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Motivation 

Preparing for the exascale, OLCF, 2009 

NVIDIA Update, Jen-Hsun Huang  
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Motivation: Scientific  

Variability of T85 Ensemble over 30 years of Simulation 
Global Mean Variation 3 Degrees 
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Motivation: Scientific  

Variability of T341 Ensemble over 30 years of Simulation 
Global Mean Variation 3.5 Degrees 



6 

Comparison 
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State of the CESM 
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What is CAM-SE? 
• Climate-scale atmospheric simulation for capability computing 
• Comprised of (1) a dynamical core and (2) physics packages 
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What is CAM-SE? 
• Climate-scale atmospheric simulation for capability computing 
• Comprised of (1) a dynamical core and (2) physics packages 

Dynamical Core 
1.  “Dynamics”: wind, energy, & mass 
2.  “Tracer” Transport: (H2O, CO2, O3, …) 

Transport quantities not advanced by the dynamics 

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png 
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What is CAM-SE? 
• Climate-scale atmospheric simulation for capability computing 
• Comprised of (1) a dynamical core and (2) physics packages 

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png 

http://web.me.com/macweather/blogger/maweather_files/physprc2.gif 

Physics Packages 
Resolve anything interesting not 
included in dynamical core (moist 
convection, radiation, chemistry, etc) 

Dynamical Core 
1.  “Dynamics”: wind, energy, & mass 
2.  “Tracer” Transport: (H2O, CO2, O3, …) 

Transport quantities not advanced by the dynamics 
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Gridding, Numerics, & Target Run 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

•  Cubed-Sphere   +   Spectral Element 
•  Each cube panel divided into elements 
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Gridding, Numerics, & Target Run 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

•  Cubed-Sphere   +   Spectral Element 
•  Each cube panel divided into elements 
•  Elements spanned by basis functions 
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Gridding, Numerics, & Target Run 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

•  Cubed-Sphere   +   Spectral Element 
•  Each cube panel divided into elements 
•  Elements spanned by basis functions 
•  Basis coefficients describe the fluid 
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‘New capabilities and new dynamical cores in CAM’. Mark Taylor, 16th Annual 
CESM Workshop, 2011.  
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Target 14km Simulations 
•  16 billion degrees of freedom 
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Target 14km Simulations 
•  16 billion degrees of freedom 

–  6 cube panels 
–  240 x 240 columns of elements per panel 
–  4 x 4 basis functions per element 
–  26 vertical levels 
–  110 prognostic variables 

ρ,ρu,ρv, p

H2O , CO2 , O3 , CH4 , ...
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Target 14km Simulations 
•  16 billion degrees of freedom 

–  6 cube panels 
–  240 x 240 columns of elements per panel 
–  4 x 4 basis functions per element 
–  26 vertical levels 
–  110 prognostic variables 

•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency 
•  Must simulate 1-2 thousand times faster than real time 
•  With 10 second CAM-SE time step, need ≤ 10 ms per time step 

–  32-64 columns of elements per node, 5-10 thousand nodes 
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CAM-SE Profile (Cray XT5, 14K Nodes) 
•  Original CAM-SE used 3 tracers (20% difficult to port) 
•  Mozart chemistry provides 106 tracers (7% difficult to port) 

–  Centralizes port to tracers with mostly data-parallel routines 
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The Routines of Tracer Transport 
Three Main Routines 

•  Euler_step (3x): Performs the actual transport 
•  Advance_hypervis: Stabilizes the solution with       diffusion 
•  Vertical_Remap: Re-grids the data vertically to a reference grid 
 

Three Helper Routines 
•  Edge_pack: Place all element edges into process-wide buffer 

Edge_unpack: Sum data at element edges 
–  Once per euler_step                  Twice per advance_hypervis 

•  Limiter2d_zero: Remove negative coefficients & conserve mass 
–  Once per euler_step                  Once per advance_hypervis 

∇4
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Call Tree Structure 

prim_main 

prim_run_subcycle 
prim_advec_tracers… 

euler_step 

remap_velocity 

Main driver routines 

Time stepping routines  

Tracer advection routines  

edgevpack 
bndry_exchangev 
edgevunpack 
laplace_sphere_wk 

}=pack-unpack 
pack-unpack 

} This routine called 
multiple times 
depending upon the 
type of timestep (ie, 
leapfrog, RK, etc). 
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Profile of a Tracer Time Step 
•  We wrote a new remapping algorithm to reduce runtime 
•  Pack/exchange/unpack is ≈ half of euler_step & advance_hypervis 
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GPU CAM-SE Goal 
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Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 
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Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 

GPU Kernels 
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Node Design 
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GPU Kernels 

PCI-e D2H 
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Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 

GPU Kernels 

PCI-e D2H 

PCI-e H2D 
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Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 

GPU Kernels 

PCI-e D2H 

PCI-e H2D 

MPI 
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Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 

GPU Kernels 

PCI-e D2H 

PCI-e H2D 

MPI 
Host Computation 

	
  
	
  

The Free Lunch Is Over: A Fundamental Turn 
Toward Concurrency in Software 
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Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 

	
  
	
  



36 

Node Design 

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg 

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg 
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Process	
  1	
  Process	
  0	
  

Communication Between Elements 



38 

Process	
  1	
  Process	
  0	
  

Communication Between Elements 

Physically occupy the same 
location, Spectral Element 
requires them to be equal 

 

Edges are averaged, and the 
average replaces both edges 
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Process	
  1	
  Process	
  0	
  

Communication Between Elements 

Implementation 
 

Edge_pack: pack all element edges 
into process-wide buffer. Data sent 
over MPI are contiguous in buffer. 
 

Bndry_exchange: Send & receive 
data at domain decomposition 
boundaries 
 

Edge_unpack: Perform a weighted 
sum for data at all element edges. 

Physically occupy the same 
location, Spectral Element 
requires them to be equal 

 

Edges are averaged, and the 
average replaces both edges 
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Original Pack/Exchange/Unpack 
•  Edge_pack ensures data for MPI is contiguous in buffer 
•  MPI communication occurs in “cycles” 
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Original Pack/Exchange/Unpack 
•  Edge_pack ensures data for MPI is contiguous in buffer 
•  MPI communication occurs in “cycles” 
•  A cycle contains a contiguous data region for MPI Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 
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Original Pack/Exchange/Unpack 
•  Edge_pack ensures data for MPI is contiguous in buffer 
•  MPI communication occurs in “cycles” 
•  A cycle contains a contiguous data region for MPI 
•  Original pack/exchange/unpack 

–  Pack all edges in a GPU Kernel 
–  For each “send cycle” 

•  Send cycle over PCI-e (D2H) 
•  MPI_Isend the cycle 

–  For each “receive cycle” 
•  MPI_Wait for the data 
•  Send cycle over PCI-e (H2D) 

–  Unpack all edges in a GPU Kernel 
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•  For a cycle, PCI-e D2H depends only on packing that cycle 
– Divide edge_pack into equal-sized cycles 

1.  Find only the elements directly involved in each separate cycle 
2.  Evenly divide remaining elements among the cycles 

–  Associate each cycle with a unique CUDA stream 
–  Launch each pack in its stream 
–  After a cycle is packed, call async. PCI-e D2H in its Stream 

•  Edge_unpack at MPI boundaries requires all MPI to be finished 
•  However, internal unpacks can be done directly after packing 

Optimizing Pack/Exchange/Unpack 
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•  For each cycle 
–  Launch edge_pack kernel for the cycle in a unique stream 
–  Call a cudaEventRecord for the stream’s packing event 

Porting Strategy: Pack/Exchange/Unpack 
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•  For each cycle 
–  Launch edge_pack kernel for the cycle in a unique stream 
–  Call a cudaEventRecord for the stream’s packing event 

Porting Strategy: Pack/Exchange/Unpack 
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•  Memory coalescing in kernels 
–  Know how threads are accessing GPU DRAM 

Other Important Porting Considerations 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 



61 

Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

Coded to respect 
cache locality 



62 

Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

Coded to respect 
cache locality 

However, this will 
not coalesce to fill 

the DRAM bus 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(i,j,k,q,ie,1) = ... 
coefs(i,j,k,q,ie,2) = ... 
coefs(i,j,k,q,ie,3) = ... 
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•  Memory coalescing in kernels 
–  Know how threads are accessing GPU DRAM 

•  Use of shared memory 
–  New vertical remap does nearly all computations on shared memory 
–  Only accesses to DRAM are at start and end of a very large kernel 
–  Hence, a 5.5x speed-up over CPU code for vertical remap 
–  Watch out for banking conflicts 

Other Important Porting Considerations 
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•  Memory coalescing in kernels 
–  Know how threads are accessing GPU DRAM 

•  Use of shared memory 
–  New vertical remap does nearly all computations on shared memory 
–  Only accesses to DRAM are at start and end of a very large kernel 
–  Hence, a 5.5x speed-up over CPU code for vertical remap 
–  Watch out for banking conflicts 

•  Overlapping kernels with CPU code execution 
–  Any non-dependent sections of code overlapped with kernels 
–  Computed & PCI-e copied data for future kernels during prior kernels 

•  PCI-e copies: consolidate if small, break up & pipeline if large 

Other Important Porting Considerations 
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Speed-Up: Fermi GPU vs 1 Interlagos / Node 
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•  Benchmarks performed on XK6 using end-to-end wall timers 
•  All PCI-e and MPI communication included 
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Computational Time-step barrier 

• Without it, climate simulation will hit the time-step barrier 
-  Little benefit from higher scales of computing 
-  Must choose between higher resolution or tolerable throughput 

• Dramatically improve accuracy of highly-coupled models 

• Dramatically accelerate spin-up of new simulations 

• Potentially revolutionize climate simulation and other application areas 
with long time integration 

• Crucial for climate simulation, promising for other fields 
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Implicit versus Explicit 

• Explicit time integration 
-  Directly compute future state using derivatives at current or past 

times 
-  Time step limited by numerical stability 

• Implicit time integration 
-  Define future state using derivates at that time, resulting in a 

system of (nonlinear) equations  
-  Use (nonlinear) solver to determine future state 
-  Numerically stable for large time steps 
-  Time step limited by accuracy 
-  Performance limited by solver 
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Accelerating Implicit solutions 

Linking CAM-SE with third party 
software to create direct path to 
community algorithmic 
development 

Linking CAM-SE with GPU 
community algorithmic 

development 

Merging these separate efforts into the trunk of 
CAM-SE will allow accelerated time-stepping 

methods on hybrid architecture that keeps pass 
with community algorithmic development  
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Why Third Party Software? 

JFNK Nested Algorithm 
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• derived_type_mod 
–  type(derived_type) :: object (HOMME variables) 
–  subroutine initialize(object, HOMME vars) 

•  implicit_mod 
–  subroutine imp_solver(HOMME variables) 

•  Set c_ptr -> f_ptr -> object 
–  In c++, c_funptr points to calc_f in Fortran 
–  subroutine calc_f(x(l), f(l), l, c_ptr ) bind(C,name=‘user_sub_name’) 

• noxlocainterface.cpp calls calc_f() 
• noxlocainterface.hpp 

Modules available to CAM-SE 
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Next Steps – Implicit Framework 
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Next Steps – GPU Framework 
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Next Steps – Linked Framework 

Merge framework so that array state is manipulated 
once and ‘calc_f’ executes on the GPU 
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Future Efforts 

@ 

@t
= D

⇣
 
⌘
+ P

⇣
 
⌘
,

 - prognostic variable,

D - dynamical core component,

P - physical parameterization suite.

Change coupling between land and atmosphere from

bulk-average of prognostic variables to distributions

by adaptive sampling of ensembles.

 { 1, . . . , n}


