
Porting DENOVO to the Titan Systemg y

West Coast Titan Users and Developers Workshop
Jan. 29-31 2013

Wayne Joubert
Scientific Computing Group

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

Science Motivation
• Denovo solves the radiation transport equation, of Denovo solves the radiation transport equation, of

importance to nuclear reactor core analysis
(neutronics), radiation shielding, nuclear forensics and
radiation detectionradiation detection

• Modeling of next-generation nuclear reactors will be a
significant technical challenge

• Simulations will require a higher level of geometric
fidelity, solution accuracy and physical model realism
that is far beyond current computing capabilitiesthat is far beyond current computing capabilities

• Realistic models will require a first-principles
predictive capability to model nuclear reactor behavior

• However, at present, full-core, pin-resolved transport
simulations are beyond the scope of existing
computer architectures and will require exascale class

2

computer architectures and will require exascale-class
systems and beyond

What is Denovo
• Denovo is a radiation transport code used in Denovo is a radiation transport code used in

advanced nuclear reactor design
• It solves for the density of particle flux in a 3-D

ti l l h tspatial volume such as a reactor
• In particular, it solves the six-dimensional linear

Boltzmann transport equation (3-space 2-angle 1-Boltzmann transport equation (3 space, 2 angle, 1
energy) to model the flow of neutrons in a reactor

• Denovo scales up to 275K+ cores of Jaguar
• Has been a participant in the Joule code effort, is

part of the SCALE reactor code system and is a
key part of the ORNL-based CASL project key part of the ORNL-based CASL project
(Consortium for Advanced Simulation of Light
Water Reactors)

3

• Was selected as an early readiness code for Titan

Denovo Algorithms
• Primary algorithms: the discrete ordinates • Primary algorithms: the discrete ordinates

method, 3-D sweep, GMRES linear solver and
various eigensolvers, e.g., Arnoldi

• The execution time profile has a very prominent
peak: nearly all the execution time (80-99%) is
spent in a 3-D sweep algorithm. Second-highest p p g g
is GMRES.

• Because of this, the 3-D sweep is the central
focus of the effort to port Denovo to a focus of the effort to port Denovo to a
accelerator-based system

• However, the sweep is a complex algorithm that However, the sweep is a complex algorithm that
is difficult to parallelize efficiently.

4

3-D Sweep Algorithm: Description
• Denovo is based on a 3-D structured gridDenovo is based on a 3 D structured grid
• The data dependency for the sweep operation is

specified by a 4-point stencil
• The result at every gridcell is dependent on the

result at the immediately lower gridcells in X, Y
and Z based on the direction of particle flowand Z, based on the direction of particle flow

• This induces a wavefront computation pattern – a
sequence of diagonal planes sweeping inward
from a corner that are recursively coupled.

• Thus, results at the far side of the grid cannot be
computed until results at the near side are computed until results at the near side are
complete

• For standard parallel grid decompositions, most

5

p g p ,
of the processors will be idle much of the time

Parallel Sweep: 1. High Level View

• The KBA algorithm solves this
problem in parallel using a novel 2-D
mapping of the problem to pp g p
processors

• The calculation is started at one
corner of the grid other processors corner of the grid, other processors
start work when their input data is
available

6

Sweep Algorithm: 2. Per-Cell View

In addition to this “macro” view for the whole grid, at each gridcell there is
also significant work to be done:
Th i f h i i i i ll d i h “ ” i (1) The input vector for the sweep is initially stored with a “moments” axis. (1)
This moments axis must be transformed to an “angles” axis. (2) Then some
element-level calculations are done, for the element unknowns. (3) Finally,
the result must be transformed back to moments and the result stored in the
output vector.
Thus we have these steps at each gridcell:Thus we have these steps at each gridcell:

1. Load part of the input vector
2. Do small matrix-vector product to convert from moments to anglesp g
3. Do discretization-related calculations on element unknowns
4. Do small matrix-vector product to convert from angles to moments

7

5. Store result in the output vector

Design Decisions: Programming Model
• Porting to GPU: options:g p

1. CUDA
2. OpenCL
3 C il di ti PGI CAPS C O ACC3. Compiler directives: PGI, CAPS, Cray, OpenACC.

• The 3-D sweep is a complex algorithm for which performance is highly sensitive to the
implementation To minimize project risk a decision was made to take a more “close to implementation. To minimize project risk, a decision was made to take a more close to
the metal” approach by using CUDA. Additionally, directives were not production-ready
at the start of the project.

• OpenCL more portable but can be less performant than CUDA on NVIDIA hardware. p p p
Also the OpenCL standard doesn’t support use of C++ for kernel code, though AMD
does support it.

• We expect to be able to port to other parallel APIs going forward, e.g., OpenMP, p p p g g g p
OpenACC, compiler vectorization, etc. – the code structure is correct now, just need to
change the details

• Usage of CUDA is abstracted into a facade class to minimize the lines of code with
f f

8

platform-specific dependencies.

Implementation: Refactor or Rewrite?

• Would prefer to refactor existing code, if possible.
• However the original Denovo sweep had multiply-nested loop structure • However, the original Denovo sweep had multiply-nested loop structure

spanning multiple levels of the call tree. This would need to be permuted,
which would require major code restructuring. Also, the memory access
pattern was not properly localized for the GPUpattern was not properly localized for the GPU.

• Number of lines of code for the sweep is not huge (~ thousands).
• Thus a rewrite approach was preferred over refactoring• Thus, a rewrite approach was preferred over refactoring.

9

Mapping the Algorithm to the GPU
We have many candidate dimensions for parallelism: We have many candidate dimensions for parallelism:
space (3), energy, moment/angle, octant, and also
unknown (4 unknowns per gridcell for this
discretization).discretization).
We need 4K-8K threads for the GPU to cover various
latencies and keep the hardware busy.
Must be the right kind of parallelism – proper
decoupling of data.
Also must have good memory access patterns (reuse
of data loaded from global memory, coalesced stride-1
memory references, efficient use of registers, shared
memory, caches on the GPU).
Approach: explore each problem dimension for
potential thread parallelism

10

potential thread parallelism.

1. Parallelism in Energy
• Denovo exposes energy as a parallel • Denovo exposes energy as a parallel

dimension. These are fully independent,
perfect axis for parallelism.

• Model problem has 256 energy groups – this
helps, but we need enough for 4K-8K threads.
Al d t f thi 256 f d • Also need to use some of this 256 for node
parallelism.

11

2. Parallelism in Octant
Al ith i f 8 • Algorithm requires sweeps from 8
different directions.

• Sweep directions are independent, Sweep directions are independent,
thus another 8X thread parallelism.
Previously was an outer loop.
S ll i diff t t t d t • Small issue: different octants update
the same output vector, so we need
to schedule properly to avoid write

f fconflicts, slight loss of parallel
efficiency

12

3. Parallelism in Space

• We have this recursion, as mentioned
before, that makes the computations non-
independentp

• However, the global KBA algorithm can be
applied at the small scale of a single block
in the GPUin the GPU

• Set up block wavefronts, assign blocks to
threadsthreads

• Sync between block wavefronts

13

4. Parallelism in Angle, Moment

• A strategy was formulated to parallelize the moment/angle axes at the
gridcell level – map these axes to CUDA threads in-warp.

• Small dense matrix vector products are perfect for thread parallelism • Small dense matrix-vector products are perfect for thread parallelism –
store vector in shared memory, relieve the register pressure.

• The two small matrices are the same across all gridcells, so they can g , y
be retained in L1 cache, to reduce a potentially high source of memory
traffic.

14

Summary of Mapping of Dimensions

GPU
C t

Thread Warp Thread Grid
Compute
Hierarchy

block

registers 32 threads
execute in
lockstep

up to 48 warps
access shared memory;

can sync warps

fully independent
threadblocks

lockstep can sync warps

DDenovo
Problem
Dimensions

octant
energy

fully
decoupled

space
use KBA;
need sync

moment
angle
use

threads

per-gridcell
unknowns

tightly
coupled decoupledthreads

in a warp
coupled

15

GPU Kernel Management

• Use asynchronous data transfers / kernel launches, triple buffering,
asynchronous MPI to overlap work.

• Use 16 MPI tasks on node each task sends data independently to • Use 16 MPI tasks on node, each task sends data independently to
GPU, single MPI task on node manages kernel launches.

16

First Results: Test Problem

• 32x32x128 gridcells
• 16 energy groups16 energy groups
• 16 moments
• 256 angles256 angles
• Linear discontinuous elements –

4 unknowns per gridcell

17

Results: Sweep GPU Performance

• Single core (AMD Istanbul) / single GPU (Fermi C2050) comparison
• For both processors, code attains about 10% of peak flop rate – this is

id d d f thi l ith

AMD Istanbul 1
core

NVIDIA C2050
Fermi

Ratio

considered good for this algorithm

core Fermi

Kernel compute time 171 sec 3.2 sec 54X
PCIe‐2 time (faces) ‐‐ 1.1 sec

TOTAL 171 sec 4.2 sec 40X

180

20
40
60
80

100
120
140
160

NVIDIA Fermi is 40X faster
than single Operon core

18

0

AMD Istanbul, 1
core

NVIDIA C2050
Fermi

Sweep GPU Performance: TitanDev

• Overall 3.5X
performance
gain usinggain using
NVIDIA Fermi
X2090 nodes
compared to
AMD Interlagos
CPU nodes

Performance GPU

CPU nodes

• CPU timings
represent an Performance

Improvement
Factors

GPU

XK6
Fermi

XK6 / Interlagos 3 5

p
additional 2X
improvement
over the original

19

CPU
XK6 / Interlagos 3.5

XE6 / dual Interlagos 3.3

over the original
sweep code

Denovo GPU Performance: TitanDev

• Full Denovo run,
CPU vs. GPU
sweeper, TitanDev,
Fermi C2090

• We expect
additional
improvement fromimprovement from
Kepler processors

• Will get further g
improvement using
GPU version of
GMRES via Trilinos

20

GMRES via Trilinos

Titan Sweep Performance

• Weak scaling,
increasing
number of total 120

Titan Sweep Performance

gridcells
• Per node

problem size
80

100

ds

CPU

GPU

problem size
(NX,NY,NZ) =
(16,32,160),
NE 56 NM 16 20

40

60
Se
co
n

NE=56, NM=16,
NA=256, LD
elements

0

20

0 3,000 6,000 9,000 12,000 15,000 18,000

Nodes

• Single sweep
runtime on GPU
is up to 6.6X

21

is up to 6.6X
faster than CPU

Conclusions: Lessons Learned

1. Major code restructurings were required – this consumed the majority
of the work. This restructuring is required regardless of the parallel API
used. The restructuring that was done will enable porting to other g p g
parallel APIs as needed.

2. CUDA was needed to get good performance for this complex algorithm
directives were new and not mature at the beginning of the project – directives were new and not mature at the beginning of the project,

they are improving now and will continue to do so.
3. Isolating CUDA-specific constructs in one place in the code is good 3. Isolating CUDA specific constructs in one place in the code is good

defensive programming to help lessen the burden of porting to new
programming models.

22

Conclusions: Lessons Learned (2)

4. Programming in a dual CPU/GPU programming style helps reduce
code redundancy and helps with debugging.

5 It is challenging to negotiate conflict between heavy code optimization 5. It is challenging to negotiate conflict between heavy code optimization
and good SWE practice – it’s not always easy to have both, in general
and specifically using CUDA.

6. It is helpful to develop a performance model based on flop rate,
memory bandwidth and algorithm tuning knobs, to guide mapping of the
algorithm to the GPU and evaluate tradeoffs.algorithm to the GPU and evaluate tradeoffs.

23

Conclusions: Lessons Learned (3)

7. It is sometimes worthwhile to write small codes to test performance for
simple operations, incorporate this insight into algorithm design.

8 It is a challenge to understand what the processor is doing under the 8. It is a challenge to understand what the processor is doing, under the
abstractions. Performance optimization requires that performance
behaviors be exposed, not hidden.

9. It is difficult to know beforehand what will be the best strategy for
parallelization or what will be the final outcome – e.g., difficult to predict
how many registers will be needed, and register space is limited.how many registers will be needed, and register space is limited.

24

Conclusions: Lessons Learned (4)

10. Performance can be very sensitive to small tweaks in the code – must
determine empirically the best way to write the code.

11 Often the GPU porting effort for the algorithm also improves 11. Often, the GPU porting effort for the algorithm also improves
performance on the CPU (in this case, in fact, 2X).

12. Expert help is useful, e.g., NVIDIA forums, trainings, etc.12. Expert help is useful, e.g., NVIDIA forums, trainings, etc.

25

Acknowledgements

• Denovo development team: Tom Evans, Greg Davidson, Josh Jarrell,
Chris Baker, Steve Hamilton
Cray: Kevin Thomas• Cray: Kevin Thomas

• NVIDIA: John Roberts, Cyril Zeller, Paulius Micikevicius
OLCF t J PF Ch t Y L• OLCF compute resources: JaguarPF, Chester, Yona, Lens

26

Supplementary slides

27

GPU Architecture
• The NVIDIA GPU processor is a manycore • The NVIDIA GPU processor is a manycore

architecture with hundreds of compute cores.
• They are programmed via threads.y p g
• Threads are arranged in groups of 32 (warps)

that compute in lockstep.
• These are collected into threadblocks.
• Threadblocks are independent and form a grid.
• Programs access main (“global”) memory.
• Programs can also use a faster, smaller

“ h d” bl h“shared” memory – a programmable cache.
• Also L1 cache, L2 cache, registers.

28

• GPU connected to CPU by PCIe-2 bus
Images courtesy NVIDIA

