
Accelerating the Community Atmosphere
Model – Spectral Element Method: The
Challenges, the Science, and the Future

Direction

Rick Archibald

Predictive Methods Group
Computer Science and Mathematics Division

Climate Change Science Institute
Oak Ridge National Laboratory

Titan Users and Developers Workshop (East Coast) and Users Meeting
Knoxville, TN

February 19th, 2013

2

Teams and Projects

ORNL: OLCF
ORNL: PMG/CCSI
ORNL: CEES/CASL
NREL
ORNL: CESG/CCSI
Cray NVIDIA
LLNL
ORNL: OLCF
NVIDIA
SANDIA
LLNL

Valentine Anantharaj1,3
Rick Archibald1,2,3

Chris Baker,2
Ilene Carpenter1

Katherine Evans*23
Jeffrey Larkin1

Aaron Lott2
Matthew Norman*1

Paulius Micikevicius1
Mark Taylor23

Carrol Woodward2
*Team/Project Leader

1.   Center for Accelerated Application Readiness CAM-SE
2.   Multiscale SCIDAC Process Integration
3.   Ultra High Resolution Global Climate Simulation

3

Motivation

Preparing for the exascale, OLCF, 2009

NVIDIA Update, Jen-Hsun Huang

4

Motivation: Scientific

Variability of T85 Ensemble over 30 years of Simulation
Global Mean Variation 3 Degrees

5

Motivation: Scientific

Variability of T341 Ensemble over 30 years of Simulation
Global Mean Variation 3.5 Degrees

6

Comparison

7

8

State of the CESM

9

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

10

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

Dynamical Core
1.  “Dynamics”: wind, energy, & mass
2.  “Tracer” Transport: (H2O, CO2, O3, …)

Transport quantities not advanced by the dynamics

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

11

What is CAM-SE?
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

http://web.me.com/macweather/blogger/maweather_files/physprc2.gif

Physics Packages
Resolve anything interesting not
included in dynamical core (moist
convection, radiation, chemistry, etc)

Dynamical Core
1.  “Dynamics”: wind, energy, & mass
2.  “Tracer” Transport: (H2O, CO2, O3, …)

Transport quantities not advanced by the dynamics

12

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements

13

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions

14

Gridding, Numerics, & Target Run

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions
•  Basis coefficients describe the fluid

15

‘New capabilities and new dynamical cores in CAM’. Mark Taylor, 16th Annual
CESM Workshop, 2011.

16

Target 14km Simulations
•  16 billion degrees of freedom

17

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels

18

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel

19

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element

20

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels

21

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels
–  110 prognostic variables

ρ,ρu,ρv, p

H2O , CO2 , O3 , CH4 , ...

22

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels
–  110 prognostic variables

•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency

23

Target 14km Simulations
•  16 billion degrees of freedom

–  6 cube panels
–  240 x 240 columns of elements per panel
–  4 x 4 basis functions per element
–  26 vertical levels
–  110 prognostic variables

•  Scaled to 14,400 XT5 nodes with 60% parallel efficiency
•  Must simulate 1-2 thousand times faster than real time
•  With 10 second CAM-SE time step, need ≤ 10 ms per time step

–  32-64 columns of elements per node, 5-10 thousand nodes

24

CAM-SE Profile (Cray XT5, 14K Nodes)
•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamics	

73%	

Tracers	

7%	

Physics	

16%	

Other	

4%	

3-­‐Tracer	
 CAM-­‐SE	

Dynamics	

22%	

Tracers	

71%	

Physics	

6%	

Other	

1%	

106-­‐Tracer	
 CAM-­‐SE	

25

The Routines of Tracer Transport
Three Main Routines

•  Euler_step (3x): Performs the actual transport
•  Advance_hypervis: Stabilizes the solution with diffusion
•  Vertical_Remap: Re-grids the data vertically to a reference grid

Three Helper Routines
•  Edge_pack: Place all element edges into process-wide buffer

Edge_unpack: Sum data at element edges
–  Once per euler_step Twice per advance_hypervis

•  Limiter2d_zero: Remove negative coefficients & conserve mass
–  Once per euler_step Once per advance_hypervis

∇4

26

Call Tree Structure

prim_main

prim_run_subcycle
prim_advec_tracers…

euler_step

remap_velocity

Main driver routines

Time stepping routines

Tracer advection routines

edgevpack
bndry_exchangev
edgevunpack
laplace_sphere_wk

}=pack-unpack
pack-unpack

} This routine called
multiple times
depending upon the
type of timestep (ie,
leapfrog, RK, etc).

27

Profile of a Tracer Time Step
•  We wrote a new remapping algorithm to reduce runtime
•  Pack/exchange/unpack is ≈ half of euler_step & advance_hypervis

Other	

3%	

ver9cal	

remap	

29%	

advance	

hypervis	

32%	

euler	
 step	

36%	

Original	
 Ver7cal	
 Remap	

Other	

4%	

ver9cal	

remap	

12%	

advance	

hypervis	

39%	

euler	
 step	

45%	

New	
 Ver7cal	
 Remap	

28

GPU CAM-SE Goal

29

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

30

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels

	

	

31

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels

PCI-e D2H

32

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels

PCI-e D2H

PCI-e H2D

33

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels

PCI-e D2H

PCI-e H2D

MPI

34

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

GPU Kernels

PCI-e D2H

PCI-e H2D

MPI
Host Computation

	

	

The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software

35

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

	

	

36

Node Design

http://regmedia.co.uk/2011/05/22/cray-xk6_super-blade.jpg

http://www.thinkdigit.com/FCKeditor/uploads/26mar10470oin342t.jpg

	

	

37

Process	
 1	
 Process	
 0	

Communication Between Elements

38

Process	
 1	
 Process	
 0	

Communication Between Elements

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

39

Process	
 1	
 Process	
 0	

Communication Between Elements

Implementation

Edge_pack: pack all element edges
into process-wide buffer. Data sent
over MPI are contiguous in buffer.

Bndry_exchange: Send & receive
data at domain decomposition
boundaries

Edge_unpack: Perform a weighted
sum for data at all element edges.

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

40

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”

41

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI Cycle 1

Cycle 2

Cycle 3

Cycle 4

42

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

43

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel

44

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

45

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

46

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

47

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

48

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

49

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

50

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

51

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

52

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

–  Unpack all edges in a GPU Kernel

53

•  For a cycle, PCI-e D2H depends only on packing that cycle
– Divide edge_pack into equal-sized cycles

1.  Find only the elements directly involved in each separate cycle
2.  Evenly divide remaining elements among the cycles

–  Associate each cycle with a unique CUDA stream
–  Launch each pack in its stream
–  After a cycle is packed, call async. PCI-e D2H in its Stream

•  Edge_unpack at MPI boundaries requires all MPI to be finished
•  However, internal unpacks can be done directly after packing

Optimizing Pack/Exchange/Unpack

54

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

55

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

56

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

57

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

58

•  For each cycle
–  Launch edge_pack kernel for the cycle in a unique stream
–  Call a cudaEventRecord for the stream’s packing event

Porting Strategy: Pack/Exchange/Unpack

59

•  Memory coalescing in kernels
–  Know how threads are accessing GPU DRAM

Other Important Porting Considerations

60

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

61

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

Coded to respect
cache locality

62

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

Coded to respect
cache locality

However, this will
not coalesce to fill

the DRAM bus

63

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(i,j,k,q,ie,1) = ...
coefs(i,j,k,q,ie,2) = ...
coefs(i,j,k,q,ie,3) = ...

64

•  Memory coalescing in kernels
–  Know how threads are accessing GPU DRAM

•  Use of shared memory
–  New vertical remap does nearly all computations on shared memory
–  Only accesses to DRAM are at start and end of a very large kernel
–  Hence, a 5.5x speed-up over CPU code for vertical remap
–  Watch out for banking conflicts

Other Important Porting Considerations

65

•  Memory coalescing in kernels
–  Know how threads are accessing GPU DRAM

•  Use of shared memory
–  New vertical remap does nearly all computations on shared memory
–  Only accesses to DRAM are at start and end of a very large kernel
–  Hence, a 5.5x speed-up over CPU code for vertical remap
–  Watch out for banking conflicts

•  Overlapping kernels with CPU code execution
–  Any non-dependent sections of code overlapped with kernels
–  Computed & PCI-e copied data for future kernels during prior kernels

Other Important Porting Considerations

66

•  Memory coalescing in kernels
–  Know how threads are accessing GPU DRAM

•  Use of shared memory
–  New vertical remap does nearly all computations on shared memory
–  Only accesses to DRAM are at start and end of a very large kernel
–  Hence, a 5.5x speed-up over CPU code for vertical remap
–  Watch out for banking conflicts

•  Overlapping kernels with CPU code execution
–  Any non-dependent sections of code overlapped with kernels
–  Computed & PCI-e copied data for future kernels during prior kernels

•  PCI-e copies: consolidate if small, break up & pipeline if large

Other Important Porting Considerations

67

Speed-Up: Fermi GPU vs 1 Interlagos / Node

0	

1	

2	

3	

4	

5	

6	

Total	

Tracer

s	

Euler	

step	

Ver9c
al	
 rem

ap	

Hyper
viscos

ity	

2.6	

3.6	

2.9	

5.4	

4.2	

•  Benchmarks performed on XK6 using end-to-end wall timers
•  All PCI-e and MPI communication included

68

Computational Time-step barrier

• Without it, climate simulation will hit the time-step barrier
-  Little benefit from higher scales of computing
-  Must choose between higher resolution or tolerable throughput

• Dramatically improve accuracy of highly-coupled models

• Dramatically accelerate spin-up of new simulations

• Potentially revolutionize climate simulation and other application areas
with long time integration

• Crucial for climate simulation, promising for other fields

69

Implicit versus Explicit

• Explicit time integration
-  Directly compute future state using derivatives at current or past

times
-  Time step limited by numerical stability

• Implicit time integration
-  Define future state using derivates at that time, resulting in a

system of (nonlinear) equations
-  Use (nonlinear) solver to determine future state
-  Numerically stable for large time steps
-  Time step limited by accuracy
-  Performance limited by solver

70

Accelerating Implicit solutions

Linking CAM-SE with third party
software to create direct path to
community algorithmic
development

Linking CAM-SE with GPU
community algorithmic

development

Merging these separate efforts into the trunk of
CAM-SE will allow accelerated time-stepping

methods on hybrid architecture that keeps pass
with community algorithmic development

71

Why Third Party Software?

JFNK Nested Algorithm

72

• derived_type_mod
–  type(derived_type) :: object (HOMME variables)
–  subroutine initialize(object, HOMME vars)

•  implicit_mod
–  subroutine imp_solver(HOMME variables)

•  Set c_ptr -> f_ptr -> object
–  In c++, c_funptr points to calc_f in Fortran
–  subroutine calc_f(x(l), f(l), l, c_ptr) bind(C,name=‘user_sub_name’)

• noxlocainterface.cpp calls calc_f()
• noxlocainterface.hpp

Modules available to CAM-SE

73

Next Steps – Implicit Framework

74

Next Steps – GPU Framework

75

Next Steps – Linked Framework

Merge framework so that array state is manipulated
once and ‘calc_f’ executes on the GPU

76

Future Efforts

@

@t
= D

⇣

⌘
+ P

⇣

⌘
,

 - prognostic variable,

D - dynamical core component,

P - physical parameterization suite.

Change coupling between land and atmosphere from

bulk-average of prognostic variables to distributions

by adaptive sampling of ensembles.

 { 1, . . . , n}

