
TITAN Application Readiness at ORNL

Wayne Joubert
OLCF Center for Accelerated Application Readiness

(C)(CAAR)

Titan Users and Developers Workshopp p
Jan. 29-31 2013

• We began planning for Titan in 2009

Background
We began planning for Titan in 2009

• At the time there were no large-scale
GPU systems deployed anywhere

• Furthermore, OLCF had little previousFurthermore, OLCF had little previous
institutional knowledge of GPUs other
than scattered individuals

• However, the consensus was that codes
will require restructuring for memory
locality, threading and heterogeneity to
get to exascale—we decided to do it now

• Additionally, we didn’t want a machine delivered that had no functioning
application software

• Therefore we selected a small set of applications for early porting, to
spearhead an effort to move codes to Titanspearhead an effort to move codes to Titan

• We went through a process to selected a diverse set of codes to give broad
coverage to represent use cases for our users

• At the same time we wanted to capture institutional knowledge as lessons

2

• At the same time we wanted to capture institutional knowledge as lessons
learned for going forward

Criteria for selecting early readiness
applications
Task Description

Science • Science results, impact, timeliness
• Alignment with DOE and U.S. science mission
• Broad coverage of science domains

Implementation • Broad coverage of relevant programming models, environment, p
(models, algorithms,
software)

g p g g , ,
languages, implementations

• Broad coverage of relevant algorithms and data structures (motifs)
• Broad coverage of scientific library requirements

User community
(current and anticipated)

• Broad institutional and developer/user involvement
• Good representation of current and anticipated INCITE workload

Preparation for steady state • Mix of low (“straightforward”) and high (“hard”) risk porting and epa at o o steady state
(“INCITE ready”)
operations

o o (st a g t o a d) a d g (a d) s po t g a d
readiness requirements

• Availability of OLCF liaison with adequate skills/experience match to
application

• Availability of key code development personnel to engage in and guide

3

Availability of key code development personnel to engage in and guide
readiness activities

Center for Accelerated Application Readiness (CAAR)

WL LSMS LAMMPSWL-LSMS
Illuminating the role of
material disorder,
statistics, and fluctuations
in nanoscale materials

LAMMPS
A molecular description
of membrane fusion,
one of the most
common ways for
molecules to enter orand systems.

S3D

CAM-SE
Answering questions

molecules to enter or
exit living cells.

S3D
Understanding turbulent
combustion through direct
numerical simulation with
complex chemistry.

about specific climate
change adaptation and
mitigation scenarios;
realistically represent
features like

.

NRDF

precipitation patterns /
statistics and tropical
storms.

Denovo
Di t di tNRDF

Radiation transport –
important in astrophysics,
laser fusion, combustion,
atmospheric dynamics,
and medical imaging

Discrete ordinates
radiation transport
calculations that can
be used in a variety
of nuclear energy

4

and medical imaging –
computed on AMR grids. and technology

applications.

Slides courtesy Bronson Messer

Action plan for code porting
We developed a plan for porting these applications, which involved the

1 Multidisciplinary code team for each code OLCF application lead Cray

p p p g pp ,
following steps:

1. Multidisciplinary code team for each code – OLCF application lead, Cray
engineer, NVIDIA developer, also cross-cutting support from tool and
library developers

2 Early testbed hardware white box GPU cluster “yona” for code2. Early testbed hardware –white box GPU cluster yona for code
development

3. Code inventory for each code to understand characteristics – application
code structure code suitability for GPU port algorithm structure datacode structure, code suitability for GPU port, algorithm structure, data
structures and data movement patterns. Also code execution profile –
are there performance “hot spots” or is the profile “flat”

4 Develop parallelization approach for each application ascertain which4. Develop parallelization approach for each application – ascertain which
algorithm and code components to port to GPU, how to map work to GPU
threads, how to manage data motion CPU-GPU and between GPU main
memory and GPU caches/shared memory

5

memory and GPU caches/shared memory

Action plan for code porting (2)

5. Decide GPU programming model for port to GPU, e.g., CUDA for more
close-to-the-metal programming, OpenACC for a higher abstraction level
and a more incremental porting approach, OpenCL for portability
advantages, or libraries when appropriate

6. Address code development issues – rewrite vs. refactor, managing
portability to other platforms, incorporating GPU code into build system, y g y
relationship to the code repository main trunk

7. Representative test cases, e.g., early science problems, formulated as
basis for evaluating code performance and setting priorities for code g p g p
optimization. Also formulate comparison metric to measure success, e.g.,
time to solution on dual Interlagos Cray XE6 vs. Titan Cray XK7
Interlagos+Kepler

6

Science Programming Compiler(s) Approx Communicati Math

Application characteristics inventory
App Science

Area Algorithm(s) Grid type Programming
Language(s)

Compiler(s)
supported

Approx.
LOC

Communicati
on Libraries

Math
Libraries

CAM-SE climate

spectral finite
elements, dense
& sparse linear structured F90 PGI, Lahey,

IBM 500K MPI Trilinos& sparse linear
algebra, particles

IBM

LAMMPS Biology /
materials

molecular
dynamics, FFT,

ti l
N/A C++ GNU, PGI,

IBM, Intel 140K MPI FFTW
particles ,

S3D combustion

Navier-Stokes,
finite diff, dense &

sparse linear
l b ti l

structured F77, F90 PGI 10K MPI None

algebra, particles

Denovo nuclear
energy

wavefront sweep,
GMRES structured C++, Fortran,

Python
GNU, PGI,
Cray, Intel 46K MPI

Trilinos,
LAPACK,
SuperLU,

Metis
LAPACK

WL-
LSMS nanoscience

density functional
theory, Monte

Carlo
N/A F77, F90, C,

C++ PGI, GNU 70K MPI

LAPACK
(ZGEMM,
ZGTRF,
ZGTRS)

Non equilibrium BLAS,

7

NRDF radiation
transport

Non-equilibrium
radiation diffusion

equation

structured
AMR C++, C, F77 PGI, GNU,

Intel 500K MPI, SAMRAI PETSc,
Hypre,

SAMRSolvers

Remainder of talk: overview GPU porting
process for each code
This afternoon: deep dive for two of the codes p

(LAMMPS, Denovo)

8

1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

 Purpose: Compute the magnetic structure and
thermodynamics of low-dimensional magnetic structures

 Model: Combines classical statistical mechanics (W L)  Model: Combines classical statistical mechanics (W-L)
for atomic magnetic moment distributions with first-
principles calculations (LSMS) of the associated
energiesenergies.

 Execution Structure: Master node spawns many Monte
Carlo “walkers” that do most of the work independently,
results are occasionally combined on masterresults are occasionally combined on master

 Execution Profile: Very concentrated hot spot: most of
the work is in the walkers: matrix inversion, and BLAS3
ZGEMMs, typical matrix sizes are 1200X1200,
1200X3600

 Code Language: C++ and F77

9

g g

 Lines of Code: 70K

1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

 Parallelization strategy :

 Compute ZGEMMs on GPU using cuBLAS library, use
multiple streams via CPU OpenMP threads to saturate multiple streams via CPU OpenMP threads to saturate
GPU

 For LU factorization for matrix inversion, using
BLAS CULA C lib i d cuBLAS, CULA, Cray libsci_acc or custom code

(fastest)

 Also moved matrix construction to GPU

 Rewritten code LSMS_3 now allows multiple atoms
per MPI rank, flexibility for more node parallelism, e.g.,
OpenMP threading multiple GPU execution streamsOpenMP threading, multiple GPU execution streams

10

See also: Markus Eisenbach, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/WL-LSMS-GPU_don1.pdf

2. CAM-SE
Community Atmosphere Model – Spectral Elements
 Purpose: Answer questions about climate change  Purpose: Answer questions about climate change

adaptation and mitigation scenarios; accurately represent
regional-scale climate features of significant impact

M d l S t l l t di ti ti ith d i l  Model: Spectral element discretization with dynamical core
(fluid dynamics + tracer transport) and other physics
modules

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

 Execution Structure: Runge-Kutta explicit time stepping
over 2-D logically unstructured cubed-sphere grid with
vertical levels, at each time step dynamical core
calculations, tracers, other physics.

 Execution Profile: Highly problem dependent. Targeted
science case: tracer transport highest, then dynamical p g , y
core, both employing vertical remap operation

 Code Language: F90

11

 Lines of Code: 500K

2. CAM-SE
Community Atmosphere Model – Spectral Elements

 Parallelization strategy :
 Tracers parallelized in straightforward data parallel fashion
 For tracers used Mozart chemistry, more tracers, improved y, , p

model realism, more GPU work
 Vertical remap –tridiagonal solver replaced with splines, to

expose more parallelism, 5X faster on CPU

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

expose more parallelism, 5X faster on CPU
 Data structures were reworked – arrays of struct of arrays

replaced with coalesced flat arrays
 Separate element loops fused to improve granularity Separate element loops fused to improve granularity
 Boundary exchange communications were optimized
 Asynchronicity to overlap MPI and PCIe transfers using

t i t h istaging techniques
 Used CUDA Fortran, will move to OpenACC for better

integration with code trunk

12

See also: Matt Norman, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/cray_workshop_2012_mrnorman-2.pdf
Jeff Larkin, http://www.slideshare.net/jefflarkin/progress-toward-accelerating-camse

3. S3D
Direct Numerical Simulation of Turbulent Combustion

 Purpose: Provide fundamental insight into the chemistry-
turbulence interaction of combustion processes

 Model: DNS Navier-Stokes simulation on Cartesian grid Model: DNS Navier Stokes simulation on Cartesian grid
with particle tracking

 Execution Structure: 4th-order explicit Runge-Kutta time
stepping over 3 D structured grid 8th order finite stepping over 3-D structured grid, 8th-order finite
differences

 Execution Profile: 2-3 routines account for most of the
runtime. Most prominent is reaction rates, the RHS and
transport coefficients

 Code Language: F90Code a guage 90

 Lines of Code: 10K

13

3. S3D
Direct Numerical Simulation of Turbulent Combustion

 Parallelization strategy :
 Perform major code restructuring to move a 3-D grid loop

up the call tree to expose coarser-grain parallelismup the call tree to expose coarser grain parallelism
 Port code from pure-MPI to hybrid, MPI-OpenMP, then

ported kernels to GPU, then rewrite in OpenACC to run
almost entirely on the GPUalmost entirely on the GPU
 Use compiler diagnostics to understand data movement
 Identify data regions to scope arrays for efficient use of

GPUsGPUs

14

See also: John Levesque, http://www.olcf.ornl.gov/wp-content/training/CrayTech_XK6_2012/CTW_S3D_10_10.pdf
Ramanan Sankaran, http://www.olcf.ornl.gov/wp-content/uploads/2011/08/TitanSummit2011_Sankaran.pdf

4. LAMMPS
Large-scale, massively parallel molecular dynamics

 Purpose: Provide understanding of molecular processes
such as cellular membrane fusion

 Model: Classical N-body atomistic modeling with Model: Classical N body atomistic modeling with
molecular dynamics

 Execution Structure: Forward stepping in time as
particles move based on force field calculationsparticles move based on force field calculations

 Execution Profile: A large fraction of time is spent in
short-range force calculations. Long-range force
computations are chief barrier to high scalability

 Code Language: C++

 Li f C d 140K Lines of Code: 140K

15

4. LAMMPS
Large-scale, massively parallel molecular dynamics

 Parallelization strategy :
 Port short-range force calculations and other

calculations to GPUcalculations to GPU
 For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like
algorithm with scalable communicationalgorithm with scalable communication

16

See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf

5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Purpose: Model radiation transport for reactor safety and
nuclear forensics

 Model: Linear Boltzmann transport discrete ordinates Model: Linear Boltzmann transport, discrete ordinates
method

 Execution Structure: Arnoldi eigenvalue solver, inner
GMRES loop matrix vector product contains a 3 D sweep GMRES loop, matrix-vector product contains a 3-D sweep
operation

 Execution Profile: Nearly all of the runtime is spent in the
3-D sweep code. The next most expensive part is
GMRES

 Code Language: C++Code a guage C

 Lines of Code: 46K

17

5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Parallelization strategy :
 Restructure Denovo to provide another axis of

parallelism (energy-group) for better cross-node parallelism (energy group) for better cross node
scaling and GPU threading
 KBA sweep algorithm ported to the GPU, exploiting

multiple problem dimensions to get enough threadsmultiple problem dimensions to get enough threads
 Trilinos/GMRES used for GPU solves

18

See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf

Performance results:

19
Slide courtesy Buddy Bland

Lessons Learned
• Repeated themes in the code porting work:• Repeated themes in the code porting work:

– finding more threadable work for the GPU
– Improving memory access patternsp g y p
– making GPU work (kernel calls) more coarse-grained if possible
– making data on the GPU more persistent
– overlapping data transfers with other work

• Helpful to use as much asynchronicity as possible, to extract
performance (CPU, GPU, MPI, PCIe-2)

• Codes with unoptimized MPI communications may need prior
k i d t i f b f GPU d work in order to improve performance before GPU speed

improvements can be realized

20

Lessons Learned
Some codes need to use multiple MPI tasks per node to access • Some codes need to use multiple MPI tasks per node to access
the GPU (e.g., via proxy)—others use 1 MPI task with OpenMP
threads on the node

• Code changes that have global impact on the code are difficult to
manage, e.g., data structure changes. An abstraction layer may
help, e.g., C++ objects/templates

• Two common code modifications are:
– Permuting loops to improve locality of memory reference
– Fusing loops for coarser granularity of GPU kernel calls

21

Lessons Learned
• Tools (compilers debuggers profilers) were lacking early on in • Tools (compilers, debuggers, profilers) were lacking early on in

the project but are becoming more available and are improving
in quality

• Debugging and profiling tools were useful in some cases
(Allinea DT, CrayPat, Vampir, CUDA profiler)

22

Lessons Learned
• The difficulty level of the GPU port was in part determined by:y p p y

– Structure of the algorithms—e.g., available parallelism, high
computational intensity
C d i fil fl h – Code execution profile—flat or hot spots

– The code size (LOC)

Si t ll f t d h b ti i t d it i • Since not all future code changes can be anticipated, it is
difficult to avoid significant code revision for such an effort

23

Lessons Learned
• Up to 1-3 person-years required to port each codep p y q p

– Takes work, but an unavoidable step required for exascale
– Also pays off for other systems—the ported codes often run

i ifi l f CPU l (D 2X CAM SE 1 X)significantly faster CPU-only (Denovo 2X, CAM-SE >1.7X)

• We estimate possibly 70-80% of developer time is spent in
code restructuring regardless of whether using CUDA / code restructuring, regardless of whether using CUDA /
OpenCL / OpenACC / …

• Each code team must make its own choice of using CUDA vs • Each code team must make its own choice of using CUDA vs.
OpenCL vs. OpenACC, based on the specific case—may be
different conclusion for each code

24

Lessons Learned
• Science codes are under active development—porting to GPU p p g

can be pursuing a “moving target,” challenging to manage
• More available flops on the node should lead us to think of p

new science opportunities enabled—e.g., more DOF per grid
cell

• We may need to look in unconventional places to get another
~30X thread parallelism that may be needed for exascale—
e g parallelism in timee.g., parallelism in time

25

Acknowledgements

Bronson Messer, Mike Brown, Matt Norman, Markus Eisenbach,
Ramanan Sankaran

26

Supplementary slides

27

4. LAMMPS
Large-scale, massively parallel molecular dynamics

 Parallelization strategy :
 Port short-range force calculations, neighbor list

calculations and parts of long range force calculations calculations and parts of long range force calculations
to GPU. Apply one or more threads per atom
 Split work between CPU and GPU to use all available

resources overlapping work when possibleresources, overlapping work when possible
 Make extensive use of CUDA streams
 Multiple MPI tasks access GPU
 Use Geryon middleware library to be able to target

CUDA and OpenCL in same code
 For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like
algorithm

28

See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf

5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Parallelization strategy :
 Restructure Denovo to provide to provide another axis

of parallelism (energy-group) for better cross-node of parallelism (energy group) for better cross node
scaling and GPU threading
 KBA sweep algorithm ported to the GPU, exploiting

multiple problem dimensions to get enough threadsmultiple problem dimensions to get enough threads
 Permute loops to optimize for memory locality
 Use CUDA to extract high performance
 Trilinos/GMRES used GPU solves

29

See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf

