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Overview

§Quantum Chromodynamics and Lattice QCD
§Motivation
§QUDA Overview
§Interface considerations
§Summary
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Quantum Chromodynamics

• The strong force is one of the basic forces of nature 
(along with gravity, em and the weak force)

• It’s what binds together the quarks and gluons in the 
proton and the neutron (as well as hundreds of other 
particles seen in accelerator experiments) 

• QCD is the theory of the strong force

• It’s a beautiful theory, lots of equations etc.

       ...but...
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Lattice Quantum Chromodynamics

• Theory is highly non-linear ⇒ cannot solve directly

• Must resort to numerical methods to make predictions

• Lattice QCD

• Discretize spacetime ⇒ 4-d dimensional lattice of size Lx x Ly x Lz x Lt

• Finitize spacetime ⇒ periodic boundary conditions

• PDEs ⇒ finite difference equations

• High-precision tool that allows physicists to explore the contents of nucleus 
from the comfort of their workstation (supercomputer)

• Consumer of 10-20% of North American supercomputer cycles
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1. Generate an ensemble of gluon field (“gauge”) configurations.
§ Produced in sequence, with hundreds needed per ensemble.  This requires 

>O(10 Tflops) sustained for several months (traditionally Crays, Blue Genes, etc.)
§ 50-90% of the runtime is in the solver

2.“Analyze” the 100s of configurations
§ Can be farmed out, assuming O(1 Tflops) per job
§ 80-99% of the runtime is in the solver

Steps in a lattice QCD calculation

  

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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Kepler 
Fastest, Most Efficient HPC Architecture Ever 

3x Performance per Watt 

Easy Speed-up for Legacy 

MPI Apps 

Parallel Programming Made 

Easier than Ever 
Dynamic 
Parallelism 

SMX 

Hyper-Q 
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TITAN: World’s Fastest Supercomputer
18,688 Tesla K20X GPUs 

 27 Petaflops Peak, 17.59 Petaflops on Linpack 

90% of Performance from GPUs 
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QCD applications

• Some examples
– MILC (FNAL, Indiana, Tuscon, Utah)

• strict C, MPI only

– CPS (Columbia, Brookhaven, Edinburgh)
• C++ (but no templates), MPI and partially threaded

– Chroma (Jefferson Laboratory, Edinburgh)
• C++ expression-template programming, MPI and threads

– BQCD (Berlin QCD)
• F90, MPI and threads

• Each application consists of 100K-1M lines of code
• Porting each application not directly tractable

– OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)
Tuesday, April 30, 13



Enter QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
• Effort started at Boston University in 2008, now in wide use as the 

GPU backend for BQCD, Chroma, CPS, MILC, etc.
• Provides:

— Various solvers for several discretizations, including multi-GPU support and 
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge field generation

• Maximize performance
– Exploit physical symmetries
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– etc.

Tuesday, April 30, 13
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QUDA Performance - ChromaCompare to Multi-Core cluster
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CG, 2x4 Barcelona@1.9GHz, DDR IB
CG, 2x4 Nehalem@2.4GHz, QDR IB
IBiCGStab, 2x4 Nehalem@2.4 GHz, QDR IB

243x128 lattice, Chroma Single Prec Clover 

175 GFlops (per JLab Tesla C2050 @ 4 GPUs)

273.5 GFlops (per JLab GTX480 @ 4 GPUs)

~146 cores

Modulo David 
Bailey caveats 

regarding 
comparing apples 
with non-apples

Friday, January 28, 2011

• More recent result

• Complete solver will 
sustain up to 400 
GFLOPS on Kepler

• 10x speedup vs. 
Sandy Bridge Xeon
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Single-precision Rational HMC on a 243x64 lattice.
5.7x net gain in performance
>7.7x gain by porting remaining CPU routines.

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD

QUDA Performance - MILC

•MILC result on 243x64 
lattice

• 5.7x speedup
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• QUDA designed to accelerate pre-existing LQCD applications
– Chroma, MILC, CPS, BQCD, etc.
– Provide an opaque interface

• Interface Design Considerations
– Field ordering
– Data residence
– Multi-GPU
– Memory management

QUDA - Interfacing Strategy
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• QUDA interface deals with all data reordering

• Application remains ignorant

Spinor
(24 numbers)

Threads read 
non-contiguous data

• GPUs like Structure of Arrays

• CPU codes tend to favor Array of Structures but these behave badly on GPUs

Threads read contiguous data

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 3

1st read
2nd read
3rd read

Field Ordering
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Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU  (reorder)

• Solve Mx=b

• Transfer x to CPU  (reorder)

• Entire algorithms must run on GPUs

• Time-critical kernel is the stencil application (SpMV)

• Memory-bound operation

• Deploy double-single and double-half solvers

• Also require BLAS level-1 type operations

• e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

• Roll our own kernels for kernel fusion and custom precision

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate 
gradient

while (|rk|> ε) {
rk = b - Axk
solve Apk = rk
xk+1 = xk + pk

}

High precision
mixed-precision

accumulate
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Multiple GPUs
Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011
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Multiple GPUs

• Many different mechanisms for controlling multiple GPUs
• MPI processes

• CPU threads

• Multiple GPU per thread and do explicit switching

• Combinations of the above

• QUDA directly supports the simplest: 1 GPU per MPI process
• Allows partitioning over node with multiple devices and multiple nodes

• cudaSetDevice(local_mpi_rank);

• Any remaining host-code is parallelized using threads
• This works well for homogenous CPU systems with threaded applications

• E.g., Chroma and BQCD are fully threaded

Tuesday, April 30, 13



Multiple GPUs

• 1 MPI = 1 GPU can be problematic
• Not all LQCD apps are threaded

• MILC is multi-process only

• Any work remaining on the CPU only 
utilizes a single core

•MILC result on 243x64 lattice
• 5.7x net gain in performance

• But potential >7.7x gain in performance

• Porting remaining functions

• or

• Fix host code to run in parallel

Single-precision Rational HMC on a 243x64 lattice.
5.7x net gain in performance
>7.7x gain by porting remaining CPU routines.

Justin Foley, University of Utah Many-GPU calculations in Lattice QCD
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Multiple GPUs

• Even threaded CPU applications can have issues
• CPU systems increasingly have NUMA issues

• e.g., Cray XK7

• GK110 brings a new feature called Hyper-Q
• Allows multiple MPI processes to share a single GPU (CUDA Proxy)

• Easily allows full utilization of both CPU and GPU with no app changes

• Hyper-Q does have some additional latency overhead

• QUDA soon to support directly multiple MPI processes per GPU
• Communication handled by MPI communicators in the interface 

• Removes CUDA Proxy overhead and works on all GPUs

• No applications changes required
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QUDA High-Level Interface

#include <quda.h>

int main() {

  // initialize the QUDA library
  initQuda(device);

  // load the gauge field
  loadGaugeQuda((void*)gauge, &gauge_param);

  // perform the linear solve
  invertQuda(spinorOut, spinorIn, &inv_param);

  // free the gauge field
  freeGaugeQuda();

  // finalize the QUDA library
  endQuda();

}

• QUDA default interface provides a simple 
view for the outside world

• C or Fortran

• Host applications simply pass cpu-side 
pointers

• QUDA takes care of all field reordering 
and data copying

• No GPU code in user application

• Limitations

• No control over memory management

• Data residency between QUDA calls 
not possible 

• QUDA might not support user 
application field order
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QUDA Interface Extensions

• Allow QUDA interface to accept GPU pointers
– First natural extension
– Remove unnecessary PCIe communications between QUDA function calls

• Allow user-defined functors for handling field ordering
– User only has to specify their field order
– Made possible with device libraries (CUDA 5.0)

• Limitations
– Limited control of memory management
– Requires deeper application integration
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QUDA Low-Level Interface (in development)

• Possible strawman under consideration

• Here, src, sol, etc. are opaque objects that know about the GPU
• Allows the user to easily maintain data residency
• Users can easily provide their own kernels
• High-level interface becomes a compatibility layer built on top
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QUDA - Chroma Integration

• Chroma is built on top of QDP++
– QDP++ is a DSL of data-parallel building blocks
– C++ expression-template approach 

• QDP/JIT is a project to port QDP++ directly 
to GPUs (Frank Winter)

– Generates ptx kernels at run time 
– Kernels are JIT compiled and cached for later use
– Chroma runs unaltered on GPUs

• QUDA has low-level hooks for QDP/JIT 
– Common GPU memory pool
– QUDA accelerates time-critical routines
– QDP/JIT takes care of Amdahl

QUDA integration








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
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




Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 21 / 26

Benchmark Measurements Chroma

lfn://ldg/qcdsf/clover_nf2/b5p20kp13420-16x32/ape.003.004600.dat
Significant reduction of execution time when using QDP++(GPU)
QUDA inverter gains speedup too (residuum calculation with QDP++)

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 24 / 26
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Results from TitanDev
- 483x512 aniso clover
- scaling up 768 GPUs

102 Tflops
  37 Tflops

  7.5 Tflops
  32 Tflops
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Summary

• Glimpse into the QUDA library
– GPU library for LQCD applications

• Interface considerations
– Data ordering
– Multi-GPU
– Data residency

• Levels of Interfacing
– High-level (cpu-side interaction)
– Lower-level (gpu-side interaction)
– Tight Integration (common memory pool)

• End result is legacy applications running at large scale on GPUs
Tuesday, April 30, 13



Backup slides
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OpenACC: Open, Simple, Portable

main() { 
  … 
  <serial code> 
  … 
  #pragma acc kernels 
  {  
  <compute intensive code> 
  } 
  … 
} 

Compiler 
Hint 

•  Open Standard 

•  Easy, Compiler-Driven Approach 

•  Portable on GPUs and Xeon Phi 

CAM-SE Climate 
6x Faster on GPU 
2x Faster on CPU only 

Top Kernel: 50% of Runtime 

Available from: 
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Krylov solvers
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USQCD software stack

(Many components developed under the DOE SciDAC program)
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323x96 Wilson results 
on GTX 280 (for illustration)
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323x96 Wilson results 
on GTX 280 (for illustration)
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Tuesday, April 30, 13



GPUs vs. CPUs
Compare to Multi-Core cluster
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CG, 2x4 Barcelona@1.9GHz, DDR IB
CG, 2x4 Nehalem@2.4GHz, QDR IB
IBiCGStab, 2x4 Nehalem@2.4 GHz, QDR IB

243x128 lattice, Chroma Single Prec Clover 

175 GFlops (per JLab Tesla C2050 @ 4 GPUs)

273.5 GFlops (per JLab GTX480 @ 4 GPUs)

~146 cores

Modulo David 
Bailey caveats 

regarding 
comparing apples 
with non-apples

Friday, January 28, 2011
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1D Lattice decompositionQUDA Parallelization

1D decomposition
(in ‘time’ direction)

Assign sub-lattice 
to GPU

face
exchange

face
exchange

face
exchange

face
exchange

wrap
around

Friday, January 28, 2011Tuesday, April 30, 13



Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011
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CUDA Stream API

• CUDA provides the stream API for concurrent work queues
• Provides concurrent kernels and host<->device memcpys
• Kernels and memcpys are queued to a stream

• kernel<<<block, thread, shared, streamId>>>(arguments)

• cudaMemcpyAsync(dst, src, size, type, streamId)

• Each stream is an in-order execution queue
• Must synchronize device to ensure consistency between 

streams
• cudaDeviceSynchronize()

• QUDA uses the stream API to overlap communication of the halo 
region with computation on the interior
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Multi-dimensional 
Communications Pipeline
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Figure 3: Gauge field layout in host and GPU mem-
ory. The gauge field consists of 18 floating point
numbers per site (when no reconstruction is em-
ployed) and is ordered on the GPU so as to en-
sure that memory accesses in both interior and
boundary-update kernels are coalesced to the extent
possible.

terior kernel so that it computes the full results for the in-
ner spinors and the partial results for spinors in the bound-
aries. The interior kernel computes any contributions to the
boundary spinors that does not involve with ghost spinors,
e.g. if a spinor is located only in the T+ boundary, the in-
terior kernel computes the space contribution for this spinor
as well as the negative T direction’s. The positive T direc-
tion’s contribution for this spinor, will be computed in the
exterior kernel for T dimension using the ghost spinor and
ghost gauge fields from the T+ neighbor. Since spinors in
the corners belong to multiple boundaries, For the interior
kernel and T exterior kernel, the 4-d to 1-d mapping strat-
egy is the same for the spinor and gauge field, with X being
the fastest changing index and T the slowest changing in-
dex, and all gauge field and spinor access are coalesced. The
use of memory padding avoids the GPU memory partition
camping problem [23] and further improves the performance.
However, in the X, Y, Z exterior kernels, the ghost spinor
and gauge field follows di�erent mapping scheme, but the
reading and writing of the destination spinors, which is lo-
cated in local spinor region, still follows the T slowest 4-D
to 1-D mapping scheme. Such di�erent data mapping makes
complete coalesced access impossible and one has to choose
one or another. We choose to compute our index using the
X, Y, Z slowest 4-D to 1-D mapping schedule with X-, Y-, Z-
exterior kernels to minimize the un-coalesced access penalty
since most of the data trafic comes from the gauge field and
source spinors. It is also clear from the above description
that because of the spinors in corners, the exterior kernels
has data dependency with each other and must be executed
in sequential order.

6.2.2 Computation, Communication and Streams
CUDA streams are extensively used to overlap computa-

tion with communication as well as overlapping the di�er-
ent type of communications. Two streams per dimension
are used, one for gathering and exchanging spinors in the
forward direction and the other in the backward direction.
One extra stream is used for interior and exterior kernels,
making the total CUDA streams number up to 9, as shown
in Fig. 4. The gather kernels for all directions are launched
in GPU at the beginning so that the communications in all
directions can start early. The interior kernel is executed
after all gather kernels finishes, overlapping completely with
the communications. We use di�erent streams for di�erent
dimensions so that the di�erent communication components
can overlap with each other, including the device to host cu-
daMemcpy, memcpy from pinned host memory to pagable
host memory, MPI send and receive, memcpy from pagable
memory to pinned memory and host to device memory copy.
While the interior kernel can be overlapped with communi-
cations, the exterior kernels have data dependency with the
ghost data, the interior kernel and other exterior kernels
therefore must be placed in the same stream and be syn-
chronized with the communication in the corresponding di-
mension.The accumulation of communication over multiple
dimensions is likely to exceed the interior kernel run time,
leading to the idle GPU (see Fig. 4), thus degrading the
overall dslash performance.
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Figure 4: Usage of CUDA streams in dslash compu-
tation, and multiple stages of communications. One
stream is used for interior and exterior kernels and
two streams per dimension are used for gather ker-
nels, PCIe data transfer, host memcpy and inter-
node communications

When communicating over multiple dimensions, the com-
munication cost dominates the computations and any reduc-
tion in the communication is likely to improve the perfor-
mance. The two host memcpy are required due to the fact
GPU pinned memory is not compatible with the MPI pinned
memory and the GPU direct technology [24] is not readily
available in the existing GPU cluster. We expect these extra
memcpys to be removed in the future when better support
from GPU and MPI venders are available. The recent avail-
able CUDA SDK 4.0 has an interesting GPU to GPU direct
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• Non-overlapping blocks - simply have to 
switch off inter-GPU communication

• Preconditioner is a gross approximation

• Use an iterative solver to solve each domain system

• Require only 10 iterations of domain solver  ⟹ 16-bit  

• Need to use a flexible solver ⟹  GCR

• Block-diagonal preconditoner impose λ cutoff

• Finer Blocks lose long-wavelength/low-energy modes

• keep wavelengths of ~ O(ΛQCD-1),   ΛQCD -1 ~ 1fm 

• Aniso clover:  (as=0.125fm, at=0.035fm)  ⟹   83x32 blocks are ideal

• 483x512 lattice: 83x32 blocks  ⟹   3456 GPUs

Domain Decomposition

Solve for χl   l=k,k-1,...,0:

Compute correction 

(Re)Start Generate Update 

repeat for all k or 
Full precision restartQuantities with ^ are in reduced

normalize ẑk

Orthogonalize ẑ-s

Apply 
Reduced 
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Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch 

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.
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Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	
  std::map<TuneKey,	
  TuneParam>	
  tunecache;

§ TuneKey is a struct of strings specifying the kernel name, 
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim, 
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	
  tuneLaunch(Tunable	
  &tunable,	
  QudaTune	
  enabled,	
  
QudaVerbosity	
  verbosity);
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Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	
  b,	
  c);

§ After:
MyKernelWrapper	
  *k	
  =	
  new	
  MyKernelWrapper(a,	
  b,	
  c);
k-­‐>apply();	
  	
  //	
  <-­‐-­‐	
  automatically	
  tunes	
  if	
  necessary

§ Here MyKernelWrapper inherits from Tunable and optionally 
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful 
anyway, independent of tuning.
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Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam()  // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.
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