

Heidi Poxon
Technical Lead & Manager, Performance Tools

Cray Inc.

Agenda

● Overview of the Cray programming environment

● The Cray X86/GPU programming environment

● Using Cray and 3rd party Compilers

● Programming model interoperability

Cray Inc.
2

OLCF Workshop, February 2013

Cray Programming Environment
Focus on Performance and Productivity –

Cray Inc.
3

Programming
Languages 	

Fortran

C

C++

I/O Libraries	

NetCDF

HDF5

Optimized Scientific
Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed
Licensed ISV SW
3rd party packaging
Cray added value to 3rd party

3rd Party
Compilers

GNU	

Compilers

Cray Compiling
Environment

(CCE)

Programming
models

Distributed
Memory
(Cray MPT)
•  MPI
•  SHMEM

PGAS & Global
View
•  UPC (CCE)
•  CAF (CCE)
•  Chapel 	

Shared Memory
•  OpenMP 3.0
•  OpenACC

Python

• CrayPat
•  Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

DDT

lgdb

Modules

Debugging Support
Tools

• Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

OLCF Workshop, February 2013

Cray Programming Environment Vision

Cray Inc.

  It is the role of the Programming Environment to close the gap
between observed performance and achievable performance

Reveal

Program
Library

CCE

Libraries
(scientific,

runtime, etc)

Application
Debugger

Performance

Analysis

Execute

Performance
Measurements

Application

Binary

  Provide a tightly coupled
high level programming
environment with compilers,
libraries, and tools that will
hide the complexity of the
system

•  Address issues of scale and
complexity of high end HPC
systems

•  Target ease of use with
extended functionality and
increased automation

•  Close interaction with users
 For feedback targeting

functionality enhancements
4

OLCF Workshop, February 2013

Cray Programming Environment Roadmap

5
Cray Inc.

Q2 Q3 Q4
2012

Q1
2013

Q1 Q2 Q3 Q4
2014

Q1 Q2 Q3 Q4

Erie
Kepler (IVB)

 Fremont

 Fremont
Up 1

Fremont
Pre-Release

Hiawatha
(KNL)

 Fremont
Up 2

(Haswell)
Itasca Erie

Up 1
SNB

Cray Performance Measurement & Analysis Tools

Cray Compiling Environment

Cray Scientific & Math Libraries

Cray Debugging Support Tools

Cray Message Passing Toolkit

▼ 6.0

▼ 8.1

▼ 6.2

▼ 2.0

▼ 6.1

▼ 8.1.5

▼ 7.0

▼ 2.2

▼ 5.6 ▼ 6.0 ▼ 5.5 ▼ 6.1 ▼ 6.2

▼ 2.3

▼ 8.1.2 ▼ 8.2

▼ 6.1 ▼ 7.1 ▼ 7.2

▼ 2.1

▼ 5.3.2 ▼ 6.2

▼ 1.5

▼ 8.1 ▼ 8.1. CCE

MPT

CPMAT

CSML

CDST

▼ 8.2.7 ▼ 8.3

▼ 6.3 ▼ 6.1 ▼ 6.2

▼ 6.3 ▼ 6.4

▼ 7.3 ▼ 7.4

▼ 2.3 ▼ 2.4

▼ 8.2.3

OLCF Workshop, February 2013

●  Cray technology focused on scientific applications
●  Takes advantage of automatic vectorization
●  Takes advantage of automatic shared memory parallelization

●  Standard conforming languages and programming models

●  Fortran 2008 standard compliant
●  Fortran 2008 compliance planned for CCE 8.1 (3Q12)

●  C++98/2003 compliant
●  OpenMP 3.0 compliant, working on OpenMP 3.1 and OpenMP 4.0

●  OpenMP and automatic multithreading fully integrated
●  Share the same runtime and resource pool
●  Aggressive loop restructuring and scalar optimization done in the presence of OpenMP
●  Consistent interface for managing OpenMP and automatic multithreading

●  PGAS languages (UPC & Fortran Coarrays) fully optimized and integrated into the compiler
●  UPC 1.2 and Fortran 2008 coarray support
●  No preprocessor involved
●  Target the network appropriately
●  Full debugger support with Allinea’s DDT

The Cray Compiling Environment

6
Cray Inc. OLCF Workshop, February 2013

Cray MPI & Cray SHMEM

● MPI
●  Implementation based on MPICH2 from ANL
●  Optimized Remote Memory Access (one-sided) fully supported

including passive RMA
●  Full MPI-2 support with the exception of

●  Dynamic process management (MPI_Comm_spawn)
●  MPI3 Forum active participant

● Cray SHMEM
●  Fully optimized Cray SHMEM library supported

●  Cray XT/XE implementation close to the T3E model
●  Cray XE Implementation on top of the Distributed Memory Applications API

(DMAPP)
●  Recent enhancements include:

●  Leveraging local memory access through Cross Process Memory Mapping
(XPMEM)
●  Provides the ability for one process to map arbitrary portions of another local

process
●  Distributed locking
●  Collectives optimization

Cray Inc.
7

OLCF Workshop, February 2013

Cray Performance Tools

●  From performance measurement to performance analysis

● Extend performance measurement tools to assist with
optimization (observations, CCE compiler optimization
information)

●  Focus on automation (simplify tool usage, provide
feedback based on analysis)

● Enhance support for multiple programming models within
a program (MPI, PGAS, OpenMP, OpenACC, SHMEM)

●  Improve scaling (larger jobs, more data, better tool
response)

● Support new processors and interconnects
Cray Inc.

8
OLCF Workshop, February 2013

Adaptive Scientific Libraries

● Scientific Libraries today have three concentrations to
increase productivity with enhanced performance
●  Standardization
●  Autotuning
●  Adaptive Libraries

● Cray adaptive model
●  Runtime analysis allows best library/kernel to be used dynamically
●  Extensive offline testing allows library to make decisions or remove

the need for those decisions
●  Decision depends on the system, on previous performance info, and

characteristics of calling problem

Cray Inc.
9

OLCF Workshop, February 2013

Adaptation, Auto-tuning and Specialization

Runtime
Performance
model Calling

problem

Specialization
inputs
Blocksize
threads
dimensions

Specialized
kernel library

Offline - autotuning

runtime

Table lookup
for best
kernel under
calling
conditions

Reference
kernel
Parameterized
transformations

Perform Search

This is all invisible to the user :: all you will see is good performance
10

Cray Inc. OLCF Workshop, February 2013

The Next Generation of Debuggers on Cray
Systems
● Systems with hundreds of thousands of threads of

execution need a new debugging paradigm
●  Innovative techniques for productivity and scalability

●  Scalable Solutions based on MRNet from University of Wisconsin
STAT - Stack Trace Analysis Tool
●  Scalable generation of a single, merged, stack backtrace tree

●  running at 216K back-end processes
ATP - Abnormal Termination Processing

●  Scalable analysis of a sick application, delivering a STAT tree and a minimal,
comprehensive, core file set.

●  Fast Track Debugging
●  Debugging optimized applications
●  Added to Allinea's DDT 2.6 (June 2010)

●  Support for traditional debugging mechanism
●  TotalView, DDT, and gdb

11
Cray Inc. OLCF Workshop, February 2013

Cray Inc.
12

OLCF Workshop, February 2013

● Hybrid multicore has arrived and is here to stay
●  Fat nodes are getting fatter
●  Accelerators have leapt into the Top500

● Programming accelerators efficiently is hard
●  Three levels of parallelism required

●  MPI between nodes or sockets
●  Shared memory programming on the node
●  Vectorization for low level looping structures

●  Need a hybrid programming model to support these new systems
●  Need a high level programming environment

●  Compilers, tools, & libraries

The New Generation of Supercomputers

13
OLCF Workshop, February 2013 Cray Inc.

Cray Vision for Accelerated Computing

●  Most important hurdle for widespread adoption of accelerated
computing is programming difficulty
●  Need a single programming model that is portable across machine types,

and also forward scalable in time
●  Portable expression of heterogeneity and multi-level parallelism
●  Programming model and optimization should not be significantly difference for

“accelerated” nodes and multi-core x86 processors
●  Allow users to maintain a single code base

●  Cray’s approach to Accelerator Programming is to provide an
ease of use tightly coupled high level programming environment
with compilers, libraries, and tools that will hide the complexity of the
system

●  Ease of use is possible with
●  Compiler makes it feasible for users to write applications in Fortran, C, C++
●  Tools to help users port and optimize for heterogeneous systems
●  Auto-tuned scientific libraries

Cray Inc.
14

OLCF Workshop, February 2013

Programming for a Node with Accelerator

●  Fortran, C, and C++ compilers
●  OpenACC directives to drive compiler optimization
●  Compiler does the “heavy lifting” to split off the work destined

for the accelerator and perform the necessary data transfers
●  Compiler optimizations to take advantage of accelerator and

multi-core X86 hardware appropriately
●  Advanced users can mix CUDA functions with compiler-generated

accelerator code
●  Debugger support

●  Cray Reveal, built upon an internal compiler representation of
the application (the CCE Program Library)
●  Source code browsing tool that provides interface between the user, the

compiler, and the performance tool
●  Scoping tool to help users port and optimize applications
●  Performance measurement and analysis information for porting and

optimization

●  Scientific Libraries support
●  Auto-tuned libraries (using Cray Auto-Tuning Framework)

Cray Inc.
15

OLCF Workshop, February 2013

●  Why a new model? There are already many ways to program:
●  CUDA and OpenCL

●  All are quite low-level and closely coupled to the GPU
●  PGI CUDA Fortran

●  Still CUDA just in a better base language
●  PGI accelerator directives, CAPS HMPP

●  First steps in the right direction – Needed standardization

●  User needs to write specialized kernels:
●  Hard to write and debug
●  Hard to optimize for specific GPU
●  Hard to update (porting/functionality)

●  OpenACC Directives provide high-level approach
●  Simple programming model for heterogeneous systems
●  Easier to maintain/port/extend code

●  The same source code can be compiled for multicore CPU
●  Based on the work in the OpenMP Accelerator Subcommittee

●  Proposed to the OpenMP Language Committee
●  Subcommittee of OpenMP ARB, aiming for OpenMP 4.0

●  Possible performance sacrifice
●  A small performance gap is acceptable (do you still hand-code in assembler?)
●  Goal is to provide at least 90% of the performance obtained with hand coded CUDA

●  Already seeing this in many cases, more tuning ongoing

●  http://www.openacc.org/

OpenACC Accelerator Programming Model

16
Cray Inc. OLCF Workshop, February 2013

Cray Inc.
17

OLCF Workshop, February 2013

Modules

Cray Inc.
18

● Access to software is managed using the GNU module
command
●  To see which modules are currently loaded, type: "module list”

●  To see which modules are available, type: "module avail”

●  You can wildcard the end of the names, e.g.: "module avail PrgEnv*"
●  For more complicated grepping, you need to redirect stderr to stdout, e.g.

●  module avail 2>&1 | grep "Env”

●  You load a new module by typing: "module load <module name>”

●  Some modules (e.g. different compiler versions) conflict, so you
should first "module unload" the old version (or use "module swap")

OLCF Workshop, February 2013

Modules (2)

●  To access the different compilers:
●  You select these by loading a Programming Environment (PE) module

●  PrgEnv-cray for CCE (the default)
●  PrgEnv-pgi for PGI
●  PrgEnv-gnu for GNU

●  Once one of these is loaded, you can then select a compiler suite
●  CCE: module avail cce
●  PGI: module avail pgi

●  For GPU programming (CUDA, OpenACC...)
●  Make sure you target the GPU when building:

●  Example: module load craype-accel-nvidia35

19
Cray Inc. OLCF Workshop, February 2013

●  CCE – Outstanding Fortran, very good C, and improving C++
●  Very good vectorization
●  Very good Fortran language support; only real choice for Coarrays
●  C support is quite good, with UPC support
●  Very good scalar optimization and automatic parallelization
●  Clean implementation of OpenMP 3.0, with tasks
●  Sole delivery focus is on Linux-based Cray hardware systems
●  Best bug turnaround time (if it isn’t, let us know!)
●  Cleanest integration with other Cray tools (performance tools,

debuggers, upcoming productivity tools)
●  No inline assembly support
●  OpenACC support for accelerators

●  GNU pretty-good Fortran, outstanding C and C++ (if you ignore
vectorization)
●  Very good scalar optimizer
●  Vectorization capabilities focus mostly on inline assembly
●  De-facto C++ compiler (for better or worse)

Compiler Choices – Relative Strengths …from Cray’s Perspective

Cray Inc.
20

OLCF Workshop, February 2013

●  PGI – Very good Fortran and C, pretty good C++
●  Good vectorization
●  Good functional correctness with optimization enabled
●  Good manual and automatic prefetch capabilities
●  Very interested in the Linux HPC market, although that is not their only

focus
●  Excellent working relationship with Cray, good bug responsiveness
●  OpenACC support for accelerators

●  Intel – Good Fortran, excellent C and C++ (if you ignore vectorization)
●  Automatic vectorization capabilities are modest, compared to PGI and

CCE
●  Use of inline assembly is encouraged
●  Focus is more on best speed for scalar, non-scaling apps
●  Tuned for Intel architectures, but actually works well for some

applications on AMD
●  Does not support the Interlagos FMA instruction, so achievable floating

point performance is cut in half

Compiler Choices – Relative Strengths (2)
…from Cray’s Perspective

Cray Inc.
21

OLCF Workshop, February 2013

●  Cray Systems come with compiler wrappers to simplify building
parallel applications (similar the mpicc/mpif90)
●  Fortran Compiler: ftn
●  C Compiler: cc
●  C++ Compiler: CC

●  Using these wrappers ensures that your code is built for the
compute nodes and linked against important libraries
●  Cray MPT (MPI, Shmem, etc.)
●  Cray LibSci (BLAS, LAPACK, etc.)
●  …

●  Do not call the PGI, Cray, etc. compilers directly

●  Cray Compiler wrappers try to hide the complexities of using the
proper header files and libraries
●  So does autoconf (./configure) and CMake, so unfortunately,

sometimes these tools need massaging to work with compiler
wrappers, especially in a cross-compiling environment, like titan

Using the Compilers

Cray Inc.
22

OLCF Workshop, February 2013

Using the Cray Compiler

●  To access the Cray compiler
●  module load PrgEnv-cray
●  For Titan: module swap PrgEnv-pgi PrgEnv-cray

●  To target the various chip
●  module load craype-interlagos (loaded by default)

●  To enable OpenACC
●  module load craype-accel-nvidia35

● Once you have loaded the module “cc” and “ftn” are the
Cray compilers
●  Recommend just using default options

●  see crayftn(1) man page

Cray Inc.
23

OLCF Workshop, February 2013

Some Cray Compilation Environment Basics

● CCE-specific features:
●  Optimization: -O2 is the default and you should usually use this

●  OpenMP is supported by default (no flag needed to enable)
●  if you don't want it, use either -hnoomp or -xomp compiler flags

●  OpenACC is supported by default if GPU targeting module (craype-
accel-nvidia*) is loaded

●  CCE only gives minimal information to stderr when compiling
●  To see more information, you should request a compiler listing file

●  flags -ra for ftn or -hlist=a for cc
●  writes a file with extension .lst
●  contains annotated source listing, followed by explanatory messages

●  Each message is tagged with an identifier, e.g.: ftn-6430
●  to get more information on this, type: explain <identifier>

●  Cray Reveal can display all this information (and more)

24
Cray Inc. OLCF Workshop, February 2013

Compiler Feedback
● Compiler feedback is extremely important

●  Did the compiler recognise the accelerator directives?
●  A good sanity check

●  How will the compiler move data?
●  Only use data clauses if the compiler is over-cautious on the copy*
●  Or you want to declare an array to be scratch (create clause)
●  The first main code optimization is removing unnecessary data movements

●  How will the compiler schedule loop iterations across GPU threads?
●  Did it parallelise the loop nests?
●  Did it schedule the loops sensibly?
●  The other main optimization is correcting obviously-poor loop scheduling

● Compiler teams work very hard to make feedback useful
●  Advice: use it, it's free! (i.e. no impact on performance to generate it)

●  CCE: ftn -ra ; cc -hlist=a Produces commentary files <stem>.lst
●  PGI: ftn -Minfo ; cc -Minfo Feedback to STDERR

25
OLCF Workshop, February 2013 Cray Inc.

Example: Cray Loopmark Messages

!
ftn –rm … or cc –hlist=m …!
!
!
 29. b-------< do i3=2,n3-1!
 30. b b-----< do i2=2,n2-1!
 31. b b Vr--< do i1=1,n1!
 32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)!
 33. b b Vr > + u(i1,i2,i3-1) + u(i1,i2,i3+1)!
 34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)!
 35. b b Vr > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)!
 36. b b Vr--> enddo!
 37. b b Vr--< do i1=2,n1-1!
 38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)!
 39. b b Vr > - a(0) * u(i1,i2,i3)!
 40. b b Vr > - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))!
 41. b b Vr > - a(3) * (u2(i1-1) + u2(i1+1))!
 42. b b Vr--> enddo!
 43. b b-----> enddo!
 44. b-------> enddo!

Cray Inc.
26

OLCF Workshop, February 2013

Example: Cray Loopmark Messages (cont)

!
ftn-6289 ftn: VECTOR File = resid.f, Line = 29 !
 A loop starting at line 29 was not vectorized because a recurrence was

found on "U1" between lines 32 and 38.!
ftn-6049 ftn: SCALAR File = resid.f, Line = 29 !
 A loop starting at line 29 was blocked with block size 4.!
ftn-6289 ftn: VECTOR File = resid.f, Line = 30 !
 A loop starting at line 30 was not vectorized because a recurrence was

found on "U1" between lines 32 and 38.!
ftn-6049 ftn: SCALAR File = resid.f, Line = 30 !
 A loop starting at line 30 was blocked with block size 4.!
ftn-6005 ftn: SCALAR File = resid.f, Line = 31 !
 A loop starting at line 31 was unrolled 4 times.!
ftn-6204 ftn: VECTOR File = resid.f, Line = 31 !
 A loop starting at line 31 was vectorized.!
ftn-6005 ftn: SCALAR File = resid.f, Line = 37 !
 A loop starting at line 37 was unrolled 4 times.!
ftn-6204 ftn: VECTOR File = resid.f, Line = 37 !
 A loop starting at line 37 was vectorized.!
!

Cray Inc.
27

OLCF Workshop, February 2013

Example: Cray Loopmark Messages (cont)

OLCF Workshop, February 2013 Cray Inc.
28

ftn-6413 ftn: ACCEL File = himeno_caf_acc.f08, Line = 292!
A data region was created at line 292 and ending at line
485.!
!
ftn-6415 ftn: ACCEL File = himeno_caf_acc.f08, Line = 310
Allocate memory and copy variable "wgosa" to accelerator,
copy back at line 338 (acc_copy).!
!
ftn-6405 ftn: ACCEL File = himeno_caf_acc.f08, Line = 343
A region starting at line 343 and ending at line 369 was
placed on the accelerator.!
!
ftn-6430 ftn: ACCEL File = himeno_caf_acc.f08, Line = 346
A loop starting at line 346 was partitioned across the
thread blocks.!
!
ftn-6430 ftn: ACCEL File = himeno_caf_acc.f08, Line = 347
A loop starting at line 347 was partitioned across the 64
threads within a threadblock.!

Example of Explain Utility

OLCF Workshop, February 2013 Cray Inc.
29

 explain ftn-6415

ACCEL: Allocate memory and copy %s to accelerator, copy
back at line %s (acc_copy).

The compiler generated code to allocate memory on the
accelerator for the specified data at the starting line. The
accelerator data is initialized from the host data. At the
ending line, the host data is updated from the accelerator
and the accelerator memory is freed.

Interoperability

● OpenACC is a complete programming model
●  But there are still situations where it is useful to interface OpenACC

code with other GPU programming models

● Why might this be useful?
●  You want to call accelerated scientific libraries from your code

●  without having to transfer data back and forth between the host
●  You want to call CUDA kernels from your code

●  also without unnecessary data transfers
●  You want to exploit Nvidia GPUdirect (or similar) to streamline

communication of data between accelerators.

●  Interfacing requires access to the lower-level information
●  Typically the GPU memory locations of OpenACC-created data arrays
●  The compiler normally hides this information from the user.

30
OLCF Workshop, February 2013 Cray Inc.

OpenACC host_data Directive

● OpenACC runtime manages GPU memory implicitly
●  user does not need to worry about memory allocation/free-ing

● Sometimes it can be useful to know where data is held in
device memory, e.g.:
●  so a hand-optimised CUDA kernel can be used to process data

already held on the device
●  so a third-party GPU library can be used to process data already held

on the device (Cray libsci_acc, cuBLAS, cuFFT etc.)
●  so optimised communication libraries can be used to streamline data

transfer from one GPU to another

●  host_data directive provides mechanism for this
●  nested inside OpenACC data region
●  subprogram calls within host_data region then pass pointer in device

memory rather than in host memory

31
OLCF Workshop, February 2013 Cray Inc.

Interoperability with CUDA

● Why would you want to do this?

●  Two situations:
●  You have already ported an application to OpenACC

●  A few key kernels get improved performance using hand-tuned CUDA
●  (performance at the cost of reduced portability)

●  These CUDA kernels should process data that was already placed in GPU
memory using OpenACC

●  Or, you have ported a few key kernels to the GPU using CUDA
●  but data movement costs outweigh the performance gain
●  OpenACC provides an efficient way of porting the remainder of the

application

32
OLCF Workshop, February 2013 Cray Inc.

CUDA Interoperability

●  host_data region exposes accelerator memory address on host
●  Nested inside data region

●  Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
●  Must include cudaThreadSynchronize()

●  Before: so asynchronous accelerator kernels definitely finished
●  After: so CUDA kernel definitely finished

●  CUDA kernel written as usual
●  Or use same mechanism to call existing CUDA library

	

	

PROGRAM	
 main	

	
 	
 INTEGER	
 ::	
 a(N)	

	
 	
 <stuff>	

!$acc	
 data	
 copy(a)	

!	
 <Populate	
 a(:)	
 on	
 device	

!	
 	
 as	
 before>	

!$acc	
 host_data	
 use_device(a)	

	
 	
 CALL	
 dbl_cuda(a)	

!$acc	
 end	
 host_data	

!$acc	
 end	
 data	

	
 	
 <stuff>	

END	
 PROGRAM	
 main	

	

	

__global__	
 void	
 dbl_knl(int	
 *c)	
 {	

	
 	
 int	
 i	
 =	
 \	

	
 	
 	
 	
 	
 	
 	
 blockIdx.x*blockDim.x+threadIdx.x;	

	
 	
 if	
 (i	
 <	
 N)	
 c[i]	
 *=	
 2;	

}	

	

extern	
 "C"	
 void	
 dbl_cuda_(int	
 *b_d)	
 {	

	
 	
 cudaThreadSynchronize();	

	
 	
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);	

	
 	
 cudaThreadSynchronize();	

}	

33
OLCF Workshop, February 2013 Cray Inc.

Using the NVIDIA Compiler for CUDA

●  Target build for the NVIDIA GPU and access NVIDIA

compiler
●  module load craype-accel-nvidia35

● Compile CPU code with PrgEnv "cc" wrapper
●  Either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

● Compile GPU CUDA-C kernels with nvcc
●  nvcc -O3 -arch=sm_20 file.cu

●  Link program with PrgEnv "cc" wrapper
●  Only GPU flag needed: -­‐lcudart	

●  e.g. no CUDA -­‐L flags needed (added in cc wrapper)

34
Cray Inc. OLCF Workshop, February 2013

Interoperability with Libraries

● Why would you want to do this?
●  You should always use libraries if they are available

●  A lot of effort goes into optimizing them
●  They are likely to use a lot more tricks that you have time/inclination to try

● Examples of libraries:
●  Cray libsci_acc
●  cuBLAS
●  cuFFT
●  ...

●  To use these with OpenACC code
●  Place calls to the library inside host_data regions

35
OLCF Workshop, February 2013 Cray Inc.

●  The Cray XK7 includes the first-generation of the Cray
Unified X86/GPU Programming Environment

●  The Cray XK7 PE supports three classes of users:
1.  “Hardcore" GPU programmers with existing CUDA ports
2.  Users with parallel codes, ideally with some OpenMP experience,

but less GPU knowledge
3.  Users with serial codes looking for portable parallel performance with

and without GPUs

Unified X86/GPU Programming Environment

36
Cray Inc. OLCF Workshop, February 2013

OLCF Workshop, February 2013
37

Cray Inc.

