—
_/’.
@

LLF

ERSHIP COMPUTING FACILITY)

Porting LAMMPS to the Titan
Supercomputer

W. Michael Brown
National Center for Computational Sciences
Oak Ridge National Laboratory

Titan Users and Developers Workshop (West Coast)
January 31, 2013

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator
0 http://lammps.sandia.gov
General Purpose Classical Molecular Dynamics Software
o Simulations for biology, materials science, granular, mesoscale, etc.
Open source (GPL), with a user community
o 1700 Citations
o0 100K downloads, 25K mail list messages
o 100 contributors to code base
Flexible and extensible:
0 80% of code-base is add-ons by developers and users
o styles: atom, pair, fix, compute, etc

Force Fields

Biomolecules: CHARMM, AMBER, OPLS,
COMPASS (class 2), Gromacs,
long-range Coulombics via PPPM,
point dipoles, ...

Polymers: all-atom, united-atom,
coarse-grain (bead-spring FENE),
bond-breaking, bond-forming, ...

Materials: EAM/MEAM for metals,
Buckingham, Morse, Yukawa,
Tersoff, COMB, AlI-REBO,
ReaxFF, GAP, ...

Mesoscale: granular, DPD, SPH, PD,
colloidal, aspherical, triangulated, ...

Hybrid Models

Water/proteins on metal/silica surface
Metal-semiconductor interface
Metal islands on amorphous (LJ) substrate

Specify 2 (or more) pair potentials:
— A-A, B-B, A-B, etc

Hybrid in two ways:

— potentials (pair, bond, etc)

— atom style (bio, metal, etc)

Spatial Decomposition

Physical domain divided into 3d boxes, one per processor

Each proc computes forces on atoms in its bc
— using info from nearby procs

Atoms "carry along" molecular topology
— as they migrate to new procs

Communication via

e

ey

N\

e

ey
Ay

— nearest-neighbor 6-way stencil

Advantages:

— communication scales
* sub-linear as (N/P)2/3
» (for large problems)

— memory is optimal N/P

P s

ANENEANEANEA

AN

Developing a Strategy for Porting
LAMMPS

* The primary developer of LAMMPS is Steve Plimpton at SNL

(307) Debugging is at least twice as hard as writing the program in the
first place. So if your code is as clever as you can possibly make it, then
by definition you're not smart enough to debug it.

-- Brian Kernighan

* Goalis to get efficient acceleration without modifying the
LAMMPS core
— Acceleration will be maintained with the main LAMMPS package

— Compatibility with all of LAMMPS features

Classical Molecular Dynamics

Time evolution of a system of particles

Calculate the force on a particle due to other particles in
the system as the gradient of the potential energy
— 2-body and many-body potentials

— Short-range forces are calculated using only particles within a
spherical cutoff

— For some models, additional long range calculations must be

performed
— For molecular models, additional forces due to bonds

Apply constraints, thermostats, barostats
Do statistics calculations, 1/0

Time integration to find new position of particles at next
time step

PPPM (Particle-Mesh Ewald)

Long range coulombics needed for many systems (charged
polymers (polyelectrolytes), Organic & biological molecules, lonic
solids, oxides

Hockney & Eastwood, Comp Sim Using Particles (1988).

Darden, et al, J Chem Phys, 98, p 10089 (1993).

Same as Ewald, except integral evaluated via:

* interpolate atomic charge to 3d mesh

» solve Poisson's equation on mesh (FFTs)

* interpolate E-fields back to atoms

e % ' L y o

Molecular Force Fields (Class 1 & 2)

E(r)=K(r-r)’
E(0)=K(@-6,)°
E(¢)=K(1+dcos(ng))
E(w) =K -v,)’

* Higher-order cross terms
« QOiriginated by
— BioSym - MSI - Accelrys

— www.accelrys.com Z % 2 %
« Parameters available in their
— commercial MD code 2 % D) E

Rhodopsin model

units
neigh modify

atom style
bond style
angle style
dihedral style
improper style
pair style
pair modify
kspace style

read data

fix
fix

tchain 1
special bonds
thermo

thermo style

timestep

run

real
delay 5 every 1

full

harmonic

charmm

charmm

harmonic

1j/charmm/coul/long 8.0 10.0
mix arithmetic

pprpm le-4

data.rhodo
1 all shake 0.0001 5 0 m 1.0 a 232

2 all npt temp 300.0 300.0 100.0 &
z 0.0 0.0 1000.0 mtk no pchain 0

charmm
50
multi

2.0

100

Rhodopsin
Simulation

350

300

250

200

150

100

50

W Force Interp
H Field Solve

W Charge Spread
Other

@ Output

B Comm

M Neigh

W Bond

M Pair

CPU

Geryon Library

Allows same code to compile with CUDA
Runtime, CUDA Driver, and OpenCL APIs

Simple classes allow for more succinct code than
CUDA-Runtime

— Change from one API to another by simply changing
the namespace

— Use multiple APIs in the same code

— Lightweight (only include files — no build required)
— Manage device query and selection

— Simple vector and matrix containers

— Simple routines for data copy and type casting

— Simple routines for data I/0

— Simple classes for managing device timing

— Simple classes for managing kernel compilation and
execution

1.4

1.2
E L W Short Range
:: M Force Interpolation
S .
Sos - M Charge Assignment
et W Particle Map
©
E 0.6 - M Data Transfer
~
[} .
£ 0.4
'—

0.2 +

0 .

CUDA OpenCL

http://users.nccs.gov/~wb8/geryon/index.htm

Accelerating Force Calculation

Add a new “pair_style” in the same manner that new
force models are added (e.g. lj/cut/gpu vs lj/cut)

Copy the atom data, neighbor list from the host

Assign each particle to a thread, thread accumulates the
force for all of its neighbors

Repack the neighbor list on the GPU for contiguous
memory access by threads

— On CPU, only need to calculate the force once for both
particles in the pair

* For shared memory parallelism, must handle memory collisions

* Can avoid this by calculating the force twice, once for each
particle in the pair
— Doubles the amount of computation for force
— Doubles the size of the neighbor list

Accelerating Force Calculation

Random memory access is expensive!
— Store atom type with the position in a 4-
vector

* Better data alignment, reduces the number
of random access fetches

* Periodically sort data by location in
simulation box in order to improve data
locality

Mixed precision — perform computations
in single precision with all accumulation
and answer storage in double precision

50x M2070 speedup versus single Istanbul
core

1000.00

100.00

Loop Time (s)

10.00

1.00

CPU (12 PPN)
Single (6 PPN)
Mixed (6 PPN)
Double (6 PPN)

~m=(CPU (12 PPN)
==#=Single (6 PPN)
== Mixed (6 PPN)
==#==Double (6 PPN)

Nodes (3 GPUs + 12 Cores Per Node)

1 2 4 8 16 32
297.80 @ 151.53 @ 76.74 38.71 20.44 10.83
37.44 19.16 10.66 6.31 4.02 3.08
45.13 23.07 12.65 7.25 4.46 3.36
94.04 48.33 25.97 14.40 8.24 5.30

Accelerating Force Calculation

512 Compute Cores on Fermi
Want many more threads than this to hide latencies

With thread per atom decomposition, need lots of
atoms per GPU

Increase parallelism with multiple threads per atom

— Tradeoff between increased parallelism and increased
computation/synchronization
* For NVIDIA and AMD, accelerators can avoid synchronization for n
threads if n is a power of 2 and n<C.
* ndepends on the model and the number of neighbors —
LAMMPS will guess this for you

* Need to change neighbor list storage in order to get contiguous
memory access for an arbitrary number of threads
— Canincrease the time for neighbor stuff, but generally a win

128

w o
N D

Wall Time
=
R N D OO O

o
n

0.25
0.125
0.0625

—e— 1 Thread per Atom
—4— 8 Threads per Atom

—a—CPU

‘%’—o—o
\
\

4 8 16 32
GPUs/CPU Cores

Accelerated Non-bonded Short-Range
Potentials

* Single, mixed, and double precision support

for: * buck/cut

. lj/cut . buck/coul/cut
. 1j96/cut . buck/coul/long
. li/expand ° eam

. lj/cut/coul/cut . eam/fs

. li/cut/coul/long . eam/alloy

. li/charmm/coul/long . table

e lj/class2 * yukawa

. lj/class2/coul/long . born

. morse . born/coul/long
e cg/cmm . born/coul/wolf
. cg/cmm/coul/long . colloid

. coul/long . coul/dsf

e gayberne * coul/long

. resquared . dipole/cut

* gauss * dipole/sf

. morse . lj/cut/coul/debye

. lj/cut/coul/dsf
. li/expand

Rhodopsin model

newton off

For GPU, we double the compute work

to avoid memory collisions

units
neigh modify

atom style
bond_style
angle style
dihedral style
improper style
pair style
pair modify
kspace style

read data

fix
fix

tchain 1
special bonds
thermo
thermo_style

timestep

run

real
delay 5 every 1

full

harmonic

charmm

charmm

harmonic

1j/charmm/coul/long/gpu 8.0 10.0
mix arithmetic

pppm le-4

data.rhodo

1 all shake 0.0001 5 0 m 1.0 a 232
2 all npt temp 300.0 300.0 100.0 &
z 0.0 0.0 1000.0 mtk no pchain 0
charmm

50

multi

2.0

100

Rhodopsin
Simulation

350

300

250

200

150

100

50

W Force Interp
H Field Solve

W Charge Spread
Other

@ Output

B Comm

M Neigh

W Bond

M Pair

CPU

Neighbor List Builds

CPU time for neighbor list builds can now become
dominant with GPU acceleration
Build neighbor lists on the GPU

— In LAMMPS, neighbor lists are requested by the
“pair_style” —just don’t request a neighbor list and you
are free to do it on the GPU

— This is optional for several reasons
First calculate cell list on GPU

— Requires binning

— Atomic operations or sort

* LAMMPS uses radix sort to get determinism or optionally
performs the binning only on the CPU

Calculate verlet list from cell list
Copy and transpose data for 1-2, 1-3, 1-4 interactions
8.4x M2070 Speedup vs Single Core Istanbul (Memory)

350

300

250

200

150

100

50

W Force Interp
® Field Solve

W Charge Spread
Other

B Output

B Comm

M Neigh

W Bond

MW Pair

CPU

°
®

® o
o e
. .
oo
®

_.0

Particle-Particle Particle-Mesh

* Most of the time spent in charge spreading and

force interpolation

* Field solve is 3D FFT
Communication intensive

Can run with an arbitrary FFT library, including cuFFT

Generally, not enough work to be worth it

* Charge spreading
* Can’t use the CPU algorithm (efficiently)
* First, map the particles to mesh points

Requires atomic operations to count number of atoms

at each point
Problem, since the particles are sorted spatially

Reindex the particles accessed by each thread to
reduce the probability of memory collisions
Reduces kernel time by up to 75%

350

300

250

200

150

100

50

W Force Interp

W Field Solve

W Charge Spread
Other

@ Output
EComm

B Neigh

W Bond

B Pair

CPU

Particle-Particle Particle-Mesh

* Second, spread the charges on the mesh using splines

— Difficult stencil problem
* Can’ttile due to shared/local memory limitations

* Use a pencil decomposition (on the GPU within each subdomain assigned to the process)

— Avoid atomic operations for charge spreading (still slower even with hardware support for
floating point atomics)

— Contiguous memory access for particle positions and charges mapped to mesh

— Tradeoff is that a significant amount of recomputation is required compared to the naive and
CPU algorithms

* Assign multiple pencils to each multiprocessor to improve strong scaling performance
— This requires an increase in the number of global memory fetches, so there are limits
e 13.7XM2070 speedup versus single core Istanbul (small number of mesh
points)

Particle-Particle Particle-Mesh

* Force Interpolation

— Use same algorithm as CPU
* Thread per atom
* No memory collisions, etc.

e 27.8x Speedup versus 1 core Istanbul

Rhodopsin model

newton off

units
neigh modify

atom style
bond_style
angle style
dihedral style
improper style
pair style
pair modify
kspace style

read data

fix
fix

tchain 1
special bonds
thermo
thermo_style

timestep

run

real
delay 5 every 1

full

harmonic

charmm

charmm

harmonic

1j/charmm/coul/long/gpu 8.0 10.0
mix arithmetic

pppm/gpu le-4
data.rhodo
1 all shake 0.0001 5 0m 1.0 a 232

2 all npt temp 300.0 300.0 100.0 &
z 0.0 0.0 1000.0 mtk no pchain 0

charmm
50
multi

2.0

100

Rhodopsin
Simulation

350

300

250

200

150

100

50

W Force Interp
H Field Solve

W Charge Spread
Other

@ Output

B Comm

M Neigh

W Bond

M Pair

CPU

CPU/GPU Concurrency

Can compute short-range, bond, angle, dihedral, improper, k-space
contributions to the forces, energies, and virials independently of each
other.

Run the calculations not ported to the accelerator simultaneously
— In some cases, there is no possible gain from porting additional routines

Can also divide the force calculation between the CPU and the accelerator
with dynamic load balancing

Can run hybrid models with one model calculated on the CPU and the
other on the accelerator

Add a new “fix” to LAMMPS with a hook to block and move accelerator
data to the host before proceeding with time integration, etc.

Rhodopsin model

newton off

fix gpu force/neigh 0 0 1

units
neigh modify

atom_style
bond style
angle style
dihedral style
improper_ style
pair style
pair modify
kspace style

read_data

fix
fix

tchain 1
special bonds
thermo
thermo_style

timestep

run

real
delay 5 every 1

full

harmonic

charmm

charmm

harmonic

1lj/charmm/coul/long/gpu 8.0 10.0
mix arithmetic

pppm/gpu le-4

data.rhodo
1 all shake 0.0001 5 0 m 1.0 a 232

2 all npt temp 300.0 300.0 100.0 &
z 0.0 0.0 1000.0 mtk no pchain 0

charmm
50
multi

2.0

100

Rhodopsin
Simulation

350

300

250

200

150

100

50

W Force Interp
H Field Solve

W Charge Spread
Other

@ Output

B Comm

M Neigh

W Bond

M Pair

CPU

350
300
250
200
150
100

50

CPU

W Data Transfer

M Data Cast

M Force Interp (27.8x Speedup)

W Field Solve

M Charge Spread (13.7x Speedup)
Other

E Output

B Comm

M Neigh (8.4x Speedup)

m Bond

M Pair (50x Speedup)

8.6x

T

—

GPU

But we have 16 cores
on the Interlagos chip
and LAMMPS scales
well...

Need to parallelize code not ported for the accelerator on

the CPU cores:

Example: Rhodopsin
Benchmark on a box with 12
CPU cores and 1 GPU

— Here, only the non-bonded
“pair” force calculation is
accelerated for an example

— Speedup on 1 CPU core with a
GPU is only 2.6x with this
approach (M2070 vs Istanbul)

— Speedup vs 12 CPU cores is
still > 2x because we use all 12
cores in addition to the GPU

* MPI Processes Share the GPU

250

200 -

150 +

100 -

50 -

Other
B Output
mComm
H Neigh —
H Kspce
H Bond

M Pair

CPU

GPU+CPU

1 CPU Core

CPU

o

|
)
o
o
-+
)
o

2 CPU Cores

G

2
a
o

G

4 CPU Cores

=) 2
o a
O &)
+
)
[a

cpu+cru [l

8 CPU Cores

B =
)
[a
O

GPU+CPU

12 CPU Cores

Host-Accelerator Concurrency
(- PPPM Acceleration) Not to scale

Nbor Core 1
Nbor Core 2
Nbor Core 3
Nbor Core 4

Data Transfer In

Pair Core 1

Pair Core 2

Pair Core 3

Pair Core 4

Data Transfer Out

_ CPU Core 1 CPU Core 2 CPU Core 3 CPU Core 4

Can run force models not ported to GPU
concurrently with models ported to GPU (e.g.

solvent on GPU)
Adjusts split of non-bonded force

calculation automatically or b

Neighboring is not performed every
timestep. 1 in 10-20.

Long Range Electrostatics Long Range Electrostatics Long Range Electrostatics Long Range Electrostatics

Host-Accelerator Concurrency (+PPPM Acceleration)

_ CPU Core 1 CPU Core 2 CPU Core 3 CPU Core 4

Nbor Core 1
Nbor Core 2

<€ Can run multiple kernels at the same time
on some accelerators

Nbor Core 3
Nbor Core 4

Data Transfer In

Pair Core 1

Pair Core 2

Pair Core 3

Pair Core 4
Charge Spread Core 1

Charge Spread Core 2

Charge Spread Core 3

Charge Spread Core 4

Force Interp Core 1

Force Interp Core 2

Force Interp Core 3
Force Interp Core 4

Data Transfer Out

Minimizing the Code Burden

Focus porting efforts on the routines that dominate the computational time
and have high potential for speedup with accelerators

Use concurrent CPU/GPU calculations where possible and overlap host-
accelerator data transfer with computation

Parallelize routines that are not ported on the CPU

Allow a legacy code to take advantage of accelerators without rewriting the
entire thing

In some cases, there is no advantage to porting

— Multi-Core CPUs can be competitive with GPU accelerators for some routines (latency-
bound, thread divergence, etc.), especially at lower particle counts

— If concurrent CPU/GPU calculations are used effectively, there can be no advantage to
porting certain routines

— For some simulations, the upper bound for performance improvements due to porting
additional routines and removing data transfer is < 5%.

Optimizations to CPU code for the XK6

e Using MPIl-only on multicore nodes can impact performance at
scale

— Increased MPI communication times

* MPI Cartesian topologies (e.g. MPI_Cart_create) are designed to allow vendors
to optimize process mapping for grids
— Typically do nothing to optimize for multicore nodes

* Implemented a two-level domain factorization algorithm to minimize off-node
communications
— Increased K-space times for P3M calculations
* Many processes involved in effectively all-to-all communications for 3D FFTs

* Use separate process partitions for the K-space calculation

— Implemented by Yuxing Peng and Chris Knight from the Voth Group at the University of
Chicago

X2090 Benchmark Results

Jaguar upgrade to Titan consisted of:
1. Upgrade XT5 to XK6 blades (AMD Interlagos Processors and Gemini

Interconnect)
2. Install Titan Development Partition with Fermi+ GPUs on 10 cabinets
3. Upgrade to XK7 nodes (Installation of K20X Kepler II GPUs on all all nodes)

. XK6 Upgrade and Titan Development results are presented first

. Early results with Kepler onTitan presented at end of talk

. Benchmarks with acceleration used mixed-precision as compared to
double precision

. Left: Strong Scaling for fixed-size simulations of approximately 256K
particles

. Right: Weak Scaling with ~32K particles/node

. XK6 NP results use a new MPI process to grid mapping and a separate
partition for long-range electrostatics (as do the GPU results)

Brown, W. M., Nguyen, T.D., Fuentes-Cabrera, M., Fowlkes, J. D., Rack, P. D., Berger, M., Bland, A. S. An Evaluation of Molecular Dynamics Performance on the Hybrid
Cray XK6 Supercomputer. Proceedings of the ICCS Workshop on Large Scale Computational Physics. 2012. Published in Procedia Computer Science, 2012. 9 p. 186-195.

Atomic Fluid

Atomic fluid - microcanonical ensemble, Lennard- Jones potential,
reduced density 0.8442, neighbor skin 0.30, cutoffs of 2.50 and 5.00

32.00 -
16.00 -
8.00 -
4.00 ~
2.00 -
1.00 -
0.50 -
0.25 -
0.13 -
0.06 -

Time (s)

0-03 T T T T T T T
1 2 4 8 16 32 64 128

XK6 Single Node: 1.17X
XK6 GPU Single Node: 3.03X, 5.68X

Wt ‘~e—"°'—-° C 4
—o— XT5 /9—"" C
P and < L
—— XK6 “'e__,e---o—-o" —x“*—-’x__*‘_,x- - 3
—=—XK6 NP e*’ e r
—=-XK6GPU = i , =
--o-- XT5 _ .E
--x-- XK6 ! =
XK6 NP -1
--a-- XK6 GPU -
[T T T T T T T T T T T T T T i 0
Nodes NoXx O (X o AX o oM
N o rf;) '\9’1/ @0) \,Q’%q’

XK6 Single Node: 1.04X

XK6 GPU Single Node: 1.92X, 4.33X
XK6 GPU 512 Nodes: 2.92X, 5.11X
NP gives up to 20% improvement

Bulk Copper

Copper metallic solid in the microcanonical ensemble. The force cutoff is
4.95A with a neighbor skin of 1.0A.
— Requires additional ghost exchange during force calculation for electron densities

16.00 -
8.00 - -
4.00 -
< 2.00 - ——XKb
£ 100 XK6 NP e
0.50 - Lo o
0.25 - —=—XK6 GPU W ; 0.5
0.13 ———————— T 00
1 2 4 8 16 32 64128 Nodes % % o H o \/@y @qb\’@%v
XK6 Single Node: 1.07X XK6 Single Node: 1.0X
XK6 GPU Single Node: 3.05X XK6 GPU Single Node: 2.12X

XK6 GPU 512 Nodes: 2.90X
NP gives up to 12% improvement

Protein

All-atom rhodopsin protein in a solvated lipid bilayer with the CHARMM force field. Isothermal-isobaric
ensemble, SHAKE constraints, 2.0fs timestep. Counter-ions, water, 84/ 10A cutoff

— Long range electrostatics are calculated with P3M.

64.00 - - 1,024
32.00 - = XT5
16.00 -
< 8.00 - —oXKe =
: :
= 4.00 - XK6 NP : =
2.00 - === i
= XK6GPU e
1.00 -
0.50 T T T T T T 1 I
1 2 4 8 16 32 64 Nodes
XK6 Single Node: 1.1X XK6 Single Node: 1.1X
XK6 GPU Single Node: 3.3X XK6 GPU Single Node: 2.6X

XK6 GPU 512 Nodes: 8X
NP gives up to 27% improvement

* Liquid crystal mesogens are represented with biaxial ellipsoid particles, Gay-Berne potential, isotropic
phase, isothermal-isobaric ensemble, 4o cutoff with a 0.80 neighbor skin

— High arithmetic intensity

128.00 - - 16
64.00 - exTS - 14
32.00 - E 1
—;16'00 1 ——XK6 - 10
< 8.00 - “
£ 4.00 - -8 g
e XK6 NP PR
T 200 - -6 F
- 4
1.00 - ~=XK6 GPU g
0.50 - 855 8 5 g —8—a—8—18 g 2
0.25 T T T T T T T 1 I T T T T T T T T T T T T T T - O
1 2 4 8 16 32 64 128 Nodes ~ % o (& o \,&v @qfo\,&%v
XK6 Single Node: .9X XK6 Single Node: .9X
XK6 GPU Single Node: 6.23X XK6 GPU Single Node: 5.82X

XK6 GPU 512 Nodes: 5.65X

XK6 vs XK6+GPU Benchmarks

7 Speedup with Acceleration on XK6 Nodes
6 1 Node = 32K Particles
5 900 Nodes = 29M Particles
4
3
2
1
0 : :
Atomic Atomic
Fluid Fluid Bulk Protein Liquid
(cutoff = | (cutoff = Copper Crystal
2.50) 5.00)
m Speedup (1 Node) 1.92 4.33 2.12 2.6 5.82
B Speedup (900 Nodes) 1.68 3.96 2.15 1.56 5.60

Example Science Problems 1.

Controlling the movement of nanoscale objects is a significant goal of
nanotechnology.

Pulsed laser melting offers a unique opportunity to dictate materials assembly
where rapid heating and cooling rates and ns melt lifetimes are achievable

Using both experiment and theory we have investigated ways of controlling how
the breakage occurs so as to control the assembly of metallic nanoparticles

Here, we illustrate MD simulation to investigate the evolution of the Rayleigh-
Plateau liquid instability for copper lines deposited on a graphite substrate

Simulations are performed with GPU acceleration on Jaguar at the same scales as
experiment

11.4M Cu

2. /X Faster
A_tom | than 512 XK6
S|mulat|on_s w/out
on Graphitic Accelerators

Substrate

Example Science Problems 2.

Membrane fusion, which involves the
merging of two biological membranes
in a controlled manner, is an integral
part of the normal life cycle of all living
organisms.

Viruses responsible for human disease
employ membrane fusion as an
essential part of their reproduction
cycle.

Membrane fusion is a critical step in
the function of the nervous system

. Correct fusion dynamics
requires realistic system sizes

Kohlmeyer / Klein INCITE Award

39M Particle Liposome System2.7X
Faster than 900 XK6 w/out

The “Porting Wall”

Although you can get performance improvements by porting existing

models/algorithms and running simulations using traditional
parameterizations...

— There is a limit to the amount of parallelism that can be exposed to decrease
the time-to-solution

— Increasingly desirable to re-evaluate computational physics methods and

models with an eye towards approaches that allow for increased concurrency
and data locality

Parameterize simulations to shift work towards routines well-suited for the accelerator

Methods/models with increased computational requirements can perform better if they
can increase concurrency, allow for larger time-steps, etc.

Computational scientists will play a critical role in exploiting the
performance of current and next-generation architectures

* Some very basic examples...

Electrostatics Example with
Polyelectrolyte Brushes

Electrostatics are typically solved by splitting the
Coulomb potential into a short-range potential
that decays to zero at the cutoff and a long-range
potential that converges rapidly in k-space
— Long-range component is typically solved with
discretization on a mesh
* Poisson solve with 3D FFTs
* Communications bottleneck

— The traditional parameterizations that work well on
older high-performance computers are not necessarily
optimal for many simulations

— Shift the work towards the short-range component

* Disproportionate performance improvements on
accelerator with larger short-range cutoffs

* Benefits from acceleration improve at larger node counts!

10
=6 p3m cpu
£
=4
2 —/
O T T T T T T T 1

4 8 16 32 64 128 256 512
Nodes

Nguyen, T.D., Carrillo, J.-M., Dobrynin, A.V., Brown, W.M.
A Case Study of Truncated Electrostatics for Simulation of
Polyelectrolyte Brushes on GPU Accelerators. Journal of
Chemical Theory and Computation, In press.

Electrostatics Example with Polyelectrolyte Brushes

Eliminate the long-range component?

— In condensed phase systems, charges can be
effectively short-range due to screening from other

charged particles in the system 5
— Use a large short range cutoff, correct for issues due to |

non-neutral spherical cutoff regions, and modify cell -

list calculation to be efficient for large cutoffs in .

parallel simulations

10°

107

— Accurate results with faster time-to-solu'(cai)on for some

simulations

Nguyen, T.D., Carrillo, J.-M., Dobrynin, A.V.,
Brown, W.M. A Case Study of Truncated
Electrostatics for Simulation of
Polyelectrolyte Brushes on GPU
Accelerators. Journal of Chemical Theory
and Computation, In Press.

Time, seconds

100

< DSFGPUr,. =100

-+ DSFGPU r. = 200
= DSFGPU r. =300

+ DSFGPU 7, = 400
=3 PgM GPU 107
P°M CPU

o

Time, seconds

-2
() 0,, = 3.46x107 kp T/

E o DSFr,=100
[O DSFVCZZOG
[o pPM

4 8 16 32 64 128 256 512

Nodes

Alternative Potential Energy Models?

* Implementation of new models that can = P
exploit high peak accelerator performance to & wiS .
improve accuracy and sampling ' 73S

— Computational cost of a single ellipsoid- — e e

ellipsoid interaction can be 15x that for AT
Lennard-Jones on the CPU B [op e
— With GPU acceleration, it is more competitive \\\
* Higher arithmetic intensity, so better speedup Choline o |]
when compared to LJ acceleration Phosphate K e 100

* Better parallel efficiency relative to the CPU b

— Still get performance with fewer threads

Morriss-Andrews,

P A., Rottler J.,

Hydrocarbon Plotkin S. S., JCP
tails | 132, 035105, 2010.
\/

118 atoms —p» 10 coarse-grain sites

Orsi, M. et al, J. Phys. Chem. B, Vol. 112, No. 3, 2008

Mergell, B, Ejtehadi, M.R., Everaers, R., PRE, 68, 021911 (2003)

Moore’s Law for Potentials

|
ol
N

|
o,
W
T T T TTTIT

|
o,
IS
T T T TTTIT

|
o,
a1
T T TTTTIT

Cost [core-sec/atom-timestep]

-
ol

1080 1990 2000 2010
Year Published

More Creative Examples...

* Advanced time integrators, time parallelism,
etc...

Kepler Il vs Fermi +

More cores

— Efficiently handle larger problems, better performance for complex models
Improved thread performance

— Faster time to solution for same problem
Larger register file

— Better performance for complex models such as the liquid crystal case
Warp shuffle

— Reduced shared memory usage for reductions across threads
Hyper-Q

— MPI processes sharing the GPU can share a context

* Reduced memory overhead per process
* Concurrent kernel execution from multiple processes

Atomic Fluid

Bulk Copper

—
(%)
~—

[}
E
[

Early Kepler Benchmarks on Titan

32.00 1
16.00 -
8.00 -
4.00
2.00 A
1.00 A
0.50 -
0.25 -
0.13 1
0.06 -

0.03

1 2 4 8

16 32 64 128

1 2 4 8

16 32 64 128

—— XK7+GPU
XK6

—=— XK6+GPU

-<-- XK7+GPU
XK6

- - XK6+GPU

Nodes

——XK7+GPU

XK6

—XK6+GPU

______ o-0 L
$-0-0-0-0-0-0-0-=0-0-0-9
g — i —o—o—o—0—0—v—0—0—90—0— 0 L

Time (s)

T T T T T T T T T T T T T T T

N O (X o A% S o
N O X VO LD
PSS

s
20
E 1.5
10
i 0.5

- 0.0

Time (s)

Early Kepler Benchmarks on Titan

64.00 -
32.00 -

16.00 | °

8.00 7
4.00 -
2.00 -
1.00 -

Protein

Time (s)

o,

N

N
N

X

o~
>~

\0§ :

o

0.50

128.00 7
64.00 -
32.00 A
16.00 -
8.00 -
4.00 T
2.00
1.00
0.50 A
0.25 -

Liquid Crystal

Time (s)

1

2 4 8

16 32 64 128

——XK7+GPU

XK6

—=XK6+GPU

Nodes

——XK7+GPU

XK6

—=XK6+GPU

0.13

2 4 8

16 32 64 128

Nodes

16384

32

16

Time (s)

o N B O

Time (s)

Early Titan XK6/XK7 Benchmarks

12 Speedup with Acceleration on XK6/XK7 Nodes
14 1 Node = 32K Particles
1(2) 900 Nodes = 29M Particles
8
6
4
2
0 Atomic Fluid Atomic Fluid
omic Flul omic rlul . .
(cutoff = 2.50) | (cutoff = 5.00) Bulk Copper Protein Liquid Crystal
B XK6 (1 Node) 1.92 4.33 2.12 2.6 5.82
M XK7 (1 Node) 2.90 8.38 3.66 3.36 15.70
B XK6 (900 Nodes) 1.68 3.96 2.15 1.56 5.60
M XK7 (900 Nodes) 2.75 7.48 2.86 1.95 10.14

Ongoing Work

* Implementation and evaluation of alternative
algorithms for long-range electrostatics.

— Multigrid(-like) Methods for Poisson Solve, etc.
* O(N), no FFTs

* Implementation of complex models well suited
for accelerators

* Improvements driven by specific science
problems

Publications

Brown, W.M., Wang, P. Plimpton, S.J., Tharrington, A.N. Implementing
Molecular Dynamics on Hybrid High Performance Computers — Short
Range Forces. Computer Physics Communications. 2011. 182: p. 898-911.

Brown, W.M., Kohlmeyer, A., Plimpton, S.J., Tharrington, A.N.
Implementing Molecular Dynamics on Hybrid High Performance
Computers — Particle-Particle Particle-Mesh. Computer Physics
Communications. 2012. 183: p. 449-459.

Brown, W. M., Nguyen, T.D., Fuentes-Cabrera, M., Fowlkes, J. D., Rack, P.
D., Berger, M., Bland, A. S. An Evaluation of Molecular Dynamics
Performance on the Hybrid Cray XK6 Supercomputer. Proceedings of the
ICCS Workshop on Large Scale Computational Physics. 2012. Published in
Procedia Computer Science, 2012. 9 p. 186-195.

Nguyen, T.D., Carrillo, J.-M., Dobrynin, A.V., Brown, W.M. A Case Study of
Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on
GPU Accelerators. Journal of Chemical Theory and Computation. In Press.

Acknowledgements
LAMMPS

— Steve Plimpton (SNL) and many others
LAMMPS Accelerator Library

— W. Michael Brown (ORNL), Trung Dac Nguyen (ORNL), Peng Wang (NVIDIA), Axel Kohlmeyer (Temple), Steve
Plimpton (SNL), Inderaj Bains (NVIDIA)

Geryon Library

— W. Michael Brown (ORNL), Manuel Rodriguez Rodriguez (ORNL), Axel Kohlmeyer (Temple)
K-Space Partitions

— Yuxing Peng and Chris Knight (University of Chicago)
Metallic Nanoparticle Dewetting

— Miguel Fuentes-Cabrera (ORNL), Trung Dac Nguyen (ORNL), W. Michael Brown (ORNL), Jason Fowlkes (ORNL), Philip
Rack (UT, ORNL)

Lipid Vesicle Science and Simulations
— Vincenzo Carnevale (Temple), Axel Kohlmeyer (Temple), Michael Klein (Temple), et. al.
Enhanced Truncation/Bottlebrush Simulations
— Trung Dac Nguyen (ORNL), Jan-Michael Carrillo (UC), Andrew Dobrynin (UC), W. Michael Brown (ORNL)
Multilevel Summation
— Arnold Tharrington (ORNL)
NVIDIA Support
— Carl Ponder, Mark Berger

