)
A
A
I,
AN

o
\\. A ...« Y
X .
..<..\.- ' N
s AL
:

<A NVIDIA.

)
& lhh\\‘ ‘-h“‘.“--..... .
. SASIIISI 35S,
e

: Ry o Aiis i

. AL

d LSRR

Fre OO R R R

Py 'RERERE RPN
' (R R F P EREE RN .~

ion

t

imiza

kshop

Titan Wor

Hands-on CUDA Opt

Local Machine Setup

® |nstall Cuda 5.0

® https://developer.nvidia.com/cuda-downloads

* Download and unpack exercises
® http://users.nccs.gov/~jluitjien/HandsOn.zip

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://users.nccs.gov/~jluitjen/HandsOn.zip
http://users.nccs.gov/~jluitjen/HandsOn.zip

ORNL Setup

Log into Chester
%> ssh username@home.ccs.ornl.gov

%> ssh chester
Grab an interactive node
%> gsub -I -1 nodes=1,walltime=4:00 -A TRNOO1
Load the cuda module
® %> module load cudatoolkit

Change to your lustre directory
® %> cd /lustre/scratch/username/

Download and unpack the exercise
® http://lusers.nccs.gov/~jluitien/HandsOn.zip

»

)

http://users.nccs.gov/~jluitjen/HandsOn.zip

Exercise

Today we have a progressive exercise
* The exercise is broken into 5 steps

If you get lost you can always catch up by grabbing the
corresponding directory

If you need to peak at the solution for each step it is found in the
directory named “solution”

* To start make a copy of the stepl directory
* We will now review the code

Case Study: Matrix Transpose

void transpose(float in[][], float out[][], int N)
{
for (int j=0; j < N; Jj++)
for(int i1=0; i < N; i++)
out[j][i] = in[i][]j];

}

= Commonly used in applications
= BLAS and FFT

» Stresses memory systems
» Strided reads or writes

2D to 1D indexing

void transpose(float in[], float out[], int N)
{
for (int j=0; j
for (int i=0;
out[i*N+]]

N; j++)
< N; i++)
in[j*N+i] ;

<
i

* This indexing is often used in 3
numerical codes

= We will use this indexing during this
presentation

Parallelization for CPU

void transpose(float in[], float out[], int N)
{
#pragma omp parallel for
for(int j=0; j < N; j++)
#pragma omp parallel for
for(int 1i=0; 1 < N; i++)
out[i*N+j] = in[j*N+i];

%> export OMP NUM THREADS=16
$> aprun -n 1 -d 16 ./transpose

Exercise: Compile with NVCC

Modify make file to build with nvcc
For CUDA filenames must end in .cu
Specify architecture
—arch=sm_35
Pass an argument to the host compiler using —Xcompiler
-Xcompiler —-fopenmp

* Recompile and run
%> module load cudatoolkit
%> make clean
%> make
%> aprun -n 1 -d 16 ./transpose

* Notice nvcc can build CPU only applications
¢ It actually passes host code through to the host compiler

Exercise: Add CUDA APIs

Search for “TODO” and fill in cuda code

Start with the host code

Create separate pointers for CUDA memory

Allocate & free memory device memory

* cudaMalloc(**ptr, size_t size)

* cudaFree(*ptr)
* Copy data between CPU and GPU

¢ cudaMemcpy(*dst, *src, size t size, cudaMemcpyKind)

¢ cudaMemcpyKind: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
® Synchronize the device to ensure timing is correct

¢ cudaDeviceSynchronize()
* Pass device pointers into transpose function

Exercise: Write Our First Kernel

* Create transpose kernel 3
® _ global says this is a kernel

® Parallelize over rows
¢ 1 thread per row

* Replace outer loop with index
calculation

¢ 1D indexing J
— blockDim.x*blockldx.x+threadldx.x
¢ Launch kernel
® <<<gridDim,blockDim>>>
* blockDim = 256 threads

CPU Solution

void
gpuTranspose kernel (int rows, int cols, float *in, float *out)

{

int i1, J;

for (1i=0; i<rows; i++)
for (j=0; j<cols; j++)
out [1 * rows + J] =in [J * cols + 1];

Stepl Solution

| _global |wvoid

gpuTranspose kernel (int rows, int cols, float *in, float *out)
{
int i1, J;
i1 = blockIdx.x * blockDim.x + threadlIdx.x;
for (jJ=0; j<cols; j++)

out [1 * rows + J] =in [J * cols + 1];

Results

* Initial Iimplementation 1.5x faster

* K20X theoretical bandwidth is 250
GB/s
® Low percent of peak
* Why?

Tools for Profiling

* Profile-driven optimization

¢ Tools:
* nsight: Visual Studio Edition or Eclipse Edition
® nvvp: NVIDIA Visual Profiler
* nvprof: Command-line profiling

Introducing NVVP

Cuda profiling tool
Analyzes performance
Identifies hotspots
Suggests improvements

* Let’s open NVVP

® Import profiles
® Interpret results

Profiling on Titan

Currently due to X11 NVVP cannot collect profiles on Titan

However, you can collect profiles using nvprof and import them into
NVVP

%> nvprof -o nvprof.log ./command

We have pre-generated profiles for each version
Find them in the profiles directory

* These profiles were created using NVVP
Unfortunately nvprof cannot generate profiles with this level of detail
* This will be fixed in the next release of CUDA

NVVP: Stepl

Block Size

Always look at occupancy first! Registers/Thread R

Shared Memory/Block . Obytes
: Memory
Each block is scheduled on an SM —
Global Load Efficiency 100%
There are 14 SMs on K20X Global Store Efficiency & 12.5%
Local Memory Overhead L 0%
| o
Only 4 blocks! DRAM Utilization | ® 10.9% (21.55 GB/s)
- Instruction
B Ottl enec k Branch Divergence Overhead 0%
* Grid size Total Replay Overhead & 82.6%

Shared Memory Replay Overhead 0%

* Most of the GPU is idle Global Memory Replay Overhead 5 82.6%
' I Global Cache Replay Overhead L 0%
. 4 i
SOIU“On Local Cache Replay Overhead 0%

* Express more parallelism

Achieved i 12.5%

Theoretical L 100%

~timite | Grid

profiles/step1.nvvp

Exercise: Express More Parallelism

® The CPU version parallelizes over
rows and columns i

¢ Lets do the same on the GPU

® Replace columns loop with an index
calculation
Change launch configuration to 2D
* blockSize = 32x32]
® <<<gridDim,blockDim>>>
® dim3(xdim,ydim)
¢ Don’t forget to update both gridDim
and blockDim

Stepl Solution

_global wvoid

gpuTranspose kernel (int rows, int cols, float *in, float *out)

{

int i, j;

i = blockIdx.x * blockDim.x + threadIdx.x;

for (jJ=0; j<cols; j++)
out [1 * rows + J] =in [J * cols + 1];

Step2 Solution

_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out)

int i, Jj;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

out [1 * rows + J] =in [J * cols + 1];

Results

* We are now at a 12x speedup over
the parallel CPU version

But how are we doing overall?
Peak for K20X is 250 GB/s
& ~24% of peak

* Why is bandwidth utilization low?

* Back to NVVP

NVVP Profile: Step?2

Occupancy is now much better

All SMs have work
DRAM utilization 1s low

* Global store efficiency is low
* Global memory replay overhead is

high
* Bottleneck
®* Uncoalesced stores

Grid Size

Shared Memory/Block 0 bytes

Memory
Global Load EFficienc __100%
gbal Store Efficiency
Local Memory Overhead |
DRAM Utilization | & 35.3% (70.06 GB/3
Instruction |
Branch Divergence Overhead
Total Replay Overhead
Shared Memory Replay Overhead
Clobal Memory Replay Overhead
Global Cache Replay Overheat
Local Cache Replay Overhead
Occypanc
Achieved

ekical

profiles/step2.nvvp

Use NVVP to Find Coalescing Problems

& Analysis 2 . [o Details| B Console|C@ Settings

®* Compile with -lineinfo

Analyze Entire Application

® Analyze kernel (select in timeline) __global _ void gpuTranspose kernel(int rows, int co
Stages [
w| Reset All | |y, Analyze All int 1; int j;

Uncoalesced Global Memory

1 blockIdx.x * blockDim.x + threadIdx.x;
Divergent Branch j = blockIdx.y * blockDim.y + threadIdx.y;
it/ put[i*cols + j] = in[j*cols + i];

Uncoalesced Global Memory Accesses
Global memeory loads and stores have poor access patterns, leading to inefficient use of global memory bandwidth.
Select from the table below to see the source code which generates the inefficient global loads and stores.
Location Description
¥ File: n'|air1.u:'_§
Line: 41 Global Store L2 Transactions/Access =32.0 [1048576 L2 transactions for 32768 total executions]

What is an Uncoalesced Global Store?

-

»

Global memory access happens
In transactions of 32 or 128
bytes

Coalesced access:

® A group of 32 contiguous
threads (“warp”) accessing
adjacent words

* Few transactions and high
utilization

Uncoalesced access:

* A warp of 32 threads
accessing scattered words

* Many transactions and low
utilization

oA B8

|

|

oA B8

Memory Coalescing

* When we write column | memory
access pattern is strided i

® Solution
* Read coalesced into shared memory
® Transpose in shared memory
® Write coalesced from shared memory

Shared memory

Accessible by all threads in a block Registers Registers

SMEM SMEM

* Fast compared to global memory

® Low access latency
* High bandwidth

¢ Common uses:
* Software managed cache
* Data layout conversion

Transposing with Shared Memory

i ® Read block coalesced
Into shared memory

Global Shared
Memory Memory

Transposing with Shared Memory

i * Read block coalesced
Into shared memory

® Transpose shared
memory indices

Global Shared
Memory Memory

Transposing with Shared Memory

i * Read block_ij
coalesced into shared
memory

® Transpose shared
memory indices

® Write transposed
block to global
memory

Global Shared
Memory Memory

Exercise: Stage Through Shared Memory

* Allocate a static 2D array using _ shared keyword

* Read from global to shared memory
* Global read indices are unchanged
* Shared write indices use threadldx.{x,y}

* Write from shared to global memory
* Global write indices: transpose block
Shared read indices: transpose threads

® Sync between read and write: _ syncthreads()

Step3 Solution: Allocate Shared Memory

#define TILE DIM 32

_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out)

{
int 1, j;
shared float tile [TILE DIM] [TILE DIM];

Step3 Solution : Read & Write Coalesced

#define TILE DIM 32
_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out)

{
int 1, j;
shared float tile [TILE DIM] [TILE DIM];

in [|J * cols + 1i|];

Ad
I

out[[j * rows + i

Step3 Solution: Stage Through Shared Memory

#define TILE DIM 32
_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out)
{
int i, j;
shared float tile [TILE DIM] [TILE DIM];

tile[threadIdx.y] [threadldx.x]J|=1in [J * cols + 1];

out[j * rows + i] = [tile[threadIdx.y] [threadIidxz.x 1}

Step3 Solution : Transpose Shared Memory

#define TILE DIM 32
_global wvoid

gpuTranspose kernel (int rows, int cols, float *in, float *out)

{

int 1, j;
shared float tile [TILE DIM] [TILE DIM];

tile[threadIdx.y] [threadldx.x] = in [J * cols + 1];

out[jJ * rows + i] = tile[threadIdx| x|] [threadIdx.y|]:;

Step3 Solution: Transpose Block Indices

#define TILE DIM 32
_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out)
{
int i, j;
~_shared float tile [TILE DIM] [TILE DIM];
i1 = blockIdx.x * blockDim.x + threadIdx.x;
J = blocklIdx.y * blockDim.y + threadIdx.y;
tile[threadIdx.y] [threadldx.x] = in [J * cols + 1];
i = blockI * blockDim.y| + threadIdx.x;
J = blockI:j:j 3 blockDiz[; + threadIdx.y;

out[jJ * rows + i] = tile[threadIdx.x] [threadIdx.y]:

Step3 Solution: Synchronize

#define TILE DIM 32
_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out)
{
int i, j;
~_shared float tile [TILE DIM] [TILE DIM];
i1 = blockIdx.x * blockDim.x + threadIdx.x;
J = blocklIdx.y * blockDim.y + threadIdx.y;
tile[threadIdx.y] [threadldx.x] = in [J * cols + 1];
syncthreads () ;
i = blockIdx.y * blockDim.y + threadIdx.x;
J = blockIdx.x * blockDim.x + threadIdx.y;

out[jJ * rows + i] = tile[threadIdx.x] [threadIdx.y]:

Results

* We got a small improvement but we
are still low compared to peak

® Back to NVVP

NVVP Profile: Step3

o] Duration 128.163 ps
Global Store Efficiency is now 100% [EEEEE - [32321]
Block Size . [32,321]
Global memory replay are much Registers/Thread 10
Shared Memory/Block . 4KB
lower e

Ty

Global Load Efficiency L 100%

* Shared memory replays are much ‘ bl Store EFfcioncy AN
h I g h er LoCativrermenOuerhead i

DRAM Utilization % 37.9% (75.18 GB/fs)
Instruction
Branch Divergence Overhead 0%
* Bottleneck etatReplay Overhead |
) Shared Memory Replay Overhead
e Sh ared memao I‘y ban k CcO nﬂ I CtS Global Memory Replay Overhead
Global CacheRe ETITe
Local Cache Replay Overhead
Occupancy

Achieved [B86.2%

Theoretical 100%

profiles/step3.nvvp

Shared Memory Organization

Organized in 32 independent banks

* Optimal access: all words from different
banks

® Separate banks per thread
Banks can multicast

¢ Multiple words from same bank serialize

Any 1:1 or multicast pattern

Shared Memory: Avoiding Bank Conflicts

* Example: 32x32 SMEM array
® Warp accesses a column:

* 32-way bank conflicts (threads in a warp access the same bank)

warps:
0] 1 2 31
Accesses along row
Bank O produces 0 bank
Bank 1 conflicts
Accesses along
column produces 32
Bank 31 bank conflicts

Shared Memory: Avoiding Bank Conflicts

®* Add a column for padding:
* 32x33 SMEM array

® Warp accesses a column:
® 32 different banks, no bank conflicts

warps:
0 1 2 31 padding
Accesses along row
Bank O long
produces 0 bank
Bank 1 conflicts
Accesses along
Bank 31

column produces O
bank conflicts

Exercise: Fix bank conflicts

® Add padding

Step3 Solution

_global void
gpuTranspose kernel (int rows, int cols, float *in, float *out)
{
int i, j;
~_shared float tile [TILE DIM] [TILE DIM];
i = blockIdx.x * blockDim.x + threadIdx.x;
J = blockIdx.y * blockDim.y + threadIdx.y;
tile[threadlIdx.y] [threadIdx.x] = in [J * cols + 1];
__syncthreads() ;
i = blockIdx.y * blockDim.y + threadIdx.x;
J = blockIdx.x * blockDim.x + threadIdx.y;

out[jJ * rows + i] = tile[threadIdx.x] [threadIdx.y]:

Step4 Solution

_global void
gpuTranspose kernel (int rows, int cols, float *in, float *out)

{

int i, 3j;

__shared float tile [TILE DIM] [TILE DIM|+ 1f];

i = blockIdx.x * blockDim.x + threadIdx.x;

J = blockIdx.y * blockDim.y + threadIdx.y;

tile[threadlIdx.y] [threadIdx.x] = in [J * cols + i];
__syncthreads() ;

i = blockIdx.y * blockDim.y + threadIdx.x;

J = blockIdx.x * blockDim.x + threadIdx.y;

out[jJ * rows + i] = tile[threadIdx.x] [threadIdx.y]:

Results

* Getting much better

* Back to NVVP

NVVP Profile: Step4

Bank conflicts are fixed
DRAM utilization i1s >50%

Can we do better?

Duration

Grid Size
Block Size
Registers/Thread
Shared Memory/Block
¥ Memory
Global Load Efficiency
Global Store Efficiency

Local Memory Overhear
DRAM Utilization

¥ Instruction
Branch Divergence Overhead
Total Replay Overhead
Shared Memory Replay Overhead
Global Memory Replay Overhead
Global Cache Replay Overhead
Local Cache Replay Overhead

¥ Occupancy
Achieved

Theoretical

90.146 ps
[32,32,1]
[32,32,1]
10

4125 KB

100%
100%

57.1% (113.34 GB/s)

9.1%
0%

0%

86.5%
100%

profiles/step4.nvvp

NVVP Profile: Step4

DRAM Utilization is still a little low. Grid Size

Aim for 70%-80% of peak plocksize
Registers/Thread
. Problem Shared Memory/Block
¥ Memory
Kepler requires 100+ lines in flight per Global Load Efficiency
SM to saturate DRAM Global Store Efficiency
Local Memory Overhead
* 1lline-in-flight per warp @ 100% DRAM Utilization
occupancy = 64 lines in flight 7 Instruction
Branch Divergence Overhead
0 SO I ut| on: Total Replay Overhead
) Shared Memory Replay Overhead
* Process multiple elements per thread Global Memory Replay Overhead
* Instruction-level parallelism Global Cache Replay Overhead
Local Cache Replay Overhead
® More |ineS-in-f|ight ¥ Occupancy
® Less _ syncthreads overhead Achieved

Theoretical

* Amortize cost of indexing and thread

90.146 ps
[32,32,1]
[32,32,1]
10

4125 KB

100%
100%

86.5%
100%

launch profiles/step4.nvvp

Exercise: Multiple Elements Per Thread

Change block size to 32 x 4
BLOCKY =4
NUM_ELEMS PER THREAD =8
Should the grid size also change?
®* Loop over 8 elements on input
* Update indexing whenever you see threadldx.y and threadDim.y
* Loop over 8 elements on output
Update indexing whenever you see threadldx.y and threadDim.y

¢ Unroll all loops using #pragma unroll

Step5 Solution : Loop over Multiple Indices

_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out) {
int i, j;
__shared float tile [TILE DIM] [TILE DIM + 1];
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

for(int e=0; e < NUM ELEMS PER THREAD; e++) |{

}
__syncthreads() ;

i = blockIdx.y * blockDim.y + threadIdx.x;
j = blockIdx.x * blockDim.x + threadIdx.y;

for (int e=0; e < NUM ELEMSN PER THREAD; e++) [{

Step5 Solution: Update Indexing for y-dimension

_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out) {
int i, j;
~ shared float tile [TILE DIM] [TILE DIM + 1];
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y |* NUM;ELEMS=PER=IHREAD + threadIdx.y;

for(int e=0; e < NUM ELEMS PER THREAD; e++) {
tile[threadIdx.y +| e*BLOCKY|] [threadIdx.x] = in[(j+e*BLOCKY)Fcols + 1i];

}
syncthreads () ;

i1 = blockIdx.y * blockDim.y |* NUM ELEMS PER THREAD [+ threadIdx.x;
j = blockIdx.x * blockDim.x + threadIdx.y;

for(int e=0; e < NUM _ELEMS PER THREAD; e++) {
out[kj+e*BLOCKY)*rows + i] = tile[threadIdx.x] [threadIdx.y + |e*BLOCKY]|]

Stepb5 Solution: Unroll Loops

_global wvoid
gpuTranspose kernel (int rows, int cols, float *in, float *out) {
int i, j;
~ shared float tile [TILE DIM] [TILE DIM + 1];
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y * NUM THREADS PER ELEM + threadIdx.y;

for(int e=0; e < NUM ELEMS PER THREAD; e++) {
tile[threadIdx.y + e*BLOCKY] [threadIdx.x] = in[(j+e*BLOCKY) *cols + 1i];

}
syncthreads () ;

i = blockIdx.y * blockDim.y * NUM THREADS PER ELEM + threadIdx.x;
j = blockIdx.x * blockDim.x + threadIdx.y;

for(int e=0; e < NUM _ELEMSN PER THREAD; e++) {
out[(j+e*BLOCKY) *rows + 1] = tile[threadIldx.x][threadIldx.y + e*BLOCKY];

NVVP Profile: Step5

Duration . 56.13ps
_ Grid Size - [32,32,1]
80% of peak bandwidth Block Size | [32,41]
Registers/Thread 24
Occupan cy dropped Shared Memory/Block aa2ske
This is not a problem T — e
Global Load Efficiency . 100%
* ILP makes up for loss in Global Store Efficiency . 100%
occu p an Cy Local Memory Overhead ;
DRAM Utilization
* In general ILP is as good as high v Instruction

OoCCu pan Cy Branch Divergence Overhead
Total Replay Overhead
Shared Memory Replay Overhead

Global Memory Replay Overhead
Global Cache Replay Overhead
Local Cache Replay Overhead

Achieved

poretical

profiles/step5.nvvp

Final Results

* Use NVVP to identify bottlenecks

* Use optimization techniques to
eliminate bottlenecks

¢ Refer to GTC archives for
complete optimization
techniques

® www.gputechconf.com/gtchew/on-demand-qgtc.php
¢ Search “GPU Performance Analysis and Optimization”

http://www.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

