

Heidi Poxon
Cray Inc.

Topics

OLCF Workshop, February 2013 Cray Inc.
2

●  Introduction

● Steps to using the Cray performance tools

● Automatic profiling analysis

● Examples of analysis performed

● GPU support

Strengths

OLCF Workshop, February 2013 Cray Inc.
3

Provide a complete solution from instrumentation to
measurement to analysis to visualization of data

● Performance measurement and analysis on large systems
●  Automatic Profiling Analysis
●  Load Imbalance
●  HW counter derived metrics
●  Predefined trace groups provide performance statistics for libraries

called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)
●  Observations of inefficient performance
●  Data collection and presentation filtering
●  Data correlates to user source (line number info, etc.)
●  Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC
●  Access to network counters
●  Minimal program perturbation

The Cray Performance Analysis Framework

OLCF Workshop, February 2013 Cray Inc.
4

● Supports traditional post-mortem performance analysis
●  Automatic identification of performance problems

●  Indication of causes of problems
●  Suggestions of modifications for performance improvement

●  pat_build: provides automatic instrumentation
●  CrayPat run-time library collects measurements (transparent to the

user)
●  pat_report performs analysis and generates text reports
●  pat_help: online help utility
●  Cray Apprentice2: graphical visualization tool

●  To access software:
●  module load perftools

Application Instrumentation with pat_build

OLCF Workshop, February 2013 Cray Inc.
5

●  pat_build is a stand-alone utility that instruments the

application for performance collection

● Requires no source code or makefile modification
●  Automatic instrumentation at group (function) level

●  Groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation
●  Requires object files
●  Instruments optimized code
●  Generates stand-alone instrumented program
●  Preserves original binary

Application Instrumentation with pat_build (2)

OLCF Workshop, February 2013 Cray Inc.
6

● Supports two categories of experiments
●  asynchronous experiments (sampling) which capture values from the

call stack or the program counter at specified intervals or when a
specified counter overflows

●  Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

● While tracing provides most useful information, it can be
very heavy if the application runs on a large number of
cores for a long period of time

● Sampling can be useful as a starting point, to provide a
first overview of the work distribution

Sampling with Line Number information

OLCF Workshop, February 2013 Cray Inc.
7

Where to Run Instrumented Application

OLCF Workshop, February 2013 Cray Inc. 8

● By default, data files are written to the execution directory

● Default behavior requires file system that supports record
locking, such as Lustre (/mnt/snx3/… , /lus/…, /scratch/
…,etc.)
●  Can use PAT_RT_EXPFILE_DIR to point to existing directory that

resides on a high-performance file system if not execution directory

● Number of files used to store raw data
●  1 file created for program with 1 – 256 processes
●  √n files created for program with 257 – n processes
●  Ability to customize with PAT_RT_EXPFILE_MAX

● See intro_craypat(1) man page

CrayPat Runtime Options

OLCF Workshop, February 2013 Cray Inc.
9

● Runtime controlled through PAT_RT_XXX environment
variables

● See intro_craypat(1) man page

● Examples of control
●  Enable full trace
●  Change number of data files created
●  Enable collection of HW counters
●  Enable collection of network counters
●  Enable tracing filters to control trace file size (max threads, max call

stack depth, etc.)

pat_report

OLCF Workshop, February 2013 Cray Inc.
10

●  Combines information from binary with raw performance
data

●  Performs analysis on data

●  Generates text report of performance results

●  Generates customized instrumentation template for
automatic profiling analysis

●  Formats data for input into Cray Apprentice2

Apprentice2 Overview

OLCF Workshop, February 2013 Cray Inc.
11

pat_report: Job Execution Information

OLCF Workshop, February 2013 Cray Inc.
12

CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 2011

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

MPI Messages By Caller

OLCF Workshop, February 2013 Cray Inc.
13

Mosaic View – Shows Communication Pattern

OLCF Workshop, February 2013 Cray Inc.
14

Traffic Report – MPI Communication Timeline

OLCF Workshop, February 2013 Cray Inc.
15

OLCF Workshop, February 2013
16

Cray Inc.

Program Instrumentation - Automatic Profiling
Analysis

OLCF Workshop, February 2013 Cray Inc.
17

● Automatic profiling analysis (APA)

●  Provides simple procedure to instrument and collect performance data
for novice users

●  Identifies top time consuming routines

●  Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

Steps to Collecting Performance Data

OLCF Workshop, February 2013 Cray Inc.
18

●  Access performance tools software
 % module load perftools

●  Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

●  Instrument application for automatic profiling analysis
●  You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

●  Run application to get top time consuming routines
●  You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

Steps to Collecting Performance Data (2)

OLCF Workshop, February 2013 Cray Inc. 19

●  Generate report and .apa instrumentation file
% pat_report –o my_sampling_report [<sdatafile>.xf |

<sdatadir>]

●  Inspect .apa file and sampling report

●  Verify if additional instrumentation is needed

APA File Example

You can edit this file, if desired, and use it!
to reinstrument the program for tracing like this:!
#!
pat_build -O standard.cray-

xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.512.quad.cores.seal.
090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.14999.xf.xf.apa!

#!
These suggested trace options are based on data from:!
#!
/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/

homme/standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.
512.quad.cores.seal.
090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.14999.xf.xf.cdb!

--!
!
HWPC group to collect by default.!
!
 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.!
!
--!
!
Libraries to trace.!
!
 -g mpi!
!
--!
!
User-defined functions to trace, sorted by % of samples.!
!
The way these functions are filtered can be controlled with!
pat_report options (values used for this file are shown):!
#!
-s apa_max_count=200 No more than 200 functions are listed.!
-s apa_min_size=800 Commented out if text size < 800 bytes.!
-s apa_min_pct=1 Commented out if it had < 1% of samples.!
-s apa_max_cum_pct=90 Commented out after cumulative 90%.!
!
Local functions are listed for completeness, but cannot be traced.!
!
 -w # Enable tracing of user-defined functions.!
 # Note: -u should NOT be specified as an additional option.!

31.29% 38517 bytes!
 -T prim_advance_mod_preq_advance_exp_!
!
15.07% 14158 bytes!
 -T prim_si_mod_prim_diffusion_!
!
9.76% 5474 bytes!
 -T derivative_mod_gradient_str_nonstag_!
!
. . .!
!
2.95% 3067 bytes!
 -T forcing_mod_apply_forcing_!
!
2.93% 118585 bytes!
 -T column_model_mod_applycolumnmodel_!
!
Functions below this point account for less than 10% of samples.!
!
0.66% 4575 bytes!
-T bndry_mod_bndry_exchangev_thsave_time_!
!
0.10% 46797 bytes!
-T baroclinic_inst_mod_binst_init_state_!
!
0.04% 62214 bytes!
-T prim_state_mod_prim_printstate_!
!
. . . !
0.00% 118 bytes!
-T time_mod_timelevel_update_!
!
--!
!
 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa

New instrumented program.!
!
 /.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/

amd64/homme/pgi/pat-5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-
xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x # Original program.!

OLCF Workshop, February 2013 Cray Inc.

Sli
de
20

Generating Profile from APA

OLCF Workshop, February 2013 Cray Inc.
21

●  Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

●  Run application

% aprun … a.out+apa (or qsub <apa script>)

●  Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

●  View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Program Instrumentation Tips

OLCF Workshop, February 2013 Cray Inc.
22

●  Large programs
●  Scaling issues more dominant
●  Use automatic profiling analysis to quickly identify top time consuming

routines
●  Use loop statistics to quickly identify top time consuming loops

● Small (test) or short running programs
●  Scaling issues not significant
●  Can skip first sampling experiment and directly generate profile
●  For example: % pat_build -u -g upc my_program

Files Generated and the Naming Convention

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after
application execution

a.out…t.xf Raw data for trace (summarized or full) experiment,
available after application execution

a.out…st.ap2 Processed data, generated by pat_report, contains
application symbol information

a.out…s.apa Automatic profiling pnalysis template, generated by
pat_report (based on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from
automatic grid detection an reorder suggestions

OLCF Workshop, February 2013 Cray Inc.
23

OLCF Workshop, February 2013
24

Cray Inc.

OLCF Workshop, February 2013
25

Cray Inc.

Motivation for Load Imbalance Analysis

OLCF Workshop, February 2013 Cray Inc.
26

●  Increasing system software and architecture complexity
●  Current trend in high end computing is to have systems with tens of

thousands of processors
●  This is being accentuated with multi-core processors

● Applications have to be very well balanced In order to
perform at scale on these MPP systems
●  Efficient application scaling includes a balanced use of requested

computing resources

● Desire to minimize computing resource “waste”
●  Identify slower paths through code
●  Identify inefficient “stalls” within an application

MPI Sync Time

OLCF Workshop, February 2013 Cray Inc.
27

● Measure load imbalance in programs instrumented to
trace MPI functions to determine if MPI ranks arrive at
collectives together

● Separates potential load imbalance from data transfer

● Sync times reported by default if MPI functions traced

●  If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

Imbalance Time

OLCF Workshop, February 2013 Cray Inc.
28

● Metric based on execution time
●  It is dependent on the type of activity:

●  User functions
Imbalance time = Maximum time – Average time

●  Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

●  Identifies computational code regions and
synchronization calls that could benefit most from load
balance optimization

● Estimates how much overall program time could be saved
if corresponding section of code had a perfect balance
●  Represents upper bound on “potential savings”
●  Assumes other processes are waiting, not doing useful work while

slowest member finishes

Imbalance %

OLCF Workshop, February 2013 Cray Inc.
29

● Represents % of resources available for parallelism that is
“wasted”

● Corresponds to % of time that rest of team is not engaged
in useful work on the given function

● Perfectly balanced code segment has imbalance of 0%

● Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1
N

100 X

Table 2: Profile by Group, Function, and Line

 Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | Source
 | | | | Line
 | | | | PE=HIDE

 100.0% | 120.2 | -- | -- |Total
|---
| 99.9% | 120.0 | -- | -- |USER
||--
|| 91.2% | 109.6 | -- | -- |himenobmtxp_
3| | | | | himeno/himeno/ACC_CAF/himeno_caf_acc.f08
4| 91.2% | 109.6 | 77.4 | 41.6% | line.226
|| 8.6% | 10.3 | -- | -- |jacobi_
3| | | | | himeno/himeno/ACC_CAF/himeno_caf_acc.f08
4| 4.5% | 5.5 | 5.5 | 50.6% | line.382
||==
| 0.1% | 0.2 | -- | -- |ETC
|===

Load Imbalance Example in Sampling

OLCF Workshop, February 2013 Cray Inc.
30

Call Tree with Discrete Unit of Help

OLCF Workshop, February 2013 Cray Inc.
31

Load Balance View (Aggregated from
Overview)

OLCF Workshop, February 2013 Cray Inc.
32

Min, Avg, and Max
Values	

OLCF Workshop, February 2013
33

Cray Inc.

Example Cache Threshold Observations

OLCF Workshop, February 2013 Cray Inc.
34

================ Observations and suggestions ========================
D1 cache utilization:
 61.7% of total execution time was spent in 1 functions with D1 cache
 hit ratios below the desirable minimum of 90.0%. Cache utilization
 might be improved by modifying the alignment or stride of references
 to data arrays in these functions.

 D1 Time% Function
 cache
 hit
 ratio

 74.3% 61.7% calc3_

D1 + D2 cache utilization:
 61.7% of total execution time was spent in 1 functions with combined
 D1 and D2 cache hit ratios below the desirable minimum of 97.0%.
 Cache utilization might be improved by modifying the alignment or
 stride of references to data arrays in these functions.

 D1+D2 Time% Function
 cache
 hit
 ratio

 96.6% 61.7% calc3_

…

Example Cache Threshold Observations (2)

OLCF Workshop, February 2013 Cray Inc.
35

================ Observations and suggestions ========================
…

TLB utilization:
 82.5% of total execution time was spent in 2 functions with fewer
 than the desirable minimum of 512 data references per TLB miss. TLB
 utilization might be improved by modifying the alignment or stride
 of references to data arrays in these functions.

 LS Time% Function
 per
 TLB
 DM

 3.97 61.7% calc3_
 163.77 20.8% calc2_
================ End Observations ====================================

OLCF Workshop, February 2013
36

Cray Inc.

Programming Models Supported for the GPU

OLCF Workshop, February 2013 Cray Inc.

● Goal is to provide whole program analysis for programs
written for x86 or hybrid x86 + GPUs

● Development focus is on support of CCE with OpenACC
directives

● Cray XK programming models supported

●  OpenACC, CUDA, PGI acc (or OpenACC) directives

37

Collecting GPU Statistics for OpenACC

OLCF Workshop, February 2013 Cray Inc.
38

●  Load PrgEnv-cray module
●  Load perftools module

●  Instrument binary for tracing and collecting GPU statistics
●  pat_build –u –g mpi,blas my_program

● Run application

● Create report with GPU statistics
●  pat_report my_program.xf > GPU_stats_report

Analyze Performance of Accelerated Program

OLCF Workshop, February 2013 Cray Inc.

● Statistics collected for programs with OpenACC directives
●  Number of GPUs used in the job
●  Host time for kernel launches, data copies and synchronization with

the accelerator
●  Accelerator time for kernel execution and data copies
●  Data copy size to and from the accelerator
●  Kernel grid size
●  Block size
●  Amount of shared memory dynamically allocated for kernel
●  GPU performance counters
●  Derived metrics based on performance counters

39

Profile with GPU Information

OLCF Workshop, February 2013 Cray Inc.
40

Top Time Consuming Routines or Regions

OLCF Workshop, February 2013 Cray Inc.
41

Call Tree with GPU regions

OLCF Workshop, February 2013 Cray Inc.
42

Example Accelerator Statistics

OLCF Workshop, February 2013 Cray Inc.

Table 1: Time and Bytes Transferred for Accelerator Regions
 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree
 Time% | Time | Time | In | Out | | PE=HIDE
 | | | (MBytes) | (MBytes) | |
 100.0% | 2.750 | 2.015 | 2812.760 | 13.568 | 103 |Total
|--
| 100.0% | 2.750 | 2.015 | 2812.760 | 13.568 | 103 |lbm3d2p_d_
| | | | | | | lbm3d2p_d_.ACC_DATA_REGION@li.104
|||--
3|| 63.5% | 1.747 | 1.747 | 2799.192 | -- | 1 |lbm3d2p_d_.ACC_COPY@li.104
3|| 22.1% | 0.609 | 0.088 | 12.304 | 12.304 | 36 |streaming_
||||---
4||| 20.6% | 0.566 | 0.046 | 12.304 | 12.304 | 27 |streaming_exchange_
5||| | | | | | | streaming_exchange_.ACC_DATA_REGION@li.526
6||| 18.8% | 0.517 | -- | -- | -- | 1 | streaming_exchange_.ACC_DATA_REGION@li.526(exclusive)
4||| 1.6% | 0.043 | 0.042 | -- | -- | 9 |streaming_.ACC_DATA_REGION@li.907
5||| 1.1% | 0.031 | 0.031 | -- | -- | 4 | streaming_.ACC_REGION@li.909
6||| 1.1% | 0.031 | -- | -- | -- | 1 | streaming_.ACC_REGION@li.909(exclusive)
||||===

...

43

Example Kernel Statistics – Grid, Block

OLCF Workshop, February 2013 Cray Inc.

Table 2: Kernel Stats for Accelerator Regions
 Avg | Avg | Avg | Avg | Avg | Avg |Function
 Grid | Grid | Grid | Block | Block | Block |
 X | Y | Z | X Dim | Y Dim | Z Dim |
 Dim | Dim | Dim | | | |
|--
| 62163 | 1 | 1 | 1024 | 1 | 1 |streaming_.ACC_KERNEL@li.909
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.443
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.467
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.476
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.500
| 400 | 1 | 1 | 512 | 1 | 1 |cal_velocity_.ACC_KERNEL@li.1126
| 400 | 1 | 1 | 512 | 1 | 1 |collisiona_.ACC_KERNEL@li.474
| 400 | 1 | 1 | 128 | 1 | 1 |collisionb_.ACC_KERNEL@li.597
| 400 | 1 | 1 | 128 | 1 | 1 |wall_boundary_.ACC_KERNEL@li.973
| 400 | 1 | 1 | 128 | 1 | 1 |collisionb_.ACC_KERNEL@li.629
| 400 | 1 | 1 | 512 | 1 | 1 |recolor_.ACC_KERNEL@li.823
| 128 | 1 | 1 | 64 | 1 | 1 |injection_.ACC_KERNEL@li.1281
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.829
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.729
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.641
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.538
| 101 | 1 | 1 | 128 | 1 | 1 |collisionb_.ACC_KERNEL@li.612
| 101 | 1 | 1 | 128 | 1 | 1 |set_boundary_micro_press_.ACC_KERNEL@li.299
| 101 | 1 | 1 | 128 | 1 | 1 |set_boundary_macro_press2_.ACC_KERNEL@li.259
| 14 | 1 | 1 | 256 | 1 | 1 |streaming_.ACC_KERNEL@li.919
|==

44

● Enable collection similarly to CPU counter collection:
●  GPU: PAT_RT_ACCPC=group or events
●  CPU: PAT_RT_HWPC=group or events
●  NPU: PAT_RT_NWPC=group or events

● Enabling GPU counters causes change in behavior of
application:
●  Host needs to synchronize with the accelerator at each event (since

accelerator executes asynchronously with the host)

●  Can be seen through accelerator table
●  No counters: time spent waiting for kernel to complete is shown with

ACC_SYNC_WAIT (a synchronization created by the compiler)

●  Counters: perftools syncs with accelerator with each event so Host Time is
exclusive time for the containing region (since waiting occurs within the
event’s trace point instead of in the compiler sync). Note “(exclusive)” in
report.

Accelerator Hardware Performance Counters

OLCF Workshop, February 2013 Cray Inc.
45

● A predefined set of groups has been created for ease of
use
●  Combines events that can be counted together

● ACCPC groups start at 1000, and will be incremented by
100 as new families of accelerators are supported

● Specify group by number or name
●  PAT_RT_ACCPC=1000 OR
●  PAT_RT_ACCPC=inst_exec_gst

● See accpc(5) and accpc_k20(5) man pages for list of
groups and their descriptions

Accelerator HW Counter Groups

OLCF Workshop, February 2013 Cray Inc.
46

Predefined Interlagos HW Counter Groups

August 15-16, 2012 Cray Inc.
47

See pat_help -> counters -> amd_fam15h –> groups
 0: Summary with instructions metrics
 1: Summary with TLB metrics
 2: L1 and L2 Metrics
 3: Bandwidth information
 4: <Unused>
 5: Floating operations dispatched
 6: Cycles stalled, resources idle
 7: Cycles stalled, resources full
 8: Instructions and branches
 9: Instruction cache
 10: Cache Hierarchy (unsupported for IL)

Groups and Derived Metrics

August 15-16, 2012 Cray Inc.
48

●  Groups 1000 and 1001 generate derived metrics

●  Example

Group 1000, sm_eff_ach_occ!
!
active_warps !
"Accumulated number of active warps per cycle. For
every cycle it increments by the number of active
warps in the cycle which can be in the range 0 to
64."!
!
active_cycles !
"Number of cycles a multiprocessor has at least one
active warp.”!
!
warps_launched !
"Number of warps launched."!

Man pages

January 24-25, 2012 Cray Inc.
49

●  intro_craypat(1)
●  Introduces the craypat performance tool

●  pat_build(1)
●  Instrument a program for performance analysis

●  pat_help(1)
●  Interactive online help utility

●  pat_report(1)
●  Generate performance report in both text and for use with GUI

●  app2 (1)
●  Describes how to launch Cray Apprentice2 to visualize performance

data

Man pages (2)

January 24-25, 2012 Cray Inc.
50

●  hwpc(5)
●  describes predefined hardware performance counter groups

●  nwpc(5)
●  Describes predefined network performance counter groups

●  accpc(5) / accpc_k20(5)
●  Describes predefined GPU performance counter groups

●  intro_papi(3)
●  Lists PAPI event counters
●  Use papi_avail or papi_native_avail utilities to get list of events when

running on a specific architecture

OLCF Workshop, February 2013
51

Cray Inc.

