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• We began planning for Titan in 2009

Background
We began planning for Titan in 2009

• At the time there were no large-scale 
GPU systems deployed anywhere

• Furthermore, OLCF had little previousFurthermore, OLCF had little previous 
institutional knowledge of GPUs other 
than scattered individuals

• However, the consensus was that codes 
will require restructuring for memory 
locality, threading and heterogeneity to 
get to exascale—we decided to do it now

• Additionally, we didn’t want a machine delivered that had no functioning 
application software

• Therefore we selected a small set of applications for early porting, to 
spearhead an effort to move codes to Titanspearhead an effort to move codes to Titan

• We went through a process to selected a diverse set of codes to give broad 
coverage to represent use cases for our users

• At the same time we wanted to capture institutional knowledge as lessons
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• At the same time we wanted to capture institutional knowledge as lessons 
learned for going forward



Criteria for selecting early readiness 
applications
Task Description 

Science • Science results, impact, timeliness
• Alignment with DOE and U.S. science mission
• Broad coverage of science domains

Implementation • Broad coverage of relevant programming models, environment, p
(models, algorithms, 
software)

g p g g , ,
languages, implementations

• Broad coverage of relevant algorithms and data structures (motifs)
• Broad coverage of scientific library requirements

User community 
(current and anticipated)

• Broad institutional and developer/user involvement
• Good representation of current and anticipated INCITE workload

Preparation for steady state • Mix of low (“straightforward”) and high (“hard”) risk porting and epa at o o steady state
(“INCITE ready”) 
operations

o o ( st a g t o a d ) a d g ( a d ) s po t g a d
readiness requirements

• Availability of OLCF liaison with adequate skills/experience match to 
application

• Availability of key code development personnel to engage in and guide 
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Availability of key code development personnel to engage in and guide 
readiness activities



Center for Accelerated Application Readiness (CAAR)

WL LSMS LAMMPSWL-LSMS
Illuminating the role of 
material disorder, 
statistics, and fluctuations 
in nanoscale materials 

LAMMPS
A molecular description 
of membrane fusion, 
one of the most 
common ways for 
molecules to enter orand systems.

S3D

CAM-SE
Answering questions 

molecules to enter or 
exit living cells.

S3D
Understanding turbulent 
combustion through direct 
numerical simulation with 
complex chemistry.

about specific climate 
change adaptation and 
mitigation scenarios; 
realistically represent 
features like 

.

NRDF

precipitation patterns / 
statistics and tropical 
storms.

Denovo
Di t di tNRDF

Radiation transport –
important in astrophysics, 
laser fusion, combustion, 
atmospheric dynamics, 
and medical imaging

Discrete ordinates 
radiation transport 
calculations that can 
be used in a variety 
of nuclear energy 
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and medical imaging –
computed on AMR grids. and technology 

applications.

Slides courtesy Bronson Messer



Action plan for code porting
We developed a plan for porting these applications, which involved the 

1 Multidisciplinary code team for each code OLCF application lead Cray

p p p g pp ,
following steps:

1. Multidisciplinary code team for each code – OLCF application lead, Cray 
engineer, NVIDIA developer, also cross-cutting support from tool and 
library developers

2 Early testbed hardware white box GPU cluster “yona” for code2. Early testbed hardware –white box GPU cluster yona  for code 
development

3. Code inventory for each code to understand characteristics – application 
code structure code suitability for GPU port algorithm structure datacode structure, code suitability for GPU port, algorithm structure, data 
structures and data movement patterns.  Also code execution profile –
are there performance “hot spots” or is the profile “flat”

4 Develop parallelization approach for each application ascertain which4. Develop parallelization approach for each application – ascertain which 
algorithm and code components to port to GPU, how to map work to GPU 
threads, how to manage data motion CPU-GPU and between GPU main 
memory and GPU caches/shared memory
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memory and GPU caches/shared memory



Action plan for code porting (2)

5. Decide GPU programming model for port to GPU, e.g., CUDA for more 
close-to-the-metal programming, OpenACC for a higher abstraction level 
and a more incremental porting approach, OpenCL for portability 
advantages, or libraries when appropriate

6. Address code development issues – rewrite vs. refactor, managing 
portability to other platforms, incorporating GPU code into build system, y g y
relationship to the code repository main trunk

7. Representative test cases, e.g., early science problems, formulated as 
basis for evaluating code performance and setting priorities for code g p g p
optimization.  Also formulate comparison metric to measure success, e.g., 
time to solution on dual Interlagos Cray XE6 vs. Titan Cray XK7 
Interlagos+Kepler
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Science Programming Compiler(s) Approx Communicati Math

Application characteristics inventory
App Science 

Area Algorithm(s) Grid type Programming 
Language(s)

Compiler(s) 
supported

Approx. 
LOC

Communicati
on Libraries

Math 
Libraries

CAM-SE climate

spectral finite 
elements, dense 
& sparse linear structured F90 PGI, Lahey, 

IBM 500K MPI Trilinos& sparse linear 
algebra, particles

IBM

LAMMPS Biology / 
materials

molecular 
dynamics, FFT, 

ti l
N/A C++ GNU, PGI, 

IBM, Intel 140K MPI FFTW
particles ,

S3D combustion

Navier-Stokes, 
finite diff, dense & 

sparse linear 
l b ti l

structured F77, F90 PGI 10K MPI None

algebra, particles

Denovo nuclear 
energy

wavefront sweep, 
GMRES structured C++, Fortran, 

Python
GNU, PGI, 
Cray, Intel 46K MPI

Trilinos, 
LAPACK, 
SuperLU, 

Metis
LAPACK

WL-
LSMS nanoscience

density functional 
theory, Monte 

Carlo
N/A F77, F90, C, 

C++ PGI, GNU 70K MPI

LAPACK 
(ZGEMM, 
ZGTRF, 
ZGTRS)

Non equilibrium BLAS, 
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NRDF radiation 
transport

Non-equilibrium 
radiation diffusion 

equation

structured 
AMR C++, C, F77 PGI, GNU, 

Intel 500K MPI, SAMRAI PETSc, 
Hypre, 

SAMRSolvers



Remainder of talk: overview GPU porting 
process for each code
This afternoon: deep dive for two of the codes p

(LAMMPS, Denovo)
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1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

 Purpose: Compute the magnetic structure and 
thermodynamics of low-dimensional magnetic structures

 Model: Combines classical statistical mechanics (W L)  Model: Combines classical statistical mechanics (W-L) 
for atomic magnetic moment distributions with first-
principles calculations (LSMS) of the associated 
energiesenergies.

 Execution Structure: Master node spawns many Monte 
Carlo “walkers” that do most of the work independently, 
results are occasionally combined on masterresults are occasionally combined on master

 Execution Profile: Very concentrated hot spot: most of 
the work is in the walkers: matrix inversion, and BLAS3 
ZGEMMs, typical matrix sizes are 1200X1200, 
1200X3600

 Code Language: C++ and F77
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 Lines of Code: 70K



1. Wang-Landau LSMS
First principles, statistical mechanics of magnetic materials

 Parallelization strategy :

 Compute ZGEMMs on GPU using cuBLAS library, use 
multiple streams via CPU OpenMP threads to saturate multiple streams via CPU OpenMP threads to saturate 
GPU

 For LU factorization for matrix inversion, using 
BLAS  CULA  C  lib i   d  cuBLAS, CULA, Cray libsci_acc or custom code 

(fastest)

 Also moved matrix construction to GPU

 Rewritten code LSMS_3 now allows multiple atoms 
per MPI rank, flexibility for more node parallelism, e.g., 
OpenMP threading  multiple GPU execution streamsOpenMP threading, multiple GPU execution streams
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See also: Markus Eisenbach, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/WL-LSMS-GPU_don1.pdf



2. CAM-SE
Community Atmosphere Model – Spectral Elements
 Purpose: Answer questions about climate change  Purpose: Answer questions about climate change 

adaptation and mitigation scenarios; accurately represent 
regional-scale climate features of significant impact

M d l S t l l t di ti ti  ith d i l   Model: Spectral element discretization with dynamical core 
(fluid dynamics + tracer transport) and other physics 
modules

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

 Execution Structure: Runge-Kutta explicit time stepping 
over 2-D logically unstructured cubed-sphere grid with 
vertical levels, at each time step dynamical core 
calculations, tracers, other physics.

 Execution Profile: Highly problem dependent. Targeted 
science case: tracer transport highest, then dynamical p g , y
core, both employing vertical remap operation

 Code Language: F90
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 Lines of Code: 500K



2. CAM-SE
Community Atmosphere Model – Spectral Elements

 Parallelization strategy :
 Tracers parallelized in straightforward data parallel fashion
 For tracers used Mozart chemistry, more tracers, improved y, , p

model realism, more GPU work
 Vertical remap –tridiagonal solver replaced with splines, to 

expose more parallelism, 5X faster on CPU

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

expose more parallelism, 5X faster on CPU
 Data structures were reworked – arrays of struct of arrays 

replaced with coalesced flat arrays
 Separate element loops fused to improve granularity Separate element loops fused to improve granularity
 Boundary exchange communications were optimized
 Asynchronicity to overlap MPI and PCIe transfers using 

t i  t h istaging techniques
 Used CUDA Fortran, will move to OpenACC for better 

integration with code trunk
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See also: Matt Norman, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/cray_workshop_2012_mrnorman-2.pdf
Jeff Larkin, http://www.slideshare.net/jefflarkin/progress-toward-accelerating-camse



3. S3D
Direct Numerical Simulation of Turbulent Combustion

 Purpose: Provide fundamental insight into the chemistry-
turbulence interaction of combustion processes

 Model: DNS Navier-Stokes simulation on Cartesian grid Model: DNS Navier Stokes simulation on Cartesian grid 
with particle tracking

 Execution Structure: 4th-order explicit Runge-Kutta time 
stepping over 3 D structured grid  8th order finite stepping over 3-D structured grid, 8th-order finite 
differences

 Execution Profile: 2-3 routines account for most of the 
runtime.  Most prominent is reaction rates, the RHS and 
transport coefficients

 Code Language: F90Code a guage 90

 Lines of Code: 10K
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3. S3D
Direct Numerical Simulation of Turbulent Combustion

 Parallelization strategy :
 Perform major code restructuring to move a 3-D grid loop 

up the call tree to expose coarser-grain parallelismup the call tree to expose coarser grain parallelism
 Port code from pure-MPI to hybrid, MPI-OpenMP, then 

ported kernels to GPU, then rewrite in OpenACC to run 
almost entirely on the GPUalmost entirely on the GPU
 Use compiler diagnostics to understand data movement
 Identify data regions to scope arrays for efficient use of 

GPUsGPUs
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See also: John Levesque, http://www.olcf.ornl.gov/wp-content/training/CrayTech_XK6_2012/CTW_S3D_10_10.pdf
Ramanan Sankaran, http://www.olcf.ornl.gov/wp-content/uploads/2011/08/TitanSummit2011_Sankaran.pdf



4. LAMMPS
Large-scale, massively parallel molecular dynamics 

 Purpose: Provide understanding of molecular processes 
such as cellular membrane fusion

 Model: Classical N-body atomistic modeling with Model: Classical N body atomistic modeling with 
molecular dynamics

 Execution Structure: Forward stepping in time as 
particles move based on force field calculationsparticles move based on force field calculations

 Execution Profile: A large fraction of time is spent in 
short-range force calculations.  Long-range force 
computations are chief barrier to high scalability

 Code Language: C++

 Li  f C d 140K Lines of Code: 140K
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4. LAMMPS
Large-scale, massively parallel molecular dynamics 

 Parallelization strategy :
 Port short-range force calculations and other 

calculations to GPUcalculations to GPU
 For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like 
algorithm with scalable communicationalgorithm with scalable communication
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See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf



5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Purpose: Model radiation transport for reactor safety and 
nuclear forensics

 Model: Linear Boltzmann transport  discrete ordinates Model: Linear Boltzmann transport, discrete ordinates 
method

 Execution Structure: Arnoldi eigenvalue solver, inner 
GMRES loop  matrix vector product contains a 3 D sweep GMRES loop, matrix-vector product contains a 3-D sweep 
operation

 Execution Profile: Nearly all of the runtime is spent in the 
3-D sweep code.  The next most expensive part is 
GMRES

 Code Language: C++Code a guage C

 Lines of Code: 46K
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5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Parallelization strategy :
 Restructure Denovo to provide another axis of 

parallelism (energy-group) for better cross-node parallelism (energy group) for better cross node 
scaling and GPU threading
 KBA sweep algorithm ported to the GPU, exploiting 

multiple problem dimensions to get enough threadsmultiple problem dimensions to get enough threads
 Trilinos/GMRES used for GPU solves
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See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf



Performance results:
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Slide courtesy Buddy Bland



Lessons Learned
• Repeated themes in the code porting work:• Repeated themes in the code porting work:

– finding more threadable work for the GPU
– Improving memory access patternsp g y p
– making GPU work (kernel calls) more coarse-grained if possible
– making data on the GPU more persistent
– overlapping data transfers with other work

• Helpful to use as much asynchronicity as possible, to extract 
performance (CPU, GPU, MPI, PCIe-2)

• Codes with unoptimized MPI communications may need prior 
k i  d  t  i  f  b f  GPU d work in order to improve performance before GPU speed 

improvements can be realized
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Lessons Learned
Some codes need to use multiple MPI tasks per node to access • Some codes need to use multiple MPI tasks per node to access 
the GPU (e.g., via proxy)—others use 1 MPI task with OpenMP
threads on the node

• Code changes that have global impact on the code are difficult to 
manage, e.g., data structure changes.  An abstraction layer may 
help, e.g., C++ objects/templates

• Two common code modifications are:
– Permuting loops to improve locality of memory reference
– Fusing loops for coarser granularity of GPU kernel calls
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Lessons Learned
• Tools (compilers  debuggers  profilers) were lacking early on in • Tools (compilers, debuggers, profilers) were lacking early on in 

the project but are becoming more available and are improving 
in quality

• Debugging and profiling tools were useful in some cases 
(Allinea DT, CrayPat, Vampir, CUDA profiler)
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Lessons Learned
• The difficulty level of the GPU port was in part determined by:y p p y

– Structure of the algorithms—e.g., available parallelism, high 
computational intensity
C d  i  fil fl   h  – Code execution profile—flat or hot spots

– The code size (LOC)

Si  t ll f t  d  h   b  ti i t d  it i  • Since not all future code changes can be anticipated, it is 
difficult to avoid significant code revision for such an effort
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Lessons Learned
• Up to 1-3 person-years required to port each codep p y q p

– Takes work, but an unavoidable step required for exascale
– Also pays off for other systems—the ported codes often run 

i ifi l  f  CPU l  (D 2X  CAM SE 1 X)significantly faster CPU-only (Denovo 2X, CAM-SE >1.7X)

• We estimate possibly 70-80% of developer time is spent in 
code restructuring  regardless of whether using CUDA / code restructuring, regardless of whether using CUDA / 
OpenCL / OpenACC / …

• Each code team must make its own choice of using CUDA vs  • Each code team must make its own choice of using CUDA vs. 
OpenCL vs. OpenACC, based on the specific case—may be 
different conclusion for each code
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Lessons Learned
• Science codes are under active development—porting to GPU p p g

can be pursuing a “moving target,” challenging to manage
• More available flops on the node should lead us to think of p

new science opportunities enabled—e.g., more DOF per grid 
cell

• We may need to look in unconventional places to get another 
~30X thread parallelism that may be needed  for exascale—
e g  parallelism in timee.g., parallelism in time
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Supplementary slides
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4. LAMMPS
Large-scale, massively parallel molecular dynamics 

 Parallelization strategy :
 Port short-range force calculations, neighbor list 

calculations and parts of long range force calculations calculations and parts of long range force calculations 
to GPU.  Apply one or more threads per atom
 Split work between CPU and GPU to use all available 

resources  overlapping work when possibleresources, overlapping work when possible
 Make extensive use of CUDA streams
 Multiple MPI tasks access GPU
 Use Geryon middleware library to be able to target 

CUDA and OpenCL in same code
 For long-range forces, replace communication-

expensive 3-D FFT with MSM, a multigrid-like 
algorithm
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See also: Mike Brown, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/brown_cray_tech_12.pdf



5. DENOVO
3D Neutron Transport for Nuclear Reactor Design

 Parallelization strategy :
 Restructure Denovo to provide to provide another axis 

of parallelism (energy-group) for better cross-node of parallelism (energy group) for better cross node 
scaling and GPU threading
 KBA sweep algorithm ported to the GPU, exploiting 

multiple problem dimensions to get enough threadsmultiple problem dimensions to get enough threads
 Permute loops to optimize for memory locality
 Use CUDA to extract high performance
 Trilinos/GMRES used GPU solves
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See also: Wayne Joubert, http://www.olcf.ornl.gov/wp-content/uploads/2012/05/CrayTechWorkshop2012-Denovo-WJ.pdf


