Accelerating the Community Atmosphere
Model — Spectral Element Method: The
Challenges, the Science, and the Future

Q Y o Gl n Conpettond S Direction

D L B F Rick Archibald

OAK RIDGE LEADERSHIP COMPUTING FADILITY

Predictive Methods Group

] 8 E] E E []] E Computer Science and Mathematics Division
Climate Change Science Institute

Oak Ridge National Laboratory

Titan Users and Developers Workshop (East Coast) and Users Meeting
Knoxville, TN
February 19, 2013

m :m_iﬂ : [; 1 : k /

i 5 : = | B/
SEE 7z
Ht ! N

.S. DEPARTMENT OF

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Teams and Projects

Valentine Anantharaj3
Rick Archibald®2:3
Chris Baker-?

Ilene Carpenter!
Katherine Evans®*23
Jeffrey Larkin!

Aaron Lott?

Matthew Norman*!
Paulius Micikevicius!
Mark Taylor23

Carrol Woodward?

ORNL: OLCF
ORNL: PMG/CCSI
ORNL: CEES/CASL
NREL

ORNL: CESG/CCSI
Cray m=s NVIDIA
LLNL

ORNL: OLCF
NVIDIA

SANDIA

LLNL

*Team/Project Leader

1. Center for Accelerated Application Readiness CAM-SE
2. Multiscale SCIDAC Process Integration
3. Ultra High Resolution Global Climate Simulation

OLCF|20

Motivation

World’s Top Open Science Computing Research Facility

18,000 Tesla GPUs
20+ PetaFlops

~90% of flops from GPUs

From Super Computers to Super Phones

Sequoia - BlueGene/Q,
Power BQC 16C 1.60 GHz,
Custom

K computer, SPARC64
Vllifx 2.0GHz, Tofu
interconnect

Mira - BlueGene/Q, Power
BQC 16C 1.60GHz, Custom

SuperMUC - iDataPlex
DX360M4, Xeon E5-2680
8C 2.70GHz, Infiniband
FDR

Tianhe-1A - NUDT YH
MPP, Xeon X5670 6C 2.93
GHz, NVIDIA 2050

Jaguar - Cray XK6, Opteron
6274 16C 2.200GHz, Cray
Gemini interconnect,

2010

YEAR

2015

T >
2020

Motivation: Scientific

Variability of T85 Ensemble over 30 years of Simulation
4+ OLCF|20 Global Mean Variation 3 Degrees

Motivation: Scientific

Variability of T341 Ensemble over 30 years of Simulation
5 OLCF|20 Global Mean Variation 3.5 Degrees

Comparison

¢ OLCF|20 1IDGE

Earth System Model Description

A Climate Model closes the radiative and hydrologic cycles

Atmospheric circulation and radiation

ty ty

Sealce < Land physics
and hydrology

An Earth System Model closes additional cycles as well

Atmospheric circulation and radiation

Sealce

!

Land physics
and hydrology

State of the CESM

CESM Advisory Board
Working Group Changes CESM Scientific Steering Committee

Merger of Climate Variability
and Climate Change Working BioGeo-
Groups Chemistry

Formation of

: : . - : Software -
Societal Dimensions Workin Chemistry-) i Societal
g Climate Engineering Dimensions

Paleo- Whole
Atmosphere Climate Atmosphere

AW,
3
i/ Climate

Variability

CESM R

Ocean .

CESM is primarily sponsored by
the National Science Foundation

and the Department of Energy http://www.cesm.ucar.edu/management

CESM Breckenridge Workshop
June, 2012

What is CAM-SE?

» Climate-scale atmospheric simulation for capability computing
« Comprised of (1) a dynamical core and (2) physics packages

9 AaLCF |20

What is CAM-SE?

» Climate-scale atmospheric simulation for capability computing
« Comprised of (1) a dynamical core and (2) physics packages
Dynamical Core

1. “Dynamics”. wind, energy, & mass
2. “Tracer” Transport: (H,O, CO,, O,, ...)

Transport quantities not advanced by the dynamics

http:/fesse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

10 AOLCF |20

What is CAM-SE?

» Climate-scale atmospheric simulation for capability computing
« Comprised of (1) a dynamical core and (2) physics packages
Dynamical Core

1. “Dynamics”. wind, energy, & mass
2. “Tracer” Transport: (H,O, CO,, O,, ...)

Transport quantities not advanced by the dynamics

http://esse.engin.umich.edu/groups/admg/
demip/jablonowski_cubed_sphere_vorticity.png

Physics Packages

Resolve anything interesting not
included in dynamical core (moist
convection, radiation, chemistry, etc)

http://web.me.com/macWeather/blogger/maWeather_ﬁles/physprcz/ ghi JATX

11 OLGCF|20

Gridding, Numerics, & Target Run

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

12 OLCF | 20

Gridding, Numerics, & Target Run

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements
 Elements spanned by basis functions

Sm
O O
http://www-personal.umich.edu/~paullric/A_CubedSphere.png © O . ©
® - —

13 AOLCF |20

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

14 OLCF

20

» Cubed-Sphere + Spectral Element
 Each cube panel divided into elements
 Elements spanned by basis functions
« Basis coefficients describe the fluid

Scalability: CAM4 4 degree (3 tracers)

CESM1 F1850, ATM component, BGP

8,
>
a4
I
3 —-SE 0.25
% 2 ~—FV 0.25°
- EUL T340
5
£
wn

0.5/ /
1K 4K 16K 64K
NCORES

0.25

 Faster performance at high resolution on parallel computers
« Not cheaper - cost in terms of core-hours is the same.
« CAM-Eul the most efficient (cheapest), but with lowest peak SYPD.

‘New CapabilitieS and new dynamica| cores in CAM'. Mark |ay|0r, 16" Annual - JAK

Target 14km Simulations

* 16 billion degrees of freedom

16 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels

17 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel

18 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element

19 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element
— 26 vertical levels

20 OLCF | 20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel 0, PuU, Pv, p
— 4 x 4 basis functions per element

— 26 vertical levels H,O,6Co,,0O,,CH,,..
— 110 prognostic variables

21 OLCF | 20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element
— 26 vertical levels
— 110 prognostic variables
 Scaled to 14,400 XT5 nodes with 60% parallel efficiency

2 AOLCF |20

Target 14km Simulations

* 16 billion degrees of freedom
— 6 cube panels
— 240 x 240 columns of elements per panel
— 4 x 4 basis functions per element
— 26 vertical levels
— 110 prognostic variables
 Scaled to 14,400 XT5 nodes with 60% parallel efficiency
« Must simulate 1-2 thousand times faster than real time
 With 10 second CAM-SE time step, need < 10 ms per time step
— 32-64 columns of elements per node, 5-10 thousand nodes

23 OLCF | 20

CAM-SE Profile (Cray XT5, 14K Nodes)

* Original CAM-SE used 3 tracers (20% difficult to port)
* Mozart chemistry provides 106 tracers (7% difficult to port)

— Centralizes port to tracers with mostly data-parallel routines

3-Tracer CAM-SE 106-Tracer CAM-SE

Other Physics Other
4% 6% 1%

Tracers
7%

2 OLCF|20 ~EIDcE

The Routines of Tracer Transport

Three Main Routines
* Euler_step (3x): Performs the actual transport
» Advance_hypervis: Stabilizes the solution with V* diffusion
 Vertical_Remap: Re-grids the data vertically to a reference grid

Three Helper Routines

« Edge_pack: Place all element edges into process-wide buffer
Edge_unpack: Sum data at element edges

— Once per euler_step Twice per advance_hypervis
* Limiter2d_zero: Remove negative coefficients & conserve mass
— Once per euler_step Once per advance_hypervis

25 AOLCF | 20

Call Tree Structure

prim main Main driver routines

prim_run_s ubCYCle Time stepping routines

prim advec tracers.. Tracer advection routines

euler step

edgevpack This routine called
bndry exchangev }=pack—unpack multlple. times
edgevunpack depending upon the
laplace sphere wk type of timestep (ie,
pack-unpack leapfrog, RK, etc).

remap velocity

26 OLCF|20 “RIDGE

Profile of a Tracer Time Step

 \We wrote a new remapping algorithm to reduce runtime
* Pack/exchange/unpack is = half of euler_step & advance_hypervis

Original Vertical Remap New Vertical Remap
Other
4%

Other
3%

AR
~ 12T =
“RIDGE

27 OLCF |20

GPU CAM-SE Goal

SM-0 SM-1 SM-N
Registers Registers ce o Registers
)) ¥)))
L1 SMEM L1 SMEM L1 SMEM
L2
Global Memory

28 OLCF | 20

Node Design

|
o TR T T T T T
Lo — b

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

29 OLCF | 20

Node Design

GPU Kernels

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

......

T T B
o 5
o

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

30 AOLCF | 20

Node Design

GPU Kernels
PCl-e D2H

[
it W B l' l!"v l‘_ll.l,.l

L . s

L — b/

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

31 ALCF |20

Node Design

Sommnsammansmtanmassassn e

|

I TR TR T T T B
Lo — b/

i)

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

32 AOLCF |20

GPU Kernels
PCl-e D2H
PCl-e H2D

Node Design

GPU Kernels
PCl-e D2H
PCl-e H2D

MPI

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

33 OLCF |20

Node Design

GPU Kernels
PCl-e D2H
PCl-e H2D

MPI
Host Computation

The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

10,000,000

Sl] ‘ Dual-Core Itanium 2_ilt} /
y . am e 1,000,000 =
..... s LR DU . | Intel CPU Trends A
- | ° ! (sources: Intel, Wikipedia, K. Olukotun) y
100,000
10,000
1,000

100

10

[
.
1 { ® 4 @ Transistors (000) —

LI T Ry
’./.‘ | 2 &F] @ Clock Speed (MHz)
] i PO aPower (W)
http://regmedla.co.uk/2011/05/22/cray-xk6isuper-blade.Jpg : o Pert/Clock (L) RS
0 = 240,

34 D I_ B I-_ 2 D 1970 1975 1980 1985 1990 1995 2000 2005 2010

Node Design

http://www.thinkdigit.com/FCKeditor/uploads/26mar104700in342t.jpg

http://regmedia.co.uk/2011/05/22/cray-xk6isuper-blade.jpg

35 AOLCF |20

If you were plowing a field, which
would you rather use: 2 strong oxen or

1024 chickens?

— Seymour Cray

Node Design

If you were plowing a field, which
would you rather use: 12,160 bipolar
oxen' or 786,432 chickens®?

— Not Seymour Cray

1 A bipolar oxen is one AMD Bulldozer and one NVIDIA Fermi.
2 A chicken is a Blue Gene/Q core.

11

Herding millions of chickens: Programming

models for Blue Gene/Q and beyond

Jeff Hammond

Leadership Computing Facility
Argonne National Laboratory

e IR T TR 1T T T T Ry
13 0,5

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg
"

36 AOLCF |20

Communication Between Elements
/ Process O K Process 1 \

37 OLCF |20

Communication Between Elements

/ Process O > / Process 1 \

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

33.0LCF |20

Communication Between Elements

/ Process O D Process 1 \

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

39 OLCF | 20

Implementation

Edge_pack: pack all element edges
into process-wide buffer. Data sent
over MPI are contiguous in buffer.

Bndry_exchange: Send & receive
data at domain decomposition
boundaries

Edge_unpack: Perform a weighted
sum for data at all element edges.

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

40 OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

Cycle 1

4 OLCF |20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack

42 0OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles”
* Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

43 OLCF |20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

4 0OLCF | 20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

45 0OLCF |20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

46 OLCF |20

Original Pack/Exchange/Unpack

 Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’

 Acycle contains a contiguous data region for MPI
Original pack/exchange/unpack

— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)

* MPI_Isend the cycle

47 OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

4 0OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

49 0OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

50 OLCF |20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
* MPI_Isend the cycle

— For each “receive cycle”
« MPI_Wait for the data
 Send cycle over PCl-e (H2D)

51 LCF | 20

Original Pack/Exchange/Unpack

» Edge_pack ensures data for MPI is contiguous in buffer
* MPI communication occurs in “cycles’
 Acycle contains a contiguous data region for MPI

* Original pack/exchange/unpack
— Pack all edges in a GPU Kernel

— For each “send cycle”
« Send cycle over PCl-e (D2H)
« MPI_Isend the cycle
— For each “receive cycle”
« MPI_Wait for the data
« Send cycle over PCl-e (H2D)
— Unpack all edges in a GPU Kernel

52 OLCF|20

Optimizing Pack/Exchange/Unpack

 Fora cycle, PCl-e D2H depends only on packing that cycle

— Divide edge_pack into equal-sized cycles
1. Find only the elements directly involved in each separate cycle
2. Evenly divide remaining elements among the cycles

— Associate each cycle with a unique CUDA stream

— Launch each pack in its stream

— After a cycle is packed, call async. PCl-e D2H in its Stream
 Edge_unpack at MPI boundaries requires all MPI to be finished
» However, internal unpacks can be done directly after packing

53 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

54 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

55 OLCF |20 f"i:_"j;’r;i

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

56 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

57 OLCF |20

Porting Strategy: Pack/Exchange/Unpack

 Foreach cycle
— Launch edge_pack kernel for the cycle in a unique stream
— Call a cudaEventRecord for the stream’s packing event

58 OLCF |20

Other Important Porting Considerations

* Memory coalescing in kernels
— Know how threads are accessing GPU DRAM

5 AOLCF |20

Think Differently About Threading

CPU Code
do ie=1,nelemd
do g=1,qsize
do k=1,nlev
do j=1,np
do i=1,np
coefs(l i,7,k,q,1e) =
coefs (2, 1,],k,q,1e) =
coefs(3,1,j,k,q,ie) =
GPU Code
ie = blockidx%y
g = blockidx%x
k = threadidx%z
j = threadidx%y
1 = threadidx%x
coefs(1l,1,j,k,q,ie) =
coefs(2,1,j,k,q,1e) =
coefs(3,1,j,k,q,1e) =

60 OLCF|20

Think Differently About Threading

CPU Code
do ie=1,nelemd Coded to respect
do g=1,qgsize :
do k=1,nlev cache locality
do j=1,np

do i=1,np
coefs (1 isT,
coefs (2,1] K,q,ie)
coefs(3,1,j,k,q,ie)

GPU Code
ie = blockidx%y
g = blockidx%x
k = threadidx%z
j = threadidx%y
1 = threadidx%x

coefs(1,i,j,k,q,ie)
coefs(2,i,j,k,q,ie)
coefs(3,i,j,k,q,ie)

60 OLCF|20

Think Differently About Threading

CPU Code

do ie=1,nelemd Coded to respect
do g=1,qgsize :

do k=1,nlev cache locality
do j=1,np

do i=1,np

coefs (1l isT,

coefs (2,1] k,q,ie)

coefs(3,1,j,k,q,ie)

GPU Code
ie = blockidx%y However, this will
g = blockidx%x -
C = threadidx®z not coalesce to fill
j = threadidx%y the DRAM bus
i = thread1dx%
coefs(1l,] ,q,1e)

coefs (2, 1,j:k g,ie)
coefs(3,i,j,k,q,ie)

&2 OLCF|20

Think Differently About Threading

CPU Code
do ie=1,nelemd
do g=1,qsize
do k=1,nlev
do j=1,np
do i=1,np
coefs(l,i,j,k,q,ie) =
coefs(2,1,j,k,q,ie) =
coefs(3,1,j,k,q,ie) =
GPU Code
ie = blockidx%y
g = blockidx%x
k = threadidx%z
j = threadidx%y
1 = threadidx%x

coefs(i,j,k,q,ie,
coefs(i,j,k,q,ie,

coefs(i,j.k,q,ie |3

63 DLE:F| 20

Other Important Porting Considerations

* Memory coalescing in kernels
— Know how threads are accessing GPU DRAM

 Use of shared memory
— New vertical remap does nearly all computations on shared memory
— Only accesses to DRAM are at start and end of a very large kernel
— Hence, a 5.5x speed-up over CPU code for vertical remap
— Watch out for banking conflicts

64 OLCF |20

Other Important Porting Considerations

* Memory coalescing in kernels
— Know how threads are accessing GPU DRAM

 Use of shared memory
— New vertical remap does nearly all computations on shared memory
— Only accesses to DRAM are at start and end of a very large kernel
— Hence, a 5.5x speed-up over CPU code for vertical remap
— Watch out for banking conflicts

* Qverlapping kernels with CPU code execution

— Any non-dependent sections of code overlapped with kernels
— Computed & PCl-e copied data for future kernels during prior kernels

65 OLCF |20

Other Important Porting Considerations

* Memory coalescing in kernels
— Know how threads are accessing GPU DRAM

 Use of shared memory
— New vertical remap does nearly all computations on shared memory
— Only accesses to DRAM are at start and end of a very large kernel
— Hence, a 5.5x speed-up over CPU code for vertical remap
— Watch out for banking conflicts

* Qverlapping kernels with CPU code execution

— Any non-dependent sections of code overlapped with kernels
— Computed & PCl-e copied data for future kernels during prior kernels

 PCl-e copies: consolidate if small, break up & pipeline if large

66 OLCF|20

Speed-Up: Fermi GPU vs 1 Interlagos / Node

 Benchmarks performed on XK6 using end-to-end wall timers
* All PCl-e and MPI communication included

67 OLCF|20 peiiic:

Computational Time-step barrier

* Without it, climate simulation will hit the time-step barrier
— Little benefit from higher scales of computing
— Must choose between higher resolution or tolerable throughput

 Dramatically improve accuracy of highly-coupled models
» Dramatically accelerate spin-up of new simulations

* Potentially revolutionize climate simulation and other application areas
with long time integration

* Crucial for climate simulation, promising for other fields

68 OLCF |20

Implicit versus Explicit

* Explicit time integration

— Directly compute future state using derivatives at current or past
times

— Time step limited by numerical stability

* Implicit time integration
— Define future state using derivates at that time, resulting in a
system of (nonlinear) equations
— Use (nonlinear) solver to determine future state
— Numerically stable for large time steps
— Time step limited by accuracy
— Performance limited by solver

69 OLCF |20

Accelerating Implicit solutions

Linking CAM-SE with third party
software to create direct path to

community algorithmic
development

70 OLCF| 20

=4

///
sni-

i

7
i

/4
.

SM-0

| Registers |

L1

Linking CAM-SE with GPU
community algorithmic

development

SM-N

Registers

L1 SMEM

Merging these separate efforts into the trunk of
CAM-SE will allow accelerated time-stepping
methods on hybrid architecture that keeps pass
with community algorithmic development

Why Third Party Software?

71

OLCF

20

New time step
X={U,V,PH} |

Move forward to next time step

Start Nonlinear loop, 06X =0
Calculate Residual |
Is Norm below Nonlinear

Calculate L, Norm

Tolerance?

Yes!

Assume JOX = -F(X)

Build 6X using GMRES

Build Krylov Vector, w &
Nonlinear Loo
p —

Calculate Jw with FD

Does it satisfy linear
tolerance?

Yes

Run precon again

Solve for 0X, X+ « 0X (« Is damping factor)

JFNK Nested Algorithm e

No

ya
N

Linear Loop

\No

No

Yes

Modules available to CAM-SE

* derived_type_mod
— type(derived_type) :: object (HOMME variables)
— subroutine initialize(object, HOMME vars)
« implicit_mod
— subroutine imp_solver(HOMME variables)
« Setc_ptr->f ptr-> object
— In c++, c_funptr points to calc_f in Fortran

— subroutine calc_f(x(l), f(1), 1, ¢_ptr) bind(C,name=*‘user_sub_name’)
* noxlocainterface.cpp calls calc_1()

* noxlocainterface.hpp

72 OLCF |20

Next Steps - Implicit Framework

do n=1,nvar
do ie=nets,nete
do k=1,nlev
do j=1,np
do i=1,np
x = x+1
if (n==1) xstate(1lx)
if (n==2) xstate(lx)
if (n==3) xstate(lx)
end do !np
end do !np
end do !nlev
end do !ie
end do !nvar

elem(ie)%sstate%sv(i,j,1,k,npl)
elem(ie)%sstate%sv(i,j,2,k,npl)
elem(ie)%sstate%sp(i,j,k,npl)

call noxsolve(size(xstate), xstate, c_ptr_to_object, c_ptr_to_pre)

x =0
do n=1,nvar
do ie=nets,nete
do k=1,nlev
do j=1,np
do i=1,np
x = x+1
if (n==1) elem(ie)%state%v(i,j,1,k,npl)=xstate(1lx)
if (n==2) elem(ie)%state%v(i,j,2,k,npl)=xstate(1x)
if (n==3) elem(ie)%state%p(i,j,k,npl)=xstate(1lx)
end do !np
end do !np
end do !nlev
end do !ie
end do !nvar

subroutine residual(xstate, fx, nelemd, c_ptr_to_object) bind(C,name='calc_f"')

use ,intrinsic :: iso_c_binding
use kinds, only : real_kind
use dimensions_mod, only : np, nlev, nvar, nelem

73 OLCF |20

Next Steps - GPU Framework

subroutine remap_velocityQ_launcher(n®,npl,dt,elem, hvcoord,nets,nete,compute_diagnostics,rkstage)
use hybrid_mod, only: hybrid_t

! Setup Thread Partitioning
blockdim = dim3(np,np, _EUL_BLK_)
griddim = dim3(qsize_d, int{ceiling(dble(nete-nets+1)/dble(_EUL_BLK_))),1)

if(compute_mean_flux==1 .and. prescribed_wind==08) use_mean_flux=.true.

do ie=nets,nete
do i=1,np
do j=1,np
do k=1,nlev
dp_npl_h(i,j,k,ie) = (hvcoord%hyai(k+1) - hvcoord%hyai(k))=hvcoord%ps® + &
(hvcoord%hybi(k+1) - hvcoord%hybi(k))=elem(ie)%state%ps_v(i,j,npl)

endif
enddo
enddo
enddo
enddo
ierr = cudaMemcpy(dp_star_d,dp_star_h,size(dp_star_h),cudaMemcpyHostToDevice)
ierr = cudaMemcpy(dp_npl_d ,dp_npl_h ,size(dp_npl_h),cudaMemcpyHostToDevice)

ierr = cudaDeviceSetCacheConfig(cudaFuncCachePreferlLl)

call remap_velocityQ_kernel_new<<<griddim,blockdim=>>>(n@,npl,dt,device_arrays%Qdp,nets,nete, comput
ierr = cudaThreadSynchronize()

call t_stopf('remap_velocityQ')

end subroutine remap_velocityQ_launcher

74 OLCF|20 ~CRIDGE

Next Steps - Linked Framework

do n=1,nvar
do ie=nets,nete subroutine remap_velocityQ_launcher(n®,npl,dt,elem,hvcoord,nets,nete,compute_diagnostics,rkstage)

dodg=};21ﬁ; use hybrid_mod, only: hybrid_t
do i=1,np 223 :
x = lx+1 ! Setup Thread Partitioning
if (n==1) xstate(lx) = elem(ie)%statesv(i,j,1,k,npl) blockdim = dim3(np, np, _EUL_BLK_)
if (n==2) xstate(lx) = elem(ie)%stateswv(i,j,2,k,npl) griddim = dim3(gsize_d, int(ceiling(dble(nete-nets+1)/dble(_EUL_BLK_))),1)
if (n==3) xstate(lx) = elem(ie)%state%sp(i,j,k,npl)
ep?godoln;“p if(compute_mean_flux==1 .and. prescribed_wind==8) use_mean_flux=.true.
end do !nlev .
end do !ie do ie=nets,nete
end do !nvar do i=1,np
do j=1,np
call noxsolve(size(xstate), xstate, c_ptr_to_object, c_ptr_to_pre) do k=1,nlev
x = 6 dp_npl_h(i,j,k,ie) = (hvcoord%hyai(k+1l) - hvcoord%hyai(k))=hvcoord%ps®d + &
dz n=1 nvar (hvcoord%shybi(k+1) - hvcoord%hybi(k))=elem(ie)%state%ps_v(i,j,npl)
do ie=nets,nete X
do k=1,nlev endif
do j=1,np enddo
dg i=1inp1 enddo
X = X+
if (n==1) elem(ie)%state%v(i,j,1,k,npl)=xstate(1lx) ensggdo
if (n==2) elem(ie)%state%v(i,j,2,k,npl)=xstate(l - . .
if §Q==3} :lzz:;:;*:t:t:‘;:;'}'k'npq?=ls¥:t:(fi)X) ierr = cudaMemcpy(dp_star_d,dp_star_h,size(dp_star_h), cudaMemcpyHostToDevice)
end do !np ierr = cudaMemcpy(dp_npl_d ,dp_npl_h ,size(dp_npl_h), cudaMemcpyHostToDevice)
end do !np
end do !nlev ierr = cudaDeviceSetCacheConfig(cudaFuncCachePreferlLl)
end do !ie call remap_velocityQ_kernel_new<<<griddim,blockdim=>>(n@,npl,dt,device_arrays%Qdp,nets,nete, comput

end do tnvar ierr = cudaThreadSynchronize()

subroutine residual(xstate, fx, nelemd, c_ptr_to_object) bind(C,name='calc_f"')
call t_stopf('remap_velocityQ')

use ,intrinsic :: iso_c_binding
use kinds, only : real_kind) X A
use dimensions_mod, only : np, nlev, nvar, nelem end subroutine remap_velocityQ_launcher

Merge framework so that array state is manipulated
once and ‘calc_f executes on the GPU

75 OLCF|20

Future Efforts

3 = 2(2) +#()

{¢h°“7¢n}
Y - prognostic variable, /5

D - dynamical core component A Change coupling between land and atmosphere from
’ bulk-average of prognostic variables to distributions

P - physical parameterization suite.4 .
P P / by adaptive sampling of ensembles.

76 OLCF |20

