
Performance Measurement and 
Analysis Tools for the Cray XK 

System 

Heidi Poxon 
Cray Inc. 



Strengths 

OLCF Workshop, January 2013 Cray Inc. 
2 

Provide a complete solution from instrumentation to 
measurement to analysis to visualization of data 

● Performance measurement and analysis on large systems 
●  Automatic Profiling Analysis 
●  Load Imbalance 
●  HW counter derived metrics 
●  Predefined trace groups provide performance statistics for libraries 

called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.) 
●  Observations of inefficient performance 
●  Data collection and presentation filtering 
●  Data correlates to user source (line number info, etc.) 
●  Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC 
●  Access to network counters 
●  Minimal program perturbation 



The Cray Performance Analysis Framework 

OLCF Workshop, January 2013 Cray Inc. 
3 

● Supports traditional post-mortem performance analysis 
●  Automatic identification of performance problems 

●  Indication of causes of problems 
●  Suggestions of modifications for performance improvement 

 
●  pat_build: provides automatic instrumentation  
●  CrayPat run-time library collects measurements (transparent to the 

user) 
●  pat_report performs analysis and generates text reports  
●  pat_help: online help utility 
●  Cray Apprentice2: graphical visualization tool 

●  To access software: 
●  module load perftools 



Where to Run Instrumented Application 

OLCF Workshop, January 2013 Cray Inc. 4 

● By default, data files are written to the execution directory 

● Default behavior requires file system that supports record 
locking, such as Lustre ( /mnt/snx3/… , /lus/…, /scratch/
…,etc.) 
●  Can use PAT_RT_EXPFILE_DIR to point to existing directory that 

resides on a high-performance file system if not execution directory 

● Number of files used to store raw data 
●  1 file created for program with 1 – 256 processes 
●  √n files created for program with 257 – n processes 
●  Ability to customize with PAT_RT_EXPFILE_MAX 

● See intro_craypat(1) man page 



Apprentice2 Overview 

OLCF Workshop, January 2013 Cray Inc. 
5 



Sampling with Line Number information 

OLCF Workshop, January 2013 Cray Inc. 
6 



MPI Messages By Caller 

OLCF Workshop, January 2013 Cray Inc. 
7 



Call Tree View 

OLCF Workshop, January 2013 Cray Inc. 
8 

Function	


List	



Load balance overview:	


Height  Max time	


Middle bar  Average time	


Lower bar  Min time	


Yellow represents 
imbalance time   	



Zoom	



Height  exclusive time	



Width  inclusive time	



DUH Button:	


Provides hints 
for performance 
tuning	



Filtered	


nodes or	


sub tree	





Mosaic View – Shows Communication Pattern 

OLCF Workshop, January 2013 Cray Inc. 
9 



Traffic Report – MPI Communication Timeline 

OLCF Workshop, January 2013 Cray Inc. 
10 



OLCF Workshop, January 2013 
11 

Cray Inc. 



A Porting and Optimization Strategy for 
Hybrid and Many-core Systems 
 
● Maximize on-node communication between MPI ranks 

● Relieve on-node shared resource contention by pairing 
threads or processes that perform different work (for 
example computation with off-node communication) on 
the same node 

● Add parallelism to MPI ranks to take advantage of cores 
within a node while minimizing network injection 
contention 

● Accelerate work intensive parallel loops 

 

OLCF Workshop, January 2013 Cray Inc. 
12 



OLCF Workshop, January 2013 
13 

Cray Inc. 



Automatic Communication Grid Detection 

OLCF Workshop, January 2013 Cray Inc. 
14 

● Analyze runtime performance data to identify grids in a 
program to maximize on-node communication 
●  Example: nearest neighbor exchange in 2 dimensions 

●  Sweep3d uses a 2-D grid for communication 

● Determine whether or not a custom MPI rank order will 
produce a significant performance benefit 

● Grid detection is helpful for programs with significant 
point-to-point communication 

● Doesn’t interfere with MPI collective communication 
optimizations 



Automatic Communication Grid Detection (2) 

OLCF Workshop, January 2013 Cray Inc. 
15 

●  Tools produce a custom rank order if it’s beneficial based 
on grid size, grid order and cost metric 

● Heuristics available for: 
●  MPI sent message statistics 
●  User time (time spent in user functions) – can be used for PGAS 

codes 
●  Hybrid of sent message and user time) 

● Summarized findings in report 

● Available with sampling or tracing 
 
● Describe how to re-run with custom rank order 



MPI Rank Order Observations 

OLCF Workshop, January 2013 Cray Inc. 
16 

Table 1:  Profile by Function Group and Function!
!
 Time%  |      Time  |     Imb.  |  Imb.  |  Calls  |Group!
        |            |     Time  | Time%  |         | Function!
        |            |           |        |         |  PE=HIDE!
!
 100.0% | 463.147240 |        -- |     -- | 21621.0 |Total!
|------------------------------------------------------------------------!
|  52.0% | 240.974379 |        -- |     -- | 21523.0 |MPI!
||-----------------------------------------------------------------------!
||  47.7% | 221.142266 | 36.214468 |  14.1% | 10740.0 |mpi_recv!
||   4.3% |  19.829001 | 25.849906 |  56.7% | 10740.0 |MPI_SEND!
||=======================================================================!
|  43.3% | 200.474690 |        -- |     -- |    32.0 |USER!
||-----------------------------------------------------------------------!
||  41.0% | 189.897060 | 58.716197 |  23.6% |    12.0 |sweep_!
||   1.6% |   7.579876 |  1.899097 |  20.1% |    12.0 |source_!
||=======================================================================!
|   4.7% |  21.698147 |        -- |     -- |    39.0 |MPI_SYNC!
||-----------------------------------------------------------------------!
|   4.3% |  20.091165 | 20.005424 |  99.6% |    32.0 | mpi_allreduce_(sync)!
||=======================================================================!
|   0.0% |   0.000024 |        -- |     -- |    27.0 |SYSCALL!
|========================================================================!



MPI Rank Order Observations (2) 

OLCF Workshop, January 2013 Cray Inc. 
17 

!
MPI Grid Detection:!
!
    There appears to be point-to-point MPI communication in a 96 X 8!
    grid pattern. The 52% of the total execution time spent in MPI!
    functions might be reduced with a rank order that maximizes!
    communication between ranks on the same node. The effect of several !
    rank orders is estimated below.!
!
    A file named MPICH_RANK_ORDER.Grid was generated along with this!
    report and contains usage instructions and the Custom rank order!
    from the following table.!
!
         Rank    On-Node     On-Node   MPICH_RANK_REORDER_METHOD!
        Order   Bytes/PE   Bytes/PE%!
                            of Total!
                            Bytes/PE!
!
        Custom  2.385e+09      95.55%  3!
           SMP  1.880e+09      75.30%  1!
          Fold  1.373e+06       0.06%  2!
    RoundRobin  0.000e+00       0.00%  0!



MPICH_RANK_ORDER File 

OLCF Workshop, January 2013 Cray Inc. 
18 

 
# The 'Custom' rank order in this file targets nodes with multi-core 
# processors, based on Sent Msg Total Bytes collected for: 
# 
# Program:      /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi 
# Ap2 File:     sweep3d.mpi+pat+27054-89t.ap2 
# Number PEs:   48 
# Max PEs/Node: 4 
# 
# To use this file, make a copy named MPICH_RANK_ORDER, and set the  
# environment variable MPICH_RANK_REORDER_METHOD to 3 prior to  
# executing the program. 
# 
# The following table lists rank order alternatives and the grid_order 
# command-line options that can be used to generate a new order. 
… 



Auto-Generated MPI Rank Order File 

OLCF Workshop, January 2013 Cray Inc. 
19 

# The 
'USER_Time_hybrid' 
rank order in this 
file targets nodes 
with multi-core!
# processors, based on 
Sent Msg Total Bytes 
collected for:!
#!
# Program:      /lus/
nid00023/malice/
craypat/WORKSHOP/bh2o-
demo/Rank/sweep3d/src/
sweep3d!
# Ap2 File:     
sweep3d.gmpi-u.ap2!
# Number PEs:   768!
# Max PEs/Node: 16!
#!
# To use this file, 
make a copy named 
MPICH_RANK_ORDER, and 
set the!
# environment variable 
MPICH_RANK_REORDER_MET
HOD to 3 prior to!
# executing the 
program.!
#!
0,532,64,564,32,572,96
,540,8,596,72,524,40,6
04,24,588!
104,556,16,628,80,636,
56,620,48,516,112,580,
88,548,120,612!

1,403,65,435,33,411,97
,443,9,467,25,499,105,
507,41,475!
73,395,81,427,57,459,1
7,419,113,491,49,387,8
9,451,121,483!
6,436,102,468,70,404,3
8,412,14,444,46,476,11
0,508,78,500!
86,396,30,428,62,460,5
4,492,118,420,22,452,9
4,388,126,484!
129,563,193,531,161,57
1,225,539,241,595,233,
523,249,603,185,555!
153,587,169,627,137,63
5,201,619,177,515,145,
579,209,547,217,611!
7,405,71,469,39,437,10
3,413,47,445,15,509,79
,477,31,501!
111,397,63,461,55,429,
87,421,23,493,119,389,
95,453,127,485!
134,402,198,434,166,41
0,230,442,238,466,174,
506,158,394,246,474!
190,498,254,426,142,45
8,150,386,182,418,206,
490,214,450,222,482!
128,533,192,541,160,56
5,232,525,224,573,240,
597,184,557,248,605!
168,589,200,517,152,62
9,136,549,176,637,144,
621,208,581,216,613!

5,439,37,407,69,447,10
1,415,13,471,45,503,29
,479,77,511!
53,399,85,431,21,463,6
1,391,109,423,93,455,1
17,495,125,487!
2,530,34,562,66,538,98
,522,10,570,42,554,26,
594,50,602!
18,514,74,586,58,626,8
2,546,106,634,90,578,1
14,618,122,610!
135,315,167,339,199,34
7,259,307,231,371,239,
379,191,331,247,299!
175,363,159,323,143,35
5,255,291,207,275,183,
283,151,267,215,223!
133,406,197,438,165,47
0,229,414,245,446,141,
478,237,502,253,398!
157,510,189,462,173,43
0,205,390,149,422,213,
454,181,494,221,486!
130,316,260,340,194,37
2,162,348,226,308,234,
380,242,332,250,300!
202,364,186,324,154,35
6,138,292,170,276,178,
284,210,218,268,146!
4,535,36,543,68,567,10
0,527,12,599,44,575,28
,559,76,607!
52,591,20,631,60,639,8
4,519,108,623,92,551,1
16,583,124,615!

3,440,35,432,67,400,99
,408,11,464,43,496,27,
472,51,504!
19,392,75,424,59,456,8
3,384,107,416,91,488,1
15,448,123,480!
132,401,196,441,164,40
9,228,433,236,465,204,
473,244,393,188,497!
252,505,140,425,212,45
7,156,385,172,417,180,
449,148,489,220,481!
131,534,195,542,163,56
6,227,526,235,574,203,
598,243,558,187,606!
251,590,211,630,179,63
8,139,622,155,550,171,
518,219,582,147,614!
761,660,737,652,705,66
8,745,692,673,700,641,
684,713,644,753,724!
729,732,681,756,721,71
6,764,676,697,748,689,
657,740,665,649,708!
760,528,736,536,704,56
0,744,520,672,568,712,
592,752,552,640,600!
728,584,680,624,720,51
2,696,632,688,616,664,
544,608,656,648,576!
762,659,738,651,706,66
7,746,643,714,691,674,
699,754,683,730,723!
722,731,763,658,642,75
5,739,675,707,650,682,
715,698,666,690,747!

257,345,265,313,281,30
5,273,337,609,369,577,
377,617,329,513,529!
545,297,633,361,625,32
1,585,537,601,289,553,
353,593,521,569,561!
256,373,261,341,264,34
9,280,317,272,381,269,
309,285,333,277,365!
352,301,320,325,288,35
7,328,304,360,312,376,
293,296,368,336,344!
258,338,266,346,282,31
4,274,370,766,306,710,
378,742,330,678,362!
646,298,750,322,718,35
4,758,290,734,662,686,
670,726,702,694,654!
262,375,263,343,270,31
1,271,351,286,319,278,
342,287,350,279,374!
294,318,358,383,359,31
0,295,382,326,303,327,
367,366,335,302,334!
765,661,709,663,741,65
3,711,669,767,655,743,
671,749,695,679,703!
677,727,751,693,647,70
1,717,687,757,685,733,
725,719,735,645,759!
!

!



Approach to Adding Parallelism 

1.  Identify possible accelerator kernels 
●  Determine where to add additional levels of parallelism 

●  Assumes MPI application is functioning correctly on X86 
●  Find top serial work-intensive loops (perftools + CCE loop work estimates) 

2.  Perform parallel analysis, scoping and vectorization 
●  Split loop work among threads 

●  Do parallel analysis and restructuring on targeted high level loops 
●  Use CCE loopmark feedback, Reveal loopmark and source browsing 

3.  Move to OpenMP and then to OpenACC 
●  Add parallel directives and acceleration extensions 

●  Insert OpenMP directives (Reveal scoping assistance) 
●  Run on X86 to verify application and check for performance improvements 
●  Convert desired OpenMP directives to OpenACC 

4.  Analyze performance from optimizations 
 

OLCF Workshop, January 2013 Cray Inc. 
20 



OLCF Workshop, January 2013 
21 

Cray Inc. 



● Helps identify high-level serial loops to parallelize 

●  Based on runtime analysis, approximates how much work exists within 
a loop 

●  Provides min, max and average trip counts that can be used to 
approximate work and help carve up loop on GPU 

 

Loop Work Estimates 

OLCF Workshop, January 2013 Cray Inc. 
22 



Collecting Loop Statistics 

OLCF Workshop, January 2013 Cray Inc. 
23 

●  Load PrgEnv-cray module 
●  Load perftools module 

● Compile AND link with –h profile_generate 

●  Instrument binary for tracing 
●  pat_build –w my_program 

● Run application 

● Create report with loop statistics 
●  pat_report my_program.xf > loops_report 



Example Report –  Inclusive Loop Time 

OLCF Workshop, January 2013 Cray Inc. 

!
!
Table 2:  Loop Stats by Function (from -hprofile_generate)!
!
    Loop  |    Loop  |   Loop  |  Loop  |  Loop  |Function=/.LOOP[.]!
    Incl  |     Hit  |  Trips  | Trips  | Trips  | PE=HIDE!
    Time  |          |    Avg  |   Min  |   Max  |!
   Total  |          |         |        |        |!
|------------------------------------------------------------------------!
| 8.995914 |      100 |      25 |      0 |     25 |sweepy_.LOOP.1.li.33!
| 8.995604 |     2500 |      25 |      0 |     25 |sweepy_.LOOP.2.li.34!
| 8.894750 |       50 |      25 |      0 |     25 |sweepz_.LOOP.05.li.49!
| 8.894637 |     1250 |      25 |      0 |     25 |sweepz_.LOOP.06.li.50!
| 4.420629 |       50 |      25 |      0 |     25 |sweepx2_.LOOP.1.li.29!
| 4.420536 |     1250 |      25 |      0 |     25 |sweepx2_.LOOP.2.li.30!
| 4.387534 |       50 |      25 |      0 |     25 |sweepx1_.LOOP.1.li.29!
| 4.387457 |     1250 |      25 |      0 |     25 |sweepx1_.LOOP.2.li.30!
| 2.523214 |   187500 |     107 |      0 |    107 |riemann_.LOOP.2.li.63!
| 1.541299 | 20062500 |      12 |      0 |     12 |riemann_.LOOP.3.li.64!
| 0.863656 |  1687500 |     104 |      0 |    108 |parabola_.LOOP.6.li.67!

24 



OLCF Workshop, January 2013 
25 

Cray Inc. 



OLCF Workshop, January 2013 Cray Inc. 
26 



Reveal 

New code analysis and restructuring assistant… 
 
● Uses both the performance toolset and CCE’s program 

library functionality to provide static and runtime analysis 
information  

 
● Key Features 

●  Annotated source code with compiler optimization information 
●  Feedback on critical dependencies that prevent optimizations 

●  Scoping analysis 
●  Identify, shared, private and ambiguous arrays 

●  Allow user to privatize ambiguous arrays 
●  Allow user to override dependency analysis 

●  Source code navigation based on performance data collected through 
CrayPat 

OLCF Workshop, January 2013 Cray Inc. 
27 



Reveal with Loop Work Estimates  

OLCF Workshop, January 2013 Cray Inc. 
28 



Visualize Loopmark with Performance Information 

OLCF Workshop, January 2013 Cray Inc. 

Performance 
feedback 

Loopmark and optimization 
annotations 

Compiler feedback 

29 



OLCF Workshop, January 2013 Cray Inc. 
30 

Visualize CCE’s Loopmark with Performance 
Profile (2) 

Integrated 
message 

‘explain support’ 

Integrated 
message 

‘explain support’ 



View Pseudo Code for Inlined Functions 

OLCF Workshop, January 2013 Cray Inc. 
31 

Inlined call 
sites marked 

Expand to 
see pseudo 

code 



Scoping Assistance – Review Scoping Results  

OLCF Workshop, January 2013 Cray Inc. 

User addresses 
parallelization 

issues for 
unresolved 
variables 

Loops with 
scoping 

information are 
highlighted – red 

needs user 
assistance 

Parallelization inhibitor 
messages are provided to 
assist user with analysis 

32 



Scoping Assistance – User Resolves Issues 

OLCF Workshop, January 2013 Cray Inc. 

Click on variable to 
view all 

occurrences in loop Use Reveal’s 
OpenMP 

parallelization tips 

33 



Scoping Assistance – Generate Directive 

OLCF Workshop, January 2013 Cray Inc. 

Automatically 
generate 
OpenMP 
directive 

Reveal generates 
example OpenMP 

directive 

34 



OLCF Workshop, January 2013 
35 

Cray Inc. 



Programming Models Supported for the GPU 

OLCF Workshop, January 2013 Cray Inc. 

● Goal is to provide whole program analysis for programs 
written for x86 or hybrid x86 + GPUs 

● Development focus is on support of CCE with OpenACC 
directives 

 
● Cray XK programming models supported 

●  OpenACC, CUDA, PGI acc (or OpenACC) directives 

36 



Collecting GPU Statistics for OpenACC 

OLCF Workshop, January 2013 Cray Inc. 
37 

●  Load PrgEnv-cray module 
●  Load perftools module 

●  Instrument binary for tracing and collecting GPU statistics 
●  pat_build –u –g mpi,blas my_program 

● Run application 

● Create report with GPU statistics 
●  pat_report my_program.xf > GPU_stats_report 



Analyze Performance of Accelerated Program 

OLCF Workshop, January 2013 Cray Inc. 

● Statistics collected for programs with OpenACC directives 
●  Number of GPUs used in the job 
●  Host time for kernel launches, data copies and synchronization with 

the accelerator 
●  Accelerator time for kernel execution and data copies 
●  Data copy size to and from the accelerator 
●  Kernel grid size 
●  Block size 
●  Amount of shared memory dynamically allocated for kernel 
●  GPU performance counters 
●  Derived metrics based on performance counters 
 

38 



Profile with GPU 

OLCF Workshop, January 2013 Cray Inc. 
39 



Call Tree with GPU regions 

OLCF Workshop, January 2013 Cray Inc. 
40 



Example Accelerator Statistics 

OLCF Workshop, January 2013 Cray Inc. 

 
 

 
 
Table 1:  Time and Bytes Transferred for Accelerator Regions 
  Host  |    Host  |     Acc  | Acc Copy  | Acc Copy  | Calls  |Calltree  
 Time%  |    Time  |    Time  |       In  |      Out  |        | PE=HIDE  
        |          |          | (MBytes)  | (MBytes)  |        | 
 100.0% |    2.750 |    2.015 |  2812.760 |    13.568 |    103 |Total 
|-------------------------------------------------------------------------------------------------------------------- 
| 100.0% |    2.750 |    2.015 |  2812.760 |    13.568 |    103 |lbm3d2p_d_ 
|        |          |          |           |           |        | lbm3d2p_d_.ACC_DATA_REGION@li.104 
|||------------------------------------------------------------------------------------------------------------------ 
3||  63.5% |    1.747 |    1.747 |  2799.192 |        -- |      1 |lbm3d2p_d_.ACC_COPY@li.104 
3||  22.1% |    0.609 |    0.088 |    12.304 |    12.304 |     36 |streaming_ 
||||----------------------------------------------------------------------------------------------------------------- 
4|||  20.6% |    0.566 |    0.046 |    12.304 |    12.304 |     27 |streaming_exchange_ 
5|||        |          |          |           |           |        | streaming_exchange_.ACC_DATA_REGION@li.526 
6|||  18.8% |    0.517 |       -- |        -- |        -- |      1 |  streaming_exchange_.ACC_DATA_REGION@li.526(exclusive) 
4|||   1.6% |    0.043 |    0.042 |        -- |        -- |      9 |streaming_.ACC_DATA_REGION@li.907 
5|||   1.1% |    0.031 |    0.031 |        -- |        -- |      4 | streaming_.ACC_REGION@li.909 
6|||   1.1% |    0.031 |       -- |        -- |        -- |      1 |  streaming_.ACC_REGION@li.909(exclusive) 
||||================================================================================================================= 
 
... 

41 



Example Kernel Statistics 

OLCF Workshop, January 2013 Cray Inc. 

 
 
Table 2:  Kernel Stats for Accelerator Regions 
  Avg  |  Avg  |  Avg  |   Avg  |   Avg  |   Avg  |Function  
 Grid  | Grid  | Grid  | Block  | Block  | Block  | 
    X  |    Y  |    Z  | X Dim  | Y Dim  | Z Dim  | 
  Dim  |  Dim  |  Dim  |        |        |        | 
|---------------------------------------------------------------------------------------------- 
| 62163 |     1 |     1 |   1024 |      1 |      1 |streaming_.ACC_KERNEL@li.909 
|   402 |     1 |     1 |    128 |      1 |      1 |grad_exchange_.ACC_KERNEL@li.443 
|   402 |     1 |     1 |    128 |      1 |      1 |grad_exchange_.ACC_KERNEL@li.467 
|   402 |     1 |     1 |    128 |      1 |      1 |grad_exchange_.ACC_KERNEL@li.476 
|   402 |     1 |     1 |    128 |      1 |      1 |grad_exchange_.ACC_KERNEL@li.500 
|   400 |     1 |     1 |    512 |      1 |      1 |cal_velocity_.ACC_KERNEL@li.1126 
|   400 |     1 |     1 |    512 |      1 |      1 |collisiona_.ACC_KERNEL@li.474 
|   400 |     1 |     1 |    128 |      1 |      1 |collisionb_.ACC_KERNEL@li.597 
|   400 |     1 |     1 |    128 |      1 |      1 |wall_boundary_.ACC_KERNEL@li.973 
|   400 |     1 |     1 |    128 |      1 |      1 |collisionb_.ACC_KERNEL@li.629 
|   400 |     1 |     1 |    512 |      1 |      1 |recolor_.ACC_KERNEL@li.823 
|   128 |     1 |     1 |     64 |      1 |      1 |injection_.ACC_KERNEL@li.1281 
|   128 |     1 |     1 |    128 |      1 |      1 |streaming_exchange_.ACC_KERNEL@li.829 
|   128 |     1 |     1 |    128 |      1 |      1 |streaming_exchange_.ACC_KERNEL@li.729 
|   128 |     1 |     1 |    128 |      1 |      1 |streaming_exchange_.ACC_KERNEL@li.641 
|   128 |     1 |     1 |    128 |      1 |      1 |streaming_exchange_.ACC_KERNEL@li.538 
|   101 |     1 |     1 |    128 |      1 |      1 |collisionb_.ACC_KERNEL@li.612 
|   101 |     1 |     1 |    128 |      1 |      1 |set_boundary_micro_press_.ACC_KERNEL@li.299 
|   101 |     1 |     1 |    128 |      1 |      1 |set_boundary_macro_press2_.ACC_KERNEL@li.259 
|    14 |     1 |     1 |    256 |      1 |      1 |streaming_.ACC_KERNEL@li.919 
|============================================================================================== 

42 



OLCF Workshop, January 2013 
43 

Cray Inc. 



Files Generated and the Naming Convention 

File Suffix Description 

a.out+pat Program instrumented for data collection 

a.out…s.xf 
 

Raw data for sampling experiment, available after 
application execution 

a.out…t.xf Raw data for trace (summarized or full) experiment, 
available after application execution 

a.out…st.ap2 Processed data, generated by pat_report, contains 
application symbol information 

a.out…s.apa Automatic profiling pnalysis template, generated by 
pat_report (based on pat_build –O apa experiment) 

a.out+apa Program instrumented using .apa file 

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from 
automatic grid detection an reorder suggestions 

OLCF Workshop, January 2013 Cray Inc. 
44 



OLCF Workshop, January 2013 
45 

Cray Inc. 



● Enable collection similarly to CPU counter collection: 
●  CPU: PAT_RT_HWPC=group or events 
●  GPU: PAT_RT_ACCPC=group or events 
 

● Enabling GPU counters causes change in behavior of 
application: 
●  Host needs to synchronize with the accelerator at each event (since 

accelerator executes asynchronously with the host) 

●  Can be seen through accelerator table 
●  No counters: time spent waiting for kernel to complete is shown with 

ACC_SYNC_WAIT (a synchronization created by the compiler) 

●  Counters: perftools syncs with accelerator with each event so Host Time is 
exclusive time for the containing region (since waiting occurs within the 
event’s trace point instead of in the compiler sync) 

Accelerator Hardware Performance Counters 

OLCF Workshop, January 2013 Cray Inc. 
46 



● A predefined set of groups has been created for ease of 
use 
●  Combines events that can be counted together 

● ACCPC groups start at 1000, and will be incremented by 
100 as new families of accelerators are supported 

● Specify group by number or name 
●  PAT_RT_ACCPC=1000     OR 
●  PAT_RT_ACCPC=inst_exec_gst 

● See accpc(5) and accpc_k20(5) man pages for list of 
groups and their descriptions 

Accelerator HW Counter Groups 

OLCF Workshop, January 2013 Cray Inc. 
47 


