
GPU Computing with QUDA

Mike Clark, NVIDIA
Developer Technology Group

Tuesday, April 30, 13

QUDA collaborators and developers

§ Ron Babich (NVIDIA)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Justin Foley (University of Utah)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Steve Gottlieb (Indiana University)
§ Bálint Joó (Jefferson Lab)
§ Hyung-Jin Kim (Brookhaven)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (Google)
§ Alexei Strelchenko (FNAL)
§ Frank Winter (Jefferson Lab)

Tuesday, April 30, 13

Overview

§Quantum Chromodynamics and Lattice QCD
§Motivation
§QUDA Overview
§Interface considerations
§Summary

Tuesday, April 30, 13

Quantum Chromodynamics

• The strong force is one of the basic forces of nature
(along with gravity, em and the weak force)

• It’s what binds together the quarks and gluons in the
proton and the neutron (as well as hundreds of other
particles seen in accelerator experiments)

• QCD is the theory of the strong force

• It’s a beautiful theory, lots of equations etc.

 ...but...

!"#$%&'()*$+%",-"#$.#(/01,(-23$$4$$5678$95:;;$$4$$8&1)*$;<$=>;; X

3",6@0*,/7*A#"./0

! V*0$0$6./A*<.6-2$(,$"#0$"A$-*0$'&,()$A"1)0,$"A$#&-O10$+&?"#R$
F(-*$R1&/(-2<$0?0)-1"K&R#0-(,K<$&#@$-*0$F0&H$A"1)03P

! 6-h,$F*&-$'(#@,$-"R0-*01$-*0$B",6@0$&#@$A#"./0$(#$-*0$E1"-"#$
+&#@$-*0$#0O-1"#<$&,$F0??$&,$*O#@10@,$"A$"-*01$E&1-()?0,$,00#$(#$
&))0?01&-"1$0cE01(K0#-,3P

V*"K&,$M0AA01,"#$C&-("#&?$7))0?01&-"1$i&)(?(-2
i01K($C&-("#&?$7))0?01&-"1$G&'"1&-"12

h⌦i = 1

Z

Z
[dU]e�

R
d

4
xL(U)⌦(U)

Tuesday, April 30, 13

Lattice Quantum Chromodynamics

• Theory is highly non-linear ⇒ cannot solve directly

• Must resort to numerical methods to make predictions

• Lattice QCD

• Discretize spacetime ⇒ 4-d dimensional lattice of size Lx x Ly x Lz x Lt

• Finitize spacetime ⇒ periodic boundary conditions

• PDEs ⇒ finite difference equations

• High-precision tool that allows physicists to explore the contents of nucleus
from the comfort of their workstation (supercomputer)

• Consumer of 10-20% of North American supercomputer cycles

Tuesday, April 30, 13

1. Generate an ensemble of gluon field (“gauge”) configurations.
§ Produced in sequence, with hundreds needed per ensemble. This requires

>O(10 Tflops) sustained for several months (traditionally Crays, Blue Genes, etc.)
§ 50-90% of the runtime is in the solver

2.“Analyze” the 100s of configurations
§ Can be farmed out, assuming O(1 Tflops) per job
§ 80-99% of the runtime is in the solver

Steps in a lattice QCD calculation

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =

Tuesday, April 30, 13

Kepler
Fastest, Most Efficient HPC Architecture Ever

3x Performance per Watt

Easy Speed-up for Legacy

MPI Apps

Parallel Programming Made

Easier than Ever
Dynamic
Parallelism

SMX

Hyper-Q

Tuesday, April 30, 13

TITAN: World’s Fastest Supercomputer
18,688 Tesla K20X GPUs

 27 Petaflops Peak, 17.59 Petaflops on Linpack

90% of Performance from GPUs

Tuesday, April 30, 13

QCD applications

• Some examples
– MILC (FNAL, Indiana, Tuscon, Utah)

• strict C, MPI only

– CPS (Columbia, Brookhaven, Edinburgh)
• C++ (but no templates), MPI and partially threaded

– Chroma (Jefferson Laboratory, Edinburgh)
• C++ expression-template programming, MPI and threads

– BQCD (Berlin QCD)
• F90, MPI and threads

• Each application consists of 100K-1M lines of code
• Porting each application not directly tractable

– OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)
Tuesday, April 30, 13

Enter QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
• Effort started at Boston University in 2008, now in wide use as the

GPU backend for BQCD, Chroma, CPS, MILC, etc.
• Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge field generation

• Maximize performance
– Exploit physical symmetries
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– etc.

Tuesday, April 30, 13

http://lattice.github.com/quda
http://lattice.github.com/quda

QUDA Performance - ChromaCompare to Multi-Core cluster

4 8 16 32 64 128 256
#cores

16

64

256

su
st

ai
ne

d
G

Fl
op

s

CG, 2x4 Barcelona@1.9GHz, DDR IB
CG, 2x4 Nehalem@2.4GHz, QDR IB
IBiCGStab, 2x4 Nehalem@2.4 GHz, QDR IB

243x128 lattice, Chroma Single Prec Clover

175 GFlops (per JLab Tesla C2050 @ 4 GPUs)

273.5 GFlops (per JLab GTX480 @ 4 GPUs)

~146 cores

Modulo David
Bailey caveats

regarding
comparing apples
with non-apples

Friday, January 28, 2011

• More recent result

• Complete solver will
sustain up to 400
GFLOPS on Kepler

• 10x speedup vs.
Sandy Bridge Xeon

Tuesday, April 30, 13

Single-precision Rational HMC on a 243x64 lattice.
5.7x net gain in performance
>7.7x gain by porting remaining CPU routines.

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD

QUDA Performance - MILC

•MILC result on 243x64
lattice

• 5.7x speedup

Tuesday, April 30, 13

• QUDA designed to accelerate pre-existing LQCD applications
– Chroma, MILC, CPS, BQCD, etc.
– Provide an opaque interface

• Interface Design Considerations
– Field ordering
– Data residence
– Multi-GPU
– Memory management

QUDA - Interfacing Strategy

Tuesday, April 30, 13

• QUDA interface deals with all data reordering

• Application remains ignorant

Spinor
(24 numbers)

Threads read
non-contiguous data

• GPUs like Structure of Arrays

• CPU codes tend to favor Array of Structures but these behave badly on GPUs

Threads read contiguous data

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 3

1st read
2nd read
3rd read

Field Ordering

Tuesday, April 30, 13

Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU (reorder)

• Solve Mx=b

• Transfer x to CPU (reorder)

• Entire algorithms must run on GPUs

• Time-critical kernel is the stencil application (SpMV)

• Memory-bound operation

• Deploy double-single and double-half solvers

• Also require BLAS level-1 type operations

• e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

• Roll our own kernels for kernel fusion and custom precision

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate
gradient

while (|rk|> ε) {
rk = b - Axk
solve Apk = rk
xk+1 = xk + pk

}

High precision
mixed-precision

accumulate

Tuesday, April 30, 13

Multiple GPUs
Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011
Tuesday, April 30, 13

Multiple GPUs

• Many different mechanisms for controlling multiple GPUs
• MPI processes

• CPU threads

• Multiple GPU per thread and do explicit switching

• Combinations of the above

• QUDA directly supports the simplest: 1 GPU per MPI process
• Allows partitioning over node with multiple devices and multiple nodes

• cudaSetDevice(local_mpi_rank);

• Any remaining host-code is parallelized using threads
• This works well for homogenous CPU systems with threaded applications

• E.g., Chroma and BQCD are fully threaded

Tuesday, April 30, 13

Multiple GPUs

• 1 MPI = 1 GPU can be problematic
• Not all LQCD apps are threaded

• MILC is multi-process only

• Any work remaining on the CPU only
utilizes a single core

•MILC result on 243x64 lattice
• 5.7x net gain in performance

• But potential >7.7x gain in performance

• Porting remaining functions

• or

• Fix host code to run in parallel

Single-precision Rational HMC on a 243x64 lattice.
5.7x net gain in performance
>7.7x gain by porting remaining CPU routines.

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD

Tuesday, April 30, 13

Multiple GPUs

• Even threaded CPU applications can have issues
• CPU systems increasingly have NUMA issues

• e.g., Cray XK7

• GK110 brings a new feature called Hyper-Q
• Allows multiple MPI processes to share a single GPU (CUDA Proxy)

• Easily allows full utilization of both CPU and GPU with no app changes

• Hyper-Q does have some additional latency overhead

• QUDA soon to support directly multiple MPI processes per GPU
• Communication handled by MPI communicators in the interface

• Removes CUDA Proxy overhead and works on all GPUs

• No applications changes required

Tuesday, April 30, 13

QUDA High-Level Interface

#include <quda.h>

int main() {

 // initialize the QUDA library
 initQuda(device);

 // load the gauge field
 loadGaugeQuda((void*)gauge, &gauge_param);

 // perform the linear solve
 invertQuda(spinorOut, spinorIn, &inv_param);

 // free the gauge field
 freeGaugeQuda();

 // finalize the QUDA library
 endQuda();

}

• QUDA default interface provides a simple
view for the outside world

• C or Fortran

• Host applications simply pass cpu-side
pointers

• QUDA takes care of all field reordering
and data copying

• No GPU code in user application

• Limitations

• No control over memory management

• Data residency between QUDA calls
not possible

• QUDA might not support user
application field order

Tuesday, April 30, 13

QUDA Interface Extensions

• Allow QUDA interface to accept GPU pointers
– First natural extension
– Remove unnecessary PCIe communications between QUDA function calls

• Allow user-defined functors for handling field ordering
– User only has to specify their field order
– Made possible with device libraries (CUDA 5.0)

• Limitations
– Limited control of memory management
– Requires deeper application integration

Tuesday, April 30, 13

QUDA Low-Level Interface (in development)

• Possible strawman under consideration

• Here, src, sol, etc. are opaque objects that know about the GPU
• Allows the user to easily maintain data residency
• Users can easily provide their own kernels
• High-level interface becomes a compatibility layer built on top

!"#$%&'()*$+%,-$.$/012$3"456&78$9"7:;*"<=$>8'7?&7@$AB=$ACDD AC

6&::./J$%.7<0&3$7$9":

! +.:8J#.7$0N$Z*(;$(;$j?;5$&$;57&6TR&#e<87;"#&F$6(;*$F(;5U$ $
285&(F8H$R8)*&#();=$#&R(#S$)"#E8#5("#;=$85)U$*&E8$@85$5"$'8$
H(;)?;;8H$'@$5*8$0,2G#&?5;U

! 98$<7"'&'F@$#88H$;"R85*(#S$F(:8$5*8$4"FF"6(#SJ

! g878$;"?7)8=$;"F?5("#=$85)U$&78$"<&m?8$Y"'j8)5;[$5*&5$:#"6$
&'"?5$4(8FH;$"#$5*8$MQ,U

($3';'-<=>60,?6($33/:,.#/895'0#/85'($367$2$84@
"';'-<=>60,?6(/0A6B/,(#.($35'+$"+,67$2$84@
9)"2:,';'-<=>60,?69/3,6B/,(#.($35'97/0)267$2$84@
9)("3/)0';'-<=>60,?69/3,6B/,(#.($35'97/0)267$2$84@
-<=>6()$#6(/0A6B/,(#."5'&)936"5'+$"+,6)2#,24@
-<=>6()$#69/3,6B/,(#.9)"2:,5'&)9369)"2:,5'97/0)26)2#,24@
-<=>69)(1,.9)("3/)05'9)"2:,5'"5'9)(1,24@
-<=>69$1,69/3,6B/,(#.9)("3/)05'&)9369)("3/)05'97/0)26)2#,24@
-<=>6#,932)C69/3,6B/,(#.9)"2:,4@
,3:%%%

Tuesday, April 30, 13

QUDA - Chroma Integration

• Chroma is built on top of QDP++
– QDP++ is a DSL of data-parallel building blocks
– C++ expression-template approach

• QDP/JIT is a project to port QDP++ directly
to GPUs (Frank Winter)

– Generates ptx kernels at run time
– Kernels are JIT compiled and cached for later use
– Chroma runs unaltered on GPUs

• QUDA has low-level hooks for QDP/JIT
– Common GPU memory pool
– QUDA accelerates time-critical routines
– QDP/JIT takes care of Amdahl

QUDA integration



















 








Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 21 / 26

Benchmark Measurements Chroma

lfn://ldg/qcdsf/clover_nf2/b5p20kp13420-16x32/ape.003.004600.dat
Significant reduction of execution time when using QDP++(GPU)
QUDA inverter gains speedup too (residuum calculation with QDP++)

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 24 / 26

Tuesday, April 30, 13

Results from TitanDev
- 483x512 aniso clover
- scaling up 768 GPUs

102 Tflops
 37 Tflops

 7.5 Tflops
 32 Tflops

Tuesday, April 30, 13

Summary

• Glimpse into the QUDA library
– GPU library for LQCD applications

• Interface considerations
– Data ordering
– Multi-GPU
– Data residency

• Levels of Interfacing
– High-level (cpu-side interaction)
– Lower-level (gpu-side interaction)
– Tight Integration (common memory pool)

• End result is legacy applications running at large scale on GPUs
Tuesday, April 30, 13

Backup slides

Tuesday, April 30, 13

OpenACC: Open, Simple, Portable

main() {
 …
 <serial code>
 …
 #pragma acc kernels
 {
 <compute intensive code>
 }
 …
}

Compiler
Hint

•  Open Standard

•  Easy, Compiler-Driven Approach

•  Portable on GPUs and Xeon Phi

CAM-SE Climate
6x Faster on GPU
2x Faster on CPU only

Top Kernel: 50% of Runtime

Available from:

Tuesday, April 30, 13

Krylov solvers

Tuesday, April 30, 13

USQCD software stack

(Many components developed under the DOE SciDAC program)

Tuesday, April 30, 13

323x96 Wilson results
on GTX 280 (for illustration)

Tuesday, April 30, 13

323x96 Wilson results
on GTX 280 (for illustration)

-0.42 -0.415 -0.41 -0.405 -0.4
mass

0

1

2

3

4

5

Sp
ee

du
p

Double
Double/Single
Double/Half

increasing condition number
Tuesday, April 30, 13

GPUs vs. CPUs
Compare to Multi-Core cluster

4 8 16 32 64 128 256
#cores

16

64

256

su
st

ai
ne

d
G

Fl
op

s

CG, 2x4 Barcelona@1.9GHz, DDR IB
CG, 2x4 Nehalem@2.4GHz, QDR IB
IBiCGStab, 2x4 Nehalem@2.4 GHz, QDR IB

243x128 lattice, Chroma Single Prec Clover

175 GFlops (per JLab Tesla C2050 @ 4 GPUs)

273.5 GFlops (per JLab GTX480 @ 4 GPUs)

~146 cores

Modulo David
Bailey caveats

regarding
comparing apples
with non-apples

Friday, January 28, 2011

Tuesday, April 30, 13

1D Lattice decompositionQUDA Parallelization

1D decomposition
(in ‘time’ direction)

Assign sub-lattice
to GPU

face
exchange

face
exchange

face
exchange

face
exchange

wrap
around

Friday, January 28, 2011Tuesday, April 30, 13

Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Tuesday, April 30, 13

CUDA Stream API

• CUDA provides the stream API for concurrent work queues
• Provides concurrent kernels and host<->device memcpys
• Kernels and memcpys are queued to a stream

• kernel<<<block, thread, shared, streamId>>>(arguments)

• cudaMemcpyAsync(dst, src, size, type, streamId)

• Each stream is an in-order execution queue
• Must synchronize device to ensure consistency between

streams
• cudaDeviceSynchronize()

• QUDA uses the stream API to overlap communication of the halo
region with computation on the interior

Tuesday, April 30, 13

Multi-dimensional
Communications Pipeline











 





 

Figure 3: Gauge field layout in host and GPU mem-
ory. The gauge field consists of 18 floating point
numbers per site (when no reconstruction is em-
ployed) and is ordered on the GPU so as to en-
sure that memory accesses in both interior and
boundary-update kernels are coalesced to the extent
possible.

terior kernel so that it computes the full results for the in-
ner spinors and the partial results for spinors in the bound-
aries. The interior kernel computes any contributions to the
boundary spinors that does not involve with ghost spinors,
e.g. if a spinor is located only in the T+ boundary, the in-
terior kernel computes the space contribution for this spinor
as well as the negative T direction’s. The positive T direc-
tion’s contribution for this spinor, will be computed in the
exterior kernel for T dimension using the ghost spinor and
ghost gauge fields from the T+ neighbor. Since spinors in
the corners belong to multiple boundaries, For the interior
kernel and T exterior kernel, the 4-d to 1-d mapping strat-
egy is the same for the spinor and gauge field, with X being
the fastest changing index and T the slowest changing in-
dex, and all gauge field and spinor access are coalesced. The
use of memory padding avoids the GPU memory partition
camping problem [23] and further improves the performance.
However, in the X, Y, Z exterior kernels, the ghost spinor
and gauge field follows di�erent mapping scheme, but the
reading and writing of the destination spinors, which is lo-
cated in local spinor region, still follows the T slowest 4-D
to 1-D mapping scheme. Such di�erent data mapping makes
complete coalesced access impossible and one has to choose
one or another. We choose to compute our index using the
X, Y, Z slowest 4-D to 1-D mapping schedule with X-, Y-, Z-
exterior kernels to minimize the un-coalesced access penalty
since most of the data trafic comes from the gauge field and
source spinors. It is also clear from the above description
that because of the spinors in corners, the exterior kernels
has data dependency with each other and must be executed
in sequential order.

6.2.2 Computation, Communication and Streams
CUDA streams are extensively used to overlap computa-

tion with communication as well as overlapping the di�er-
ent type of communications. Two streams per dimension
are used, one for gathering and exchanging spinors in the
forward direction and the other in the backward direction.
One extra stream is used for interior and exterior kernels,
making the total CUDA streams number up to 9, as shown
in Fig. 4. The gather kernels for all directions are launched
in GPU at the beginning so that the communications in all
directions can start early. The interior kernel is executed
after all gather kernels finishes, overlapping completely with
the communications. We use di�erent streams for di�erent
dimensions so that the di�erent communication components
can overlap with each other, including the device to host cu-
daMemcpy, memcpy from pinned host memory to pagable
host memory, MPI send and receive, memcpy from pagable
memory to pinned memory and host to device memory copy.
While the interior kernel can be overlapped with communi-
cations, the exterior kernels have data dependency with the
ghost data, the interior kernel and other exterior kernels
therefore must be placed in the same stream and be syn-
chronized with the communication in the corresponding di-
mension.The accumulation of communication over multiple
dimensions is likely to exceed the interior kernel run time,
leading to the idle GPU (see Fig. 4), thus degrading the
overall dslash performance.







 

 








  



 





















Figure 4: Usage of CUDA streams in dslash compu-
tation, and multiple stages of communications. One
stream is used for interior and exterior kernels and
two streams per dimension are used for gather ker-
nels, PCIe data transfer, host memcpy and inter-
node communications

When communicating over multiple dimensions, the com-
munication cost dominates the computations and any reduc-
tion in the communication is likely to improve the perfor-
mance. The two host memcpy are required due to the fact
GPU pinned memory is not compatible with the MPI pinned
memory and the GPU direct technology [24] is not readily
available in the existing GPU cluster. We expect these extra
memcpys to be removed in the future when better support
from GPU and MPI venders are available. The recent avail-
able CUDA SDK 4.0 has an interesting GPU to GPU direct

Tuesday, April 30, 13

• Non-overlapping blocks - simply have to
switch off inter-GPU communication

• Preconditioner is a gross approximation

• Use an iterative solver to solve each domain system

• Require only 10 iterations of domain solver ⟹ 16-bit

• Need to use a flexible solver ⟹ GCR

• Block-diagonal preconditoner impose λ cutoff

• Finer Blocks lose long-wavelength/low-energy modes

• keep wavelengths of ~ O(ΛQCD-1), ΛQCD -1 ~ 1fm

• Aniso clover: (as=0.125fm, at=0.035fm) ⟹ 83x32 blocks are ideal

• 483x512 lattice: 83x32 blocks ⟹ 3456 GPUs

Domain Decomposition

Solve for χl l=k,k-1,...,0:

Compute correction

(Re)Start Generate Update

repeat for all k or
Full precision restartQuantities with ^ are in reduced

normalize ẑk

Orthogonalize ẑ-s

Apply
Reduced

Tuesday, April 30, 13

Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.

Tuesday, April 30, 13

Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.

0

50

100

150

200

250

300

350

400

450

500

GTX 580 GTX 680 GTX 580 GTX 680 GTX 580 GTX 680

Double Single Half

BlockDim only

BlockDim & Blocks/SM

Tuesday, April 30, 13

Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	
 std::map<TuneKey,	
 TuneParam>	
 tunecache;

§ TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim,
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	
 tuneLaunch(Tunable	
 &tunable,	
 QudaTune	
 enabled,	

QudaVerbosity	
 verbosity);

Tuesday, April 30, 13

Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	
 b,	
 c);

§ After:
MyKernelWrapper	
 *k	
 =	
 new	
 MyKernelWrapper(a,	
 b,	
 c);
k-­‐>apply();	
 	
 //	
 <-­‐-­‐	
 automatically	
 tunes	
 if	
 necessary

§ Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Tuesday, April 30, 13

Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.

Tuesday, April 30, 13

