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• We began planning for Titan in 2009

Background
We began planning for Titan in 2009

• At the time there were no large-scale 
GPU systems deployed anywhere

• Furthermore, OLCF had little previousFurthermore, OLCF had little previous 
institutional knowledge of GPUs other 
than scattered individuals

• However, the consensus was that codes 
will require restructuring for memory 
locality, threading and heterogeneity to 
get to exascale—we decided to do it now

• Additionally, we didn’t want a machine delivered that had no functioning 
application software

• Therefore we selected a small set of applications for early porting, to 
spearhead an effort to move codes to Titanspearhead an effort to move codes to Titan

• We went through a process to selected a diverse set of codes to give broad 
coverage to represent use cases for our users

• At the same time we wanted to capture institutional knowledge as lessons
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• At the same time we wanted to capture institutional knowledge as lessons 
learned for going forward



Criteria for selecting early readiness 
applications
Task Description 

Science • Science results, impact, timeliness
• Alignment with DOE and U.S. science mission
• Broad coverage of science domains

Implementation • Broad coverage of relevant programming models, environment, p
(models, algorithms, 
software)

g p g g , ,
languages, implementations

• Broad coverage of relevant algorithms and data structures (motifs)
• Broad coverage of scientific library requirements

User community 
(current and anticipated)

• Broad institutional and developer/user involvement
• Good representation of current and anticipated INCITE workload

Preparation for steady state • Mix of low (“straightforward”) and high (“hard”) risk porting and epa at o o steady state
(“INCITE ready”) 
operations

o o ( st a g t o a d ) a d g ( a d ) s po t g a d
readiness requirements

• Availability of OLCF liaison with adequate skills/experience match to 
application

• Availability of key code development personnel to engage in and guide 
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Availability of key code development personnel to engage in and guide 
readiness activities



Center for Accelerated Application Readiness (CAAR)

WL LSMS LAMMPSWL-LSMS
Illuminating the role of 
material disorder, 
statistics, and fluctuations 
in nanoscale materials 

LAMMPS
A molecular description 
of membrane fusion, 
one of the most 
common ways for 
molecules to enter orand systems.

S3D

CAM-SE
Answering questions 

molecules to enter or 
exit living cells.

S3D
Understanding turbulent 
combustion through direct 
numerical simulation with 
complex chemistry.

about specific climate 
change adaptation and 
mitigation scenarios; 
realistically represent 
features like 

.

NRDF

precipitation patterns / 
statistics and tropical 
storms.

Denovo
Di t di tNRDF

Radiation transport –
important in astrophysics, 
laser fusion, combustion, 
atmospheric dynamics, 
and medical imaging

Discrete ordinates 
radiation transport 
calculations that can 
be used in a variety 
of nuclear energy 
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and medical imaging –
computed on AMR grids. and technology 

applications.

Slides courtesy Bronson Messer



Action plan for code porting
We developed a plan for porting these applications, which involved the 

1 Multidisciplinary code team for each code OLCF application lead Cray

p p p g pp ,
following steps:

1. Multidisciplinary code team for each code – OLCF application lead, Cray 
engineer, NVIDIA developer, also cross-cutting support from tool and 
library developers

2 Early testbed hardware white box GPU cluster “yona” for code2. Early testbed hardware –white box GPU cluster yona  for code 
development

3. Code inventory for each code to understand characteristics – application 
code structure code suitability for GPU port algorithm structure datacode structure, code suitability for GPU port, algorithm structure, data 
structures and data movement patterns.  Also code execution profile –
are there performance “hot spots” or is the profile “flat”

4 Develop parallelization approach for each application ascertain which4. Develop parallelization approach for each application – ascertain which 
algorithm and code components to port to GPU, how to map work to GPU 
threads, how to manage data motion CPU-GPU and between GPU main 
memory and GPU caches/shared memory
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memory and GPU caches/shared memory



Action plan for code porting (2)

5. Decide GPU programming model for port to GPU, e.g., CUDA for more 
close-to-the-metal programming, OpenACC for a higher abstraction level 
and a more incremental porting approach, OpenCL for portability 
advantages, or libraries when appropriate

6. Address code development issues – rewrite vs. refactor, managing 
portability to other platforms, incorporating GPU code into build system, y g y
relationship to the code repository main trunk

7. Representative test cases, e.g., early science problems, formulated as 
basis for evaluating code performance and setting priorities for code g p g p
optimization.  Also formulate comparison metric to measure success, e.g., 
time to solution on dual Interlagos Cray XE6 vs. Titan Cray XK7 
Interlagos+Kepler
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Science Programming Compiler(s) Approx Communicati Math

Application characteristics inventory
App Science 

Area Algorithm(s) Grid type Programming 
Language(s)

Compiler(s) 
supported

Approx. 
LOC

Communicati
on Libraries

Math 
Libraries

CAM-SE climate

spectral finite 
elements, dense 
& sparse linear structured F90 PGI, Lahey, 

IBM 500K MPI Trilinos& sparse linear 
algebra, particles

IBM

LAMMPS Biology / 
materials

molecular 
dynamics, FFT, 

ti l
N/A C++ GNU, PGI, 

IBM, Intel 140K MPI FFTW
particles ,

S3D combustion

Navier-Stokes, 
finite diff, dense & 

sparse linear 
l b ti l

structured F77, F90 PGI 10K MPI None

algebra, particles

Denovo nuclear 
energy

wavefront sweep, 
GMRES structured C++, Fortran, 

Python
GNU, PGI, 
Cray, Intel 46K MPI

Trilinos, 
LAPACK, 
SuperLU, 

Metis
LAPACK

WL-
LSMS nanoscience

density functional 
theory, Monte 

Carlo
N/A F77, F90, C, 

C++ PGI, GNU 70K MPI

LAPACK 
(ZGEMM, 
ZGTRF, 
ZGTRS)

Non equilibrium BLAS, 
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NRDF radiation 
transport

Non-equilibrium 
radiation diffusion 

equation

structured 
AMR C++, C, F77 PGI, GNU, 

Intel 500K MPI, SAMRAI PETSc, 
Hypre, 

SAMRSolvers



Remainder of talk: overview GPU porting 
process for each code
This afternoon: deep dive for two of the codes p

(LAMMPS, Denovo)
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1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

 Purpose: Compute the magnetic structure and 
thermodynamics of low-dimensional magnetic structures

 Model: Combines classical statistical mechanics (W L)  Model: Combines classical statistical mechanics (W-L) 
for atomic magnetic moment distributions with first-
principles calculations (LSMS) of the associated 
energiesenergies.

 Execution Structure: Master node spawns many Monte 
Carlo “walkers” that do most of the work independently, 
results are occasionally combined on masterresults are occasionally combined on master

 Execution Profile: Very concentrated hot spot: most of 
the work is in the walkers: matrix inversion, and BLAS3 
ZGEMMs, typical matrix sizes are 1200X1200, 
1200X3600

 Code Language: C++ and F77
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g g

 Lines of Code: 70K



1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

 Parallelization strategy :

 Compute ZGEMMs on GPU using cuBLAS library, use 
multiple streams via CPU OpenMP threads to saturate multiple streams via CPU OpenMP threads to saturate 
GPU

 For LU factorization for matrix inversion, using 
BLAS  CULA  C  lib i   d  cuBLAS, CULA, Cray libsci_acc or custom code 

(fastest)

 Also moved matrix construction to GPU

 Rewritten code LSMS_3 now allows multiple atoms 
per MPI rank, flexibility for more node parallelism, e.g., 
OpenMP threading  multiple GPU execution streamsOpenMP threading, multiple GPU execution streams
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See also: Markus Eisenbach, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/WL-LSMS-GPU_don1.pdf



2. CAM-SE
Community Atmosphere Model – Spectral Elements
 Purpose: Answer questions about climate change  Purpose: Answer questions about climate change 

adaptation and mitigation scenarios; accurately represent 
regional-scale climate features of significant impact

M d l S t l l t di ti ti  ith d i l   Model: Spectral element discretization with dynamical core 
(fluid dynamics + tracer transport) and other physics 
modules

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

 Execution Structure: Runge-Kutta explicit time stepping 
over 2-D logically unstructured cubed-sphere grid with 
vertical levels, at each time step dynamical core 
calculations, tracers, other physics.

 Execution Profile: Highly problem dependent. Targeted 
science case: tracer transport highest, then dynamical p g , y
core, both employing vertical remap operation

 Code Language: F90
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 Lines of Code: 500K



2. CAM-SE
Community Atmosphere Model – Spectral Elements

 Parallelization strategy :
 Tracers parallelized in straightforward data parallel fashion
 For tracers used Mozart chemistry, more tracers, improved y, , p

model realism, more GPU work
 Vertical remap –tridiagonal solver replaced with splines, to 

expose more parallelism, 5X faster on CPU

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

expose more parallelism, 5X faster on CPU
 Data structures were reworked – arrays of struct of arrays 

replaced with coalesced flat arrays
 Separate element loops fused to improve granularity Separate element loops fused to improve granularity
 Boundary exchange communications were optimized
 Asynchronicity to overlap MPI and PCIe transfers using 

t i  t h istaging techniques
 Used CUDA Fortran, will move to OpenACC for better 

integration with code trunk
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See also: Matt Norman, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/cray_workshop_2012_mrnorman-2.pdf
Jeff Larkin, http://www.slideshare.net/jefflarkin/progress-toward-accelerating-camse



3. S3D
Direct Numerical Simulation of Turbulent Combustion

 Purpose: Provide fundamental insight into the chemistry-
turbulence interaction of combustion processes

 Model: DNS Navier-Stokes simulation on Cartesian grid Model: DNS Navier Stokes simulation on Cartesian grid 
with particle tracking

 Execution Structure: 4th-order explicit Runge-Kutta time 
stepping over 3 D structured grid  8th order finite stepping over 3-D structured grid, 8th-order finite 
differences

 Execution Profile: 2-3 routines account for most of the 
runtime.  Most prominent is reaction rates, the RHS and 
transport coefficients

 Code Language: F90Code a guage 90

 Lines of Code: 10K
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3. S3D
Direct Numerical Simulation of Turbulent Combustion

 Parallelization strategy :
 Perform major code restructuring to move a 3-D grid loop 

up the call tree to expose coarser-grain parallelismup the call tree to expose coarser grain parallelism
 Port code from pure-MPI to hybrid, MPI-OpenMP, then 

ported kernels to GPU, then rewrite in OpenACC to run 
almost entirely on the GPUalmost entirely on the GPU
 Use compiler diagnostics to understand data movement
 Identify data regions to scope arrays for efficient use of 

GPUsGPUs
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See also: John Levesque, http://www.olcf.ornl.gov/wp-content/training/CrayTech_XK6_2012/CTW_S3D_10_10.pdf
Ramanan Sankaran, http://www.olcf.ornl.gov/wp-content/uploads/2011/08/TitanSummit2011_Sankaran.pdf



4. LAMMPS
Large-scale, massively parallel molecular dynamics 

 Purpose: Provide understanding of molecular processes 
such as cellular membrane fusion

 Model: Classical N-body atomistic modeling with Model: Classical N body atomistic modeling with 
molecular dynamics

 Execution Structure: Forward stepping in time as 
particles move based on force field calculationsparticles move based on force field calculations

 Execution Profile: A large fraction of time is spent in 
short-range force calculations.  Long-range force 
computations are chief barrier to high scalability

 Code Language: C++

 Li  f C d 140K Lines of Code: 140K
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4. LAMMPS
Large-scale, massively parallel molecular dynamics 

 Parallelization strategy :
 Port short-range force calculations and other 

calculations to GPUcalculations to GPU
 For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like 
algorithm with scalable communicationalgorithm with scalable communication
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See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf



5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Purpose: Model radiation transport for reactor safety and 
nuclear forensics

 Model: Linear Boltzmann transport  discrete ordinates Model: Linear Boltzmann transport, discrete ordinates 
method

 Execution Structure: Arnoldi eigenvalue solver, inner 
GMRES loop  matrix vector product contains a 3 D sweep GMRES loop, matrix-vector product contains a 3-D sweep 
operation

 Execution Profile: Nearly all of the runtime is spent in the 
3-D sweep code.  The next most expensive part is 
GMRES

 Code Language: C++Code a guage C

 Lines of Code: 46K
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5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Parallelization strategy :
 Restructure Denovo to provide another axis of 

parallelism (energy-group) for better cross-node parallelism (energy group) for better cross node 
scaling and GPU threading
 KBA sweep algorithm ported to the GPU, exploiting 

multiple problem dimensions to get enough threadsmultiple problem dimensions to get enough threads
 Trilinos/GMRES used for GPU solves
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See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf



Performance results:
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Slide courtesy Buddy Bland



Lessons Learned
• Repeated themes in the code porting work:• Repeated themes in the code porting work:

– finding more threadable work for the GPU
– Improving memory access patternsp g y p
– making GPU work (kernel calls) more coarse-grained if possible
– making data on the GPU more persistent
– overlapping data transfers with other work

• Helpful to use as much asynchronicity as possible, to extract 
performance (CPU, GPU, MPI, PCIe-2)

• Codes with unoptimized MPI communications may need prior 
k i  d  t  i  f  b f  GPU d work in order to improve performance before GPU speed 

improvements can be realized
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Lessons Learned
Some codes need to use multiple MPI tasks per node to access • Some codes need to use multiple MPI tasks per node to access 
the GPU (e.g., via proxy)—others use 1 MPI task with OpenMP
threads on the node

• Code changes that have global impact on the code are difficult to 
manage, e.g., data structure changes.  An abstraction layer may 
help, e.g., C++ objects/templates

• Two common code modifications are:
– Permuting loops to improve locality of memory reference
– Fusing loops for coarser granularity of GPU kernel calls
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Lessons Learned
• Tools (compilers  debuggers  profilers) were lacking early on in • Tools (compilers, debuggers, profilers) were lacking early on in 

the project but are becoming more available and are improving 
in quality

• Debugging and profiling tools were useful in some cases 
(Allinea DT, CrayPat, Vampir, CUDA profiler)
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Lessons Learned
• The difficulty level of the GPU port was in part determined by:y p p y

– Structure of the algorithms—e.g., available parallelism, high 
computational intensity
C d  i  fil fl   h  – Code execution profile—flat or hot spots

– The code size (LOC)

Si  t ll f t  d  h   b  ti i t d  it i  • Since not all future code changes can be anticipated, it is 
difficult to avoid significant code revision for such an effort
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Lessons Learned
• Up to 1-3 person-years required to port each codep p y q p

– Takes work, but an unavoidable step required for exascale
– Also pays off for other systems—the ported codes often run 

i ifi l  f  CPU l  (D 2X  CAM SE 1 X)significantly faster CPU-only (Denovo 2X, CAM-SE >1.7X)

• We estimate possibly 70-80% of developer time is spent in 
code restructuring  regardless of whether using CUDA / code restructuring, regardless of whether using CUDA / 
OpenCL / OpenACC / …

• Each code team must make its own choice of using CUDA vs  • Each code team must make its own choice of using CUDA vs. 
OpenCL vs. OpenACC, based on the specific case—may be 
different conclusion for each code
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Lessons Learned
• Science codes are under active development—porting to GPU p p g

can be pursuing a “moving target,” challenging to manage
• More available flops on the node should lead us to think of p

new science opportunities enabled—e.g., more DOF per grid 
cell

• We may need to look in unconventional places to get another 
~30X thread parallelism that may be needed  for exascale—
e g  parallelism in timee.g., parallelism in time
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4. LAMMPS
Large-scale, massively parallel molecular dynamics 

 Parallelization strategy :
 Port short-range force calculations, neighbor list 

calculations and parts of long range force calculations calculations and parts of long range force calculations 
to GPU.  Apply one or more threads per atom
 Split work between CPU and GPU to use all available 

resources  overlapping work when possibleresources, overlapping work when possible
 Make extensive use of CUDA streams
 Multiple MPI tasks access GPU
 Use Geryon middleware library to be able to target 

CUDA and OpenCL in same code
 For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like 
algorithm
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See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf



5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Parallelization strategy :
 Restructure Denovo to provide to provide another axis 

of parallelism (energy-group) for better cross-node of parallelism (energy group) for better cross node 
scaling and GPU threading
 KBA sweep algorithm ported to the GPU, exploiting 

multiple problem dimensions to get enough threadsmultiple problem dimensions to get enough threads
 Permute loops to optimize for memory locality
 Use CUDA to extract high performance
 Trilinos/GMRES used GPU solves
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See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf


