\
GPU Computin
N

-’ 5

Mike Clark, NVIDIA R
Developer Technology Group

Tuesday, April 30, 13

>

QUDA collaborators and developers nVIDIZ

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

» Rich Brower (Boston University)

= Justin Foley (University of Utah)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)
= Balint Joo (Jefferson Lab)

» Hyung-Jin Kim (Brookhaven)

» Claudio Rebbi (Boston University)
» Guochun Shi (Google)

= Alexei Strelchenko (FNAL)

* Frank Winter (Jefferson Lab)

Tuesday, April 30, 13

<X
Overview NVIDIA

= Quantum Chromodynamics and Lattice QCD
" Motivation

= QUDA Overview
= |nterface considerations
=Summary

Tuesday, April 30, 13

Structure within
the Atom

Quantum Chromodynamics

e The strong force is one of the basic forces of nature
(along with gravity, em and the weak force)

 It’s what binds together the quarks and gluons in the
proton and the neutron (as well as hundreds of other
particles seen in accelerator experiments) ELEMENTARY

PARTICLES

e QCD is the theory of the strong force

I\

e It’s a beautiful theory, lots of equations etc. 'g
Nl § ©

4 s EME o

. .but. oo — am g = L

Fermi National Accelerator Laboratorﬁ}wmm

Tuesday, April 30, 13

S

Lattice Quantum Chromodynamics nVIDIA

e Theory is highly non-linear = cannot solve directly

Must resort to numerical methods to make predictions

Lattice QCD

e Discretize spacetime = 4-d dimensional lattice of size Ly X L, X L-X L;
» Finitize spacetime = periodic boundary conditions

« PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus
from the comfort of their workstation (supercomputer)

Consumer of 10-20% of North American supercomputer cycles

Tuesday, April 30, 13

S

Steps in a lattice QCD calculation nVIDI2

1. Generate an ensemble of gluon field (“gauge”) configurations.

= Produced in sequence, with hundreds needed per ensemble. This requires
>0(10 Tflops) sustained for several months (traditionally Crays, Blue Genes, etc.)

= 50-90% of the runtime is in the solver

y y v
l\ . s Al
’\§ ‘1:k“’) ’\ j;?u) ° ih ‘:)}\
2. “Analyze the 100s of configurations
= Can be farmed out, assuming O(1 Tflops) per job

= 80-99% of the runtime is in the solver

‘ D,‘j"(U)w ‘() = nf(x)
S or “Ax = b”

Tuesday, April 30, 13

Kepler >
Fastest, Most Efficient HPC Architecture Ever

SMX P 3x Performance per Watt

3 Easy Speed-up for Legacy
Hyper-Q > MpI Apps

Dynamic ~ Parallel Programming Made
Parallelism Easier than Ever

Tuesday, April 30, 13

<3
TITAN: World’s Fastest Supercomputer nvioi
18,688 Tesla K20X GPUs

27 Petaflops Peak, 17.59 Petaflops on Linpack

90% of Performance from GPUs

=

Tuesday, April 30, 13 - : k »)

QCD applications

« Some examples

— MILC (FNAL, Indiana, Tuscon, Utah)
 strict C, MPI only

— CPS (Columbia, Brookhaven, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jefferson Laboratory, Edinburgh)

« C++ expression-template programming, MPI and threads
— BQCD (Berlin QCD)
* F90, MPI and threads
» Each application consists of 100K-1M lines of code

 Porting each application not directly tractable
— OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)

Tuesday, April 30, 13

<3
Enter QUDA e

e “QCD on CUDA” - http://lattice.github.com/quda

« Effort started at Boston University in 2008, now in wide use as the
GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge field generation
* Maximize performance

— Exploit physical symmetries

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures

— etc.

Tuesday, April 30, 13

http://lattice.github.com/quda
http://lattice.github.com/quda

=
QUDA Performance - Chroma

24°x128 lattice, Chroma Single Prec Clover ° MO re recent resu lt

~146 cores

e Complete solver will
273.5 GFlops (per JLab GTX480 @ 4 GPUs) sustain up to 400
175 GFlops (per JLab Tesla C2050 @ 4 GPUs) GFLOPS on Kepl_er

e 10x speedup vs.
Sandy Bridge Xeon

2]
o
9]
p—
=
O
ge
Q
=
.
<
8
72
=
75}

3£ CG, 2x4 Barcelona@1.9GHz, DDR IB
O—© CQG, 2x4 Nehalem@2 .4GHz, QDR IB
4—¢ IBiCGStab, 2x4 Nehalem@2 .4 GHz, QDR 1B

32
#cores

Tuesday, April 30, 13

X
QUDA Performance - MILC

2+1-flavor RHMC on 2x(K20X + Sandybridge) e MILC result on 243x64
o lattice

E MILC+QUDA
e 5.7/Xx speedup

(Einear solves Fermion force* Fattening* Gauge force Other

Tuesday, April 30, 13

S

m\vJinNnln

QUDA - Interfacing Strategy

* QUDA designed to accelerate pre-existing LQCD applications
— Chroma, MILC, CPS, BQCD, etc.
— Provide an opaque interface

* Interface Design Considerations

— Field ordering

— Data residence

— Multi-GPU

— Memory management

Tuesday, April 30, 13

Field Ordering > |

« CPU codes tend to favor Array of Structures but these behave badly on GPUs

Threads read I— 1:; read
non-contiguous data Iy 2 read

3" read
\/ ~

Spinor
(24 numbers)

e GPUs like Structure of Arrays

0123 0 "2 3

0123

AAAA
Threads read contiguous data
. QUDA interface deals with all data reordering
. Application remains ignorant

Tuesday, April 30, 13

™Y\ 70 ' N

Krylov Solver Implementation

* Complete solver be on GPU

while (Jri/> €) {
Bk = (ri,rk)/(r-1,re-1)

* Transfer b to GPU (reorder)

° = . == r -
Solve Mx=b conjugate Pk+1 = Ik - PPk
* Transfer x to CPU (reorder) gradlent o = (ri,re)/(Pr+1,Apk+1)
_ , ri+1 = Ik - OCAPk+1
* Entire algorithms must run on GPUs Xkl = Xk + OPk+1

k =k+1
e Time-critical kernel is the stencil application (SpMV)

* Memory-bound operation

* Deploy double-single and double-half solvers while (|ri[> €) {
r« = b - Axx
e Also require BLAS level-1 type operations mixed-precision solve Apk = rx

Xk+1 = Xk T Pk
* e.g., AXPY operations: b += ax, NORM operations: ¢ = (b,b)

* Roll our own kernels for kernel fusion and custom precision

Tuesday, April 30, 13

Multiple GPUs NVIDIA

Multiple GPUs Byt

* Many different mechanisms for controlling multiple GPUs
* MPI processes
* CPU threads
* Multiple GPU per thread and do explicit switching
 Combinations of the above

* QUDA directly supports the simplest: 1 GPU per MPI process
* Allows partitioning over node with multiple devices and multiple nodes

* cudaSetDevice(local mpi rank);

* Any remaining host-code is parallelized using threads

* This works well for homogenous CPU systems with threaded applications
e E.g., Chroma and BQCD are fully threaded

Tuesday, April 30, 13

Multiple GPUs

2+1-flavor RHMC on 2x(K20X + Sandybridge)

* 1 MPI = 1 GPU can be problematic | —
* Not all LQCD apps are threaded BEN MILC+QUDA

e MILC is multi-process only

* Any work remaining on the CPU only
utilizes a single core

e MILC result on 243x64 lattice

e 5.7x net gain in performance
e But potential >7.7x gain in performance
e Porting remaining functions
or
e Fix host code to run in parallel

(ﬂinear solves Fermion force* Fattening* Gauge force Other

Tuesday, April 30, 13

Multiple GPUs VIDIA

e Even threaded CPU applications can have issues
e CPU systems increasingly have NUMA issues
* e.g., Cray XK7

* GK110 brings a new feature called Hyper-Q
* Allows multiple MPI processes to share a single GPU (CUDA Proxy)
» Easily allows full utilization of both CPU and GPU with no app changes
* Hyper-Q does have some additional latency overhead

* QUDA soon to support directly multiple MPI processes per GPU
e Communication handled by MPI communicators in the interface
 Removes CUDA Proxy overhead and works on all GPUs
* No applications changes required

Tuesday, April 30, 13

QUDA High-Level Interface

 QUDA default interface provides a simple
view for the outside world

C or Fortran

Host applications simply pass cpu-side
pointers

QUDA takes care of all field reordering
and data copying

No GPU code in user application

e Limitations

Tuesday, April 30, 13

No control over memory management

Data residency between QUDA calls
not possible

QUDA might not support user
application field order

S

#include <quda.h>

int main() {

// initialize the QUDA library
initQuda(device);

// load the gauge field
loadGaugeQuda((void*)gauge, &gauge param);

// perform the linear solve
invertQuda(spinorOut, spinorIn, &inv_param);

// free the gauge field
freeGaugeQuda();

// finalize the QUDA library
endQuda();

™MyY’/71IMMi N

QUDA Interface Extensions VIDIA

* Allow QUDA interface to accept GPU pointers
— First natural extension
— Remove unnecessary PCle communications between QUDA function calls

 Allow user-defined functors for handling field ordering
— User only has to specify their field order
— Made possible with device libraries (CUDA 5.0)

* Limitations
— Limited control of memory management
— Requires deeper application integration

Tuesday, April 30, 13

<3

QU DA Low-Level Interface (in development)

* Possible strawman under consideration

lat = QUDA new lattice(dims, ndim, lat param);
u = QUDA new link field(lat, gauge param);
source = QUDA new site field(lat, spinor_param);

solution = QUDA new site field(lat, spinor param);

QUDA load link field(u, host u, gauge order);

QUDA load site field(source, host source, spinor order);
QUDA solve(solution, source, u, solver);

QUDA save site field(solution, host solution, spinor order);
QUDA destroy site field(source);

etc...

* Here, src, sol, etc. are opaque objects that know about the GPU
 Allows the user to easily maintain data residency

» Users can easily provide their own kernels

* High-level interface becomes a compatibility layer built on top

Tuesday, April 30, 13

>
QUDA - Chroma Integration """

allocate/free
(can spill cached

objects) * Chroma is built on top of QDP++
— QDP++ is a DSL of data-parallel building blocks
— C++ expression-template approach

* QDP/JIT is a project to port QDP++ directly

to GPUs (Frank Winter)
— Generates ptx kernels at run time

— Kernels are JIT compiled and cached for later use
— Chroma runs unaltered on GPUs

 QUDA has low-level hooks for QDP/JIT

— Common GPU memory pool

IN
o
o

400

350

-
w0
8
C
(]
£
(9]
—
=3
%]
©
(]
£
—
=
x
Y
o
[}
£
=]
c
o
=
>
|3
(9}
X
w

— QUDA accelerates time-critical routines
— QDP/JIT takes care of Amdahl

Tuesday, April 30, 13

128
64
32
16
8
~
2 .
§ 4
3 2
S
&
k= |
05
0.25
0.125
0.0625

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

- _1__ 1 T ___T___ e — - ___L___T7]
100 Tflops
— 7.5 Tflops =
L 38 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
H —¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
1 A—a Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain -
Decomposed preconditioner
L ' | ' L ' L ' l
32 64 128 256 512 1024 2048 4096 8192

NVIDIA.

Tuesday, April 30, 13

<3
Summary 5

* Glimpse into the QUDA library
— GPU library for LQCD applications
* Interface considerations
— Data ordering
— Multi-GPU
— Data residency
 Levels of Interfacing
— High-level (cpu-side interaction)
— Lower-level (gpu-side interaction)
— Tight Integration (common memory pool)

* End result is legacy applications running at large scale on GPUs

~\
_\
AN
N\
\
b
\(.
>
e EAN
- -
N =
2N
4/ \\
N\ 3
N

Backup slides Y

N\ /\

~

Tuesday, April 30, 13

<3
OpenACC: Open, Simple, Portable ™™

LA]] * Open Standard
1 » Easy, Compiler-Driven Approach
1 * Portable on GPUs and Xeon Phi
PERRRERERERERREER
main() { CAM-SE Climate
6x Faster on GPU
<serial code> 2x Faster on CPU only
Top Kernel: 50% of Runtime
#pragma acc kernels —m
Ecompute intensive code> CAP s'l’
} Available from: PG[
3

Tuesday, April 30, 13

>

Krylov solvers VIDIA

» (Conjugate gradients, BiCGstab, and friends)

» Search for the solution to Ax = b in the subspace spanned
by {b, Ab, A®b, ... }.

= Upshot:

— We need fast code to apply A to an arbitrary
vector (called the Dslash operation in LQCD).

— ... as well as fast routines for vector addition,
inner products, etc. (home-grown “BLAS”)

Tuesday, April 30, 13

<3
USQCD software stack nVIDIA

Chroma

Dslashes

QMP
Message Passing Linear Algebra Threading

(Many components developed under the DOE SciDAC program)

Tuesday, April 30, 13

:

Time (seconds)
-—

0

323x96 Wilson results
on GTX 280 (for illustration)

NVIDIA.

Tuesday, April 30, 13

5 T T T T T @
| |
+
i —t NVIDIA.
@—® Double
4r m—m Double/Single
O—& Double/Half

3 ll-..___il_,_——"'.k_‘ —_—=
5 —— g—0
o)
Q) -
O
o
N -

1+ ® @ @ @ @ o @ @ ®

0 | | | | | | | | |

-0.42 -0415 -041 -0.405 -04

mass
323x96 Wilson results < _ . —
on GTX 280 (for illustration) increasing condition number

Tuesday, April 30, 13

GPUs vs. CPUs NVIDIA.

24°x128 lattice, Chroma Single Prec Clover

I 1 I 1 1 1 I LILI 1 1 I LI 1 1 I LI 1 1 I LI 1 1
i ~146 cores ’
273.5 GFlops (per JLab GTX480 @ 4 GPUs)
A - - —
- _175 GFlops (per JLab Tesla C2050 @ 4GPUs) 7 _ A ___ _ 1
a L J
2
ol
&)
E o4 N
8 - -
2
16 —
| 3£ CG, 2x4 Barcelona@1.9GHz, DDR 1B]
O—© CG, 2x4 Nehalem@2 .4GHz, QDR 1B
- 4—¢ IBiCGStab, 2x4 Nehalem@2 .4 GHz, QDR IB| A
I 1 I 1 1 1 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1
4 8 16 32 64 128 256

#cores

Tuesday, April 30, 13

1D Lattice decomposition AVIDIA.

1D decomposition Assign sub-lattice
(in ‘time’ direction) to GPU

/ face I/ | face \ face \ face

- ~_exchange ~exchange _exchange _exchange
wrap
o o o o o o o ~ around

Tuesday, April 30, 13

>

Multi-dimensional lattice decomposition nvioia

@y Lt Leod
- @ .

Qﬁ 2 Wl
-

Tuesday, April 30, 13

<

NVIDIA.

* CUDA provides the stream API for concurrent work queues
e Provides concurrent kernels and host<->device memcpys
e Kernels and memcpys are queued to a stream

* kernel<<<block, thread, shared, streamId>>>(arguments)

* cudaMemcpyAsync(dst, src, size, type, streamld)
 Each stream is an in-order execution queue

* Must synchronize device to ensure consistency between
streams

* cudaDeviceSynchronize()

* QUDA uses the stream API to overlap communication of the halo
region with computation on the interior

Tuesday, April 30, 13

Multi-dimensional
Communications Pipeline

Total 9 cuda Streams exterior

kernels
Interiorkernel X Y Z T

—_—

0: kernels

GPU kernel
_ . cudaMemcpy
sync
7: T-backward _
5 THorvard i
=

gather kernel’

memcpy (host)

MPI send/recv

GPU idle

(] N BN B .

NVIDIA.

Tuesday, April 30, 13

Domain Decomposition

(Re)Start Generate Update

° Non-overlapping blocks - simply have to
switch off inter-GPU communication

° Preconditioner is a gross approximation

° Use an iterative solver to solve each domain system

° Require only 10 iterations of domain solver = 16-bit
° Need to use a flexible solver = GCR

° Block-diagonal preconditoner impose A cutoff
° Finer Blocks lose long-wavelength/low-energy modes
e keep wavelengths of ~ O(Aqcp?), Aqco ' ~ 1fm
° Aniso clover: (as=0.125fm, at=0.035fm) = 83x32 blocks are ideal

° 483x512 lattice: 83x32 blocks = 3456 GPUs

Tuesday, April 30, 13

S

Run-time autotuning AVIDI 2

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.

Tuesday, April 30, 13

S

Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

® BlockDim only
M BlockDim & Blocks/SM

GTX 580 | GTX 680 GTX 680 | GTX580 | GTX 680

Double

Tuesday, April 30, 13

GTX 580

S

Run-time autotuning: Implementation """

» Parameters stored in a global cache:
static std::map<TuneKey, > tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);

Tuesday, April 30, 13

S

Run-time autotuning: Usage nVIDIZ

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Tuesday, April 30, 13

>
Virtual member functions of Tunable "™

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.

Tuesday, April 30, 13

