Generalized Singular Values)
●  [d,z]GEBRD (Generalized Bidiagonalization)
●  [d,z]GEQRF* (QR Factorization)
●  [d,z]GELQF (LQ Factorization
●  [d,z]GEEV (Non-symmetric Eigenvalues)
●  DSYEVR* / ZHEEVR* (Hermitian/Symmetric Eigenvalues)
●  DSYEV / DSYEVD (Hermitian/Symmetric Eigenvalues)
●  ZHEEV / ZHEEVD (Hermitian/Symmetric Eigenvalues)
●  DSYGVD / ZHEGVD (Hermitian/Symmetric Eigenvalue System Solver)

* Include Cray Proprietary Optimizations

Summary

OLCF Workshop, February 2013 Cray Inc.
24

● Access to libsci_acc routines is simple
●  No need to explicitly link - Programming Environment drivers (cc, ftn,

CC) do this for you
●  Just target the GPU by loading module

● Can automatically take advantage of threading on CPU

●  Just set OMP_NUM_THREADS and run

● Simple interface available to enable hybrid, CPU or GPU
execution of a routine depending on where memory
pointers reside and problem size

●  Interface for advanced control is also available

Tuning Requests

● CrayBLAS is an auto-tuned library

●  Generally, excellent performance is possible for all shapes and
sizes

● However, the adaptive CrayBLAS can be improved by
tuning for exact sizes and shapes

● Send your specific tuning requirements to

 crayblas@cray.com

● Send the routine name and the list of calling sequences

OLCF Workshop, February 2013 Cray Inc.
25

OLCF Workshop, February 2013
26

Cray Inc.

