

Reaction Networks with OpenACC
Michael Zingale, Adam Jacobs, & Max Katz

(Stony Brook)

(+ enormous help from Oscar Hernandez @ OLCF)

Reacting Flow & Splitting
● We want to solve an advective-diffusion-reaction system that looks

like

● Standard approach: operator splitting
– Treat each process independent of the others
– Strang: switch the order of operations each step to get 2nd order

accuracy
● Ex: advection-reaction:

Splitting
● Reaction rates are very temperature sensitive—over a timestep, the

rate evaluation should know how the temperature is changing.
– Split system of ODEs appears as:

● Note: even with this energy equation, you are missing the actions of
advection and diffusion, and not allowing density to self-consistently
evolve

This assumes constant
pressure in the T evolution,
for a compressible code /
explosive nucleosynthesis,
you might do constant rho

Current Code Performance
● Maestro is our low Mach number hydrodynamics code (

https://github.com/BoxLib-Codes/MAESTRO)
– uses 2nd order Godunov

method for advection,
approximate projection
(enforced via multigrid)
for the velocity
constraint, and reactions
via splitting

– Written in Fortran 2003+
– MPI/OpenMP parallelism

via BoxLib library
● Reactions can take ~20% of

our runtime

– network cost scales as N2

these points are where we do 1
MPI task with 16 OpenMP
threads per node

https://github.com/BoxLib-Codes/MAESTRO

Network Integration
● Reaction networks are stiff (loosely speaking—there is a wide range

in timescales of interest that are changing in the system)
– Implicit integration methods are needed

● E.g.: backward Euler

● Make a guess at the new-time solution, expanding the righthand side
about this guess gives a linear system. Solve for the correction and iterate

● Higher-order methods are constructed similarly
– Expense is in the RHS and Jacobian evalulation

Putting it onto GPUs
● Just evaluate the Jacobian and RHS on GPUs

– This will require a lot of data transfer
– Ideally, we need a vectorized integrator that hits the RHS evaluation for

all zones in the vector at the same time
● This still can be expensive

● Put the entire ODE integration on the GPUs
– Each zone can be treated independently
– Data transfer only at the start and end of the integration

● Which integrator?
– We use VODE as our workhorse—it is old (circa 1970) and common-block

heavy
● Not easy to OpenACC (no threadprivate directive as in OpenMP)

– Our plan is to switch to a modern integrator written by a colleague
● However, we've found that modern Fortran design patterns can cause issues

with OpenACC compilers (more on that later)

Test Driver
● We built a simple first-order integration test driver

– uses the same design patterns as our production networks
● lots of Fortran modules
● derived types

– freely available: https://github.com/BoxLib-Codes/ode-openacc
● We require OpenACC 2.0

– extensive use of functions, etc., is not supported in OpenACC 1.0
● We had lots of compiler crashes along the way—worked closely with

the OLCF compiler team, who reported bugs to PGI for us.
● Overriding goal: we want to make minimal changes to the code, as

we run on a variety of architectures and don't have the people to
maintain two branches indefinitely.

Test Driver
● Code outline:

– main loop over zones in the input vector—this is the parallelism
● !$acc loop gang vector

– numerical Jacobian constructed via simple differencing
– linear system solved with LAPACK dgesv

● we have our own copy of the LAPACK and BLAS source
● customizations:

– remove multiple exit points, add !$acc routine seq
– get rid of character arrays (OpenACC doesn't seem to like these)

Lessons Learned
● PGI compilers offer better support then Cray (at the moment)

– they became our target, especially since Cray will not be on summit
– latest PGI (version 15.7) was needed to get things compiling and giving the

correct answer
● Fortran things to avoid:

– character arrays: not supported, seem to be a low priority for OpenACC
developers. Replacing these with integer arrays is usually possible

– arrays of parameters (constants): rewrite these as allocatable arrays and
initialize them

– print statements, multiple exit points, stop statements, …
● Main summary:

– the latest compilers are much better at implementing OpenACC now
– more complex codes that didn't work a while back may be feasible now
– take a look at our example for something that uses a range of modern

Fortran for inspiration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

