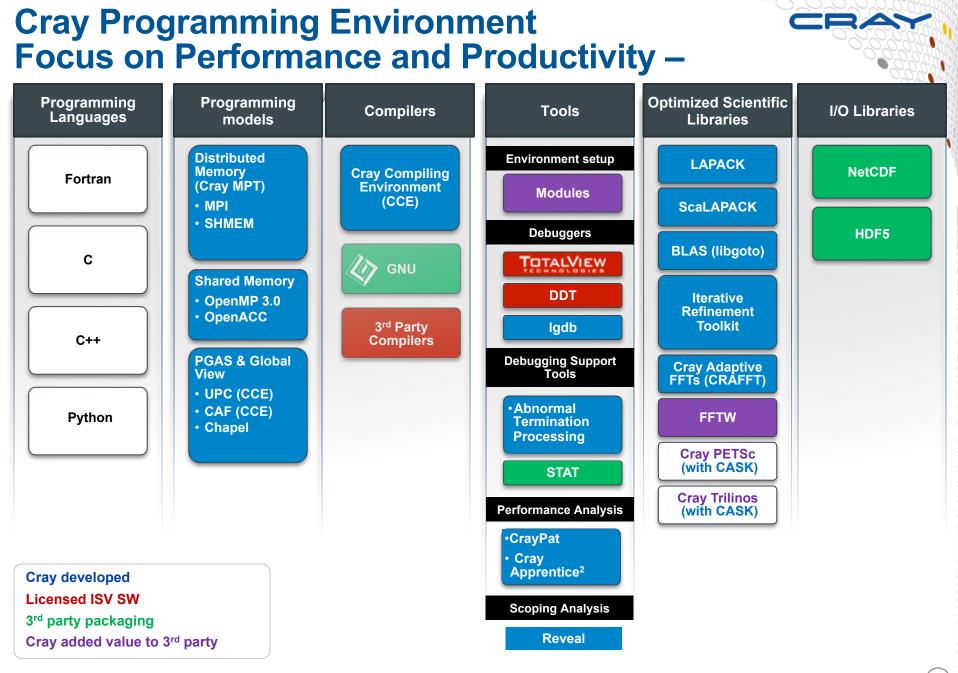
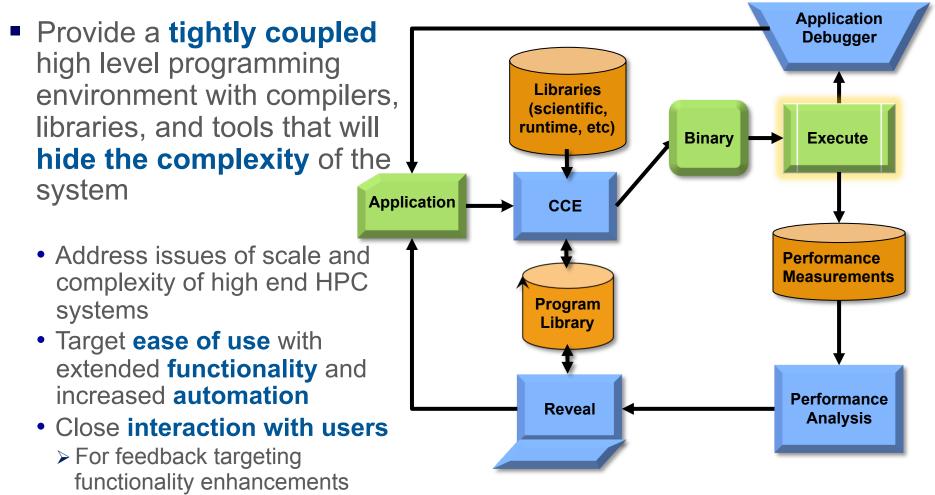
Cray Programming Environment for XE/XK7 Systems

Heidi Poxon Technical Lead & Manager, Performance Tools Cray Inc.



Overview of the Cray programming environment

- Compiler
- Message Passing Toolkit
- Performance Tools
- Scientific Libraries
- Debugging Tools


• The Cray X86/GPU programming environment

Using Cray and 3rd Party Compilers

Cray Programming Environment Vision

It is the role of the Programming Environment to close the gap between observed performance and achievable performance

Cray Programming Environment Roadmap

2012	2	2013	2014		
Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1	Q2 Q3	Q4
Fremont Erie Up 1 Pre-Release Kepler SNB	Fremont (IVB)	Fremont Up 1	Fremont Up 2 (Haswell)	Hiawath (KNL)	ha Itasca
Cray Compiling Environment					
CCE ▼8.1 ▼8.1.	2 ▼8.1.5	▼8.2	8.2.3 ▼8.2	.7 ▼8.3	
Cray Message Passing Toolkit					
MPT ▼5.5 ▼5.6	▼6.0	▼6.1	6.2 ▼6.3	▼6.1	▼6.2
Cray Performance Measurement & Analysis Tools					
CPMAT ▼5.3.2 ▼6.0	▼6.1	▼6.2	▼6.3	▼6.4	
Cray Scientific & Math Libraries	5				
CSML ▼6.1 ▼6.2 ▼7.0	▼7.1	▼7.2	▼7.3	▼7.4	
Cray Debugging Support Tools					
CDST ▼1.5 ▼2.0 ▼2.1	▼2.2	▼2.3	₹2.3	▼2.4	

The Cray Compiling Environment

- Cray technology focused on scientific applications
 - Takes advantage of automatic vectorization
 - Takes advantage of automatic shared memory parallelization
- Standard conforming languages and programming models
 - Fortran 2008 standard compliant
 - Fortran 2008 compliance planned for CCE 8.1 (3Q12)
 - C++98/2003 compliant
 - OpenMP 3.0 compliant, working on OpenMP 3.1 and OpenMP 4.0
- OpenMP and automatic multithreading fully integrated
 - Share the same runtime and resource pool
 - Aggressive loop restructuring and scalar optimization done in the presence of OpenMP
 - Consistent interface for managing OpenMP and automatic multithreading

• PGAS languages (UPC & Fortran Coarrays) fully optimized and integrated into the compiler

- UPC 1.2 and Fortran 2008 coarray support
- No preprocessor involved
- Target the network appropriately
- Full debugger support with Allinea's DDT

Cray MPI & Cray SHMEM

• MPI

- Implementation based on MPICH2 from ANL
- Optimized Remote Memory Access (one-sided) fully supported including passive RMA
- Full MPI-2 support with the exception of
 - Dynamic process management (MPI_Comm_spawn)
- MPI3 Forum active participant

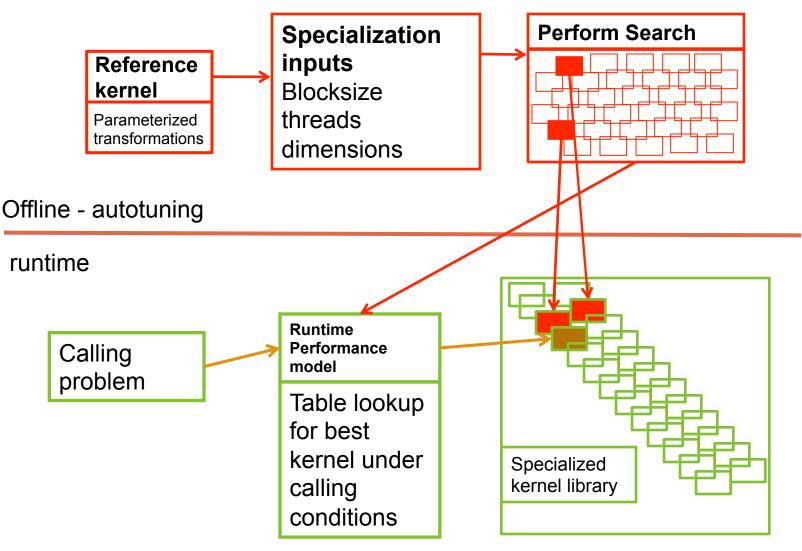
Cray SHMEM

- Fully optimized Cray SHMEM library supported
 - Cray XT/XE implementation close to the T3E model
 - Cray XE Implementation on top of the Distributed Memory Applications API (DMAPP)
- Recent enhancements include:
 - Leveraging local memory access through Cross Process Memory Mapping (XPMEM)
 - Provides the ability for one process to map arbitrary portions of another local process
 - Distributed locking
 - Collectives optimization

Cray Performance Tools

- From performance measurement to performance analysis
- Extend performance measurement tools to assist with optimization (observations, CCE compiler optimization information)
- Focus on automation (simplify tool usage, provide feedback based on analysis)
- Enhance support for multiple programming models within a program (MPI, PGAS, OpenMP, OpenACC, SHMEM)
- Improve scaling (larger jobs, more data, better tool response)

Support new processors and interconnects


Adaptive Scientific Libraries

- Scientific Libraries today have three concentrations to increase productivity with enhanced performance
 - Standardization
 - Autotuning
 - Adaptive Libraries

Cray adaptive model

- Runtime analysis allows **best** library/kernel to be **used dynamically**
- Extensive offline testing allows library to make decisions or remove the need for those decisions
- Decision depends on the system, on previous performance info, obtained previously, and characteristics of calling problem

Adaptation, Auto-tuning and Specialization

This is all invisible to the user :: all you will see is good performance

The Next Generation of Debuggers on Cray Systems

Systems with hundreds of thousands of threads of execution need a new debugging paradigm

- Innovative techniques for productivity and scalability
 - Scalable Solutions based on MRNet from University of Wisconsin

STAT - Stack Trace Analysis Tool

- Scalable generation of a single, merged, stack backtrace tree
 - running at 216K back-end processes

ATP - Abnormal Termination Processing

- Scalable analysis of a sick application, delivering a STAT tree and a minimal, comprehensive, core file set.
- Fast Track Debugging
 - Debugging optimized applications
 - Added to Allinea's DDT 2.6 (June 2010)
- Support for traditional debugging mechanism
 - TotalView, DDT, and gdb

THE UNIVERSITY

The New Generation of Supercomputers

Hybrid multicore has arrived and is here to stay

- Fat nodes are getting fatter
- Accelerators have leapt into the Top500

Programming accelerators efficiently is hard

- Three levels of parallelism required
 - MPI between nodes or sockets
 - Shared memory programming on the node
 - Vectorization for low level looping structures
- Need a hybrid programming model to support these new systems
- Need a high level programming environment
 - Compilers, tools, & libraries

Cray Vision for Accelerated Computing

- Most important hurdle for widespread adoption of accelerated computing is programming difficulty
 - Need a single programming model that is portable across machine types, and also forward scalable in time
 - Portable expression of heterogeneity and multi-level parallelism
 - Programming model and optimization should not be significantly difference for "accelerated" nodes and multi-core x86 processors
 - Allow users to maintain a single code base
- Cray's approach to Accelerator Programming is to provide an ease of use tightly coupled high level programming environment with compilers, libraries, and tools that will hide the complexity of the system

• Ease of use is possible with

- Compiler makes it feasible for users to write applications in Fortran, C, C++
- Tools to help users port and optimize for heterogeneous systems
- Auto-tuned scientific libraries

Programming for a Node with Accelerator

- Fortran, C, and C++ compilers
 - OpenACC directives to drive compiler optimization
 - Compiler does the "heavy lifting" to split off the work destined for the accelerator and perform the necessary data transfers
 - Compiler optimizations to take advantage of accelerator and multi-core X86 hardware appropriately
 - Advanced users can mix CUDA functions with compiler-generated accelerator code
 - Debugger support
- Cray Reveal, built upon an internal compiler representation of the application (the CCE Program Library)
 - Source code browsing tool that provides interface between the user, the compiler, and the performance tool
 - Scoping tool to help users port and optimize applications
 - Performance measurement and analysis information for porting and optimization
- Scientific Libraries support
 - Auto-tuned libraries (using Cray Auto-Tuning Framework)

COMPARED FOR CASE

OpenACC Accelerator Programming Model

Why a new model? There are already many ways to program:

- CUDA and OpenCL
 - All are guite low-level and closely coupled to the GPU
- PGI CUDA Fortran
 - Still CUDA just in a better base language
- PGI accelerator directives, CAPS HMPP
 - First steps in the right direction Needed standardization

User needs to write specialized kernels:

- Hard to write and debug
- Hard to optimize for specific GPU
- **Hard** to update (porting/functionality)

OpenACC Directives provide high-level approach

- Simple programming model for heterogeneous systems
- Easier to maintain/port/extend code
 - The same source code can be compiled for multicore CPU
- Based on the work in the OpenMP Accelerator Subcommittee
 - Proposed to the OpenMP Language Committee
 - Subcommittee of OpenMP ARB, aiming for OpenMP 4.0
- Possible performance sacrifice
 - A small performance gap is acceptable (do you still hand-code in assembler?)
 - Goal is to provide at least 90% of the performance obtained with hand coded CUDA
 - Already seeing this in many cases, more tuning ongoing

http://www.openacc.org/

The OpenACC Application Program Interface describes a collection of compiler directives to specify loops and regions of code in standard C, C++ and Fortran to be offloaded from a host CPU to an attached accelerator, providing

portability across operating systems, host CPUs and accelerators.

The OpenACC[™] API

QUICK REFERENCE GUIDE

Most OpenACC directives apply to the immediately following structured block or loop: a structured block is a single statement or a compound statement (C or C++) or a sequence of statements (Fortran) with a single entry point at the top and a single exit at the bottom.

© 2011 OpenACC-standard.org all rights reserved

Using Cray and 3rd Party Compilers

Modules

- Access to software is managed using the GNU module command
 - To see which modules are currently loaded, type: "module list"
 - To see which modules are available, type: "module avail"
 - You can wildcard the end of the names, e.g.: "module avail PrgEnv*"
 - For more complicated grepping, you need to redirect stderr to stdout, e.g.
 - module avail 2>&1 | grep "Env"
 - You load a new module by typing: "module load <module name>"
 - Some modules (e.g. different compiler versions) conflict, so you should first "module unload" the old version (or use "module swap")

Modules (2)

• To access the different compilers:

- You select these by loading a Programming Environment (PE) module
 - PrgEnv-cray for CCE (the default)
 - PrgEnv-pgi for PGI
 - PrgEnv-gnu for GNU
- Once one of these is loaded, you can then select a compiler suite
 - CCE: module avail cce
 - PGI: module avail pgi
- For GPU programming (CUDA, OpenACC...)
 - Make sure you target the GPU when building:
 - Example: module load craype-accel-nvidia35

Compiler Choices – Relative Strengths

- CCE Outstanding Fortran, very good C, and improving C++
 - Very good vectorization
 - Very good Fortran language support; only real choice for Coarrays
 - C support is quite good, with UPC support
 - Very good scalar optimization and automatic parallelization
 - Clean implementation of OpenMP 3.0, with tasks
 - Sole delivery focus is on Linux-based Cray hardware systems
 - Best bug turnaround time (if it isn't, let us know!)
 - Cleanest integration with other Cray tools (performance tools, debuggers, upcoming productivity tools)
 - No inline assembly support
 - OpenACC support for accelerators
- GNU pretty-good Fortran, outstanding C and C++ (if you ignore vectorization)
 - Very good scalar optimizer
 - Vectorization capabilities focus mostly on inline assembly
 - De-facto C++ compiler (for better or worse)

Compiler Choices – Relative Strengths (2)

- PGI Very good Fortran and C, pretty good C++
 - Good vectorization
 - Good functional correctness with optimization enabled
 - Good manual and automatic prefetch capabilities
 - Very interested in the Linux HPC market, although that is not their only focus
 - Excellent working relationship with Cray, good bug responsiveness
 - OpenACC support for accelerators

• Intel – Good Fortran, excellent C and C++ (if you ignore vectorization)

- Automatic vectorization capabilities are modest, compared to PGI and CCE
- Use of inline assembly is encouraged
- Focus is more on best speed for scalar, non-scaling apps
- Tuned for Intel architectures, but actually works well for some applications on AMD
- Does not support the Interlagos FMA instruction, so achievable floating point performance is cut in half

Using the Compilers

- Cray Systems come with compiler wrappers to simplify building parallel applications (similar the mpicc/mpif90)
 - Fortran Compiler: ftn
 - C Compiler: cc
 - C++ Compiler: CC
- Using these wrappers ensures that your code is built for the compute nodes and linked against important libraries
 - Cray MPT (MPI, Shmem, etc.)
 - Cray LibSci (BLAS, LAPACK, etc.)
 - ...
- Do not call the PGI, Cray, etc. compilers directly
- Cray Compiler wrappers try to hide the complexities of using the proper header files and libraries
 - So does autoconf (./configure) and CMake, so unfortunately, sometimes these tools need massaging to work with compiler wrappers, especially in a cross-compiling environment, like titan

Using the Cray Compiler

• To access the Cray compiler

- module load PrgEnv-cray
- For titan: module swap PrgEnv-pgi PrgEnv-cray

To target the various chip

module load craype-interlagos (loaded by default)

• To enable OpenACC

• module load craype-accel-nvidia35

 Once you have loaded the module "cc" and "ftn" are the Cray compilers

• Recommend just using default options

• man crayftn

Some Cray Compilation Environment Basics

• CCE-specific features:

- Optimization: -O2 is the default and you should usually use this
- OpenMP is supported by default (no flag needed to enable)
 - if you don't want it, use either **-hnoomp** or **-xomp** compiler flags
- OpenACC is supported by default if GPU targeting module (craypeaccel-nvidia*) is loaded
- CCE only gives minimal information to stderr when compiling
 - To see more information, you should request a compiler listing file
 - flags -ra for ftn or -hlist=a for cc
 - writes a file with extension .lst
 - contains annotated source listing, followed by explanatory messages
 - Each message is tagged with an identifier, e.g.: **ftn-6430**
 - to get more information on this, type: explain <identifier>
 - Cray Reveal can display all this information (and more)

Compiler Feedback

- **Compiler feedback is extremely important**
 - Did the compiler recognise the accelerator directives?
 - A good sanity check
 - How will the compiler move data?
 - Only use data clauses if the compiler is over-cautious on the copy*
 - Or you want to declare an array to be scratch (create clause)
 - The first main code optimisation is removing unnecessary data movements
 - How will the compiler schedule loop iterations across GPU threads?
 - Did it parallelise the loopnests?
 - Did it schedule the loops sensibly?
 - The other main optimisation is correcting obviously-poor loop scheduling

Compiler teams work very hard to make feedback useful

- Advice: use it, it's free! (i.e. no impact on performance to generate it)

 - PGI: ftn -Minfo ; cc -Minfo Feedback to STDERR
 - CCE: ftn -ra; cc -hlist=a Produces commentary files <stem>.lst

Example: Cray Loopmark Messages

ftn -rm ... or cc -hlist=m ...

29.	b<	do i3=2,n3-1		
30.	b b<	do i2=2,n2-1		
31.	b b Vr<	do i1=1,n1		
32.	b b Vr	u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)		
33.	b b Vr	> $+ u(i1,i2,i3-1) + u(i1,i2,i3+1)$		
34.	b b Vr	u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)		
35.	b b Vr	> $+ u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)$		
36.	b b Vr>	enddo		
37.	b b Vr<	do i1=2,n1-1		
38.	b b Vr	r(i1,i2,i3) = v(i1,i2,i3)		
39.	b b Vr	> - a(0) * u(i1,i2,i3)		
40.	b b Vr	> $-a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))$		
41.	b b Vr	> $-a(3) * (u2(i1-1) + u2(i1+1))$		
42.	b b Vr>	enddo		
43.	b b>	enddo		
44.	b>	enddo		

Example: Cray Loopmark Messages (cont)

```
ftn-6289 ftn: VECTOR File = resid.f, Line = 29
 A loop starting at line 29 was not vectorized because a recurrence was
  found on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
 A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
 A loop starting at line 30 was not vectorized because a recurrence was
  found on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
 A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
 A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
 A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
 A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
 A loop starting at line 37 was vectorized.
```

Interoperability

OpenACC is a complete programming model

But there are still situations where it is useful to interface OpenACC code with other GPU programming models

• Why might this be useful?

- You want to call accelerated scientific libraries from your code
 - without having to transfer data back and forth between the host
- You want to call CUDA kernels from your code
 - also without unnecessary data transfers
- You want to exploit Nvidia GPUdirect (or similar) to streamline communication of data between accelerators.

Interfacing requires access to the lower-level information

- Typically the GPU memory locations of OpenACC-created data arrays
- The compiler normally hides this information from the user.

host_data Directive

- OpenACC runtime manages GPU memory implicitly
 - user does not need to worry about memory allocation/free-ing
- Sometimes it can be useful to know where data is held in device memory, e.g.:
 - so a hand-optimised CUDA kernel can be used to process data already held on the device
 - so a third-party GPU library can be used to process data already held on the device (Cray libsci_acc, cuBLAS, cuFFT etc.)
 - so optimised communication libraries can be used to streamline data transfer from one GPU to another

• host_data directive provides mechanism for this

- nested inside OpenACC data region
- subprogram calls within host_data region then pass pointer in device memory rather than in host memory

Interoperability with CUDA

• Why would you want to do this?

• Two situations:

- You have already ported an application to OpenACC
 - A few key kernels get improved performance using hand-tuned CUDA
 - (performance at the cost of reduced portability)
 - These CUDA kernels should process data that was already placed in GPU memory using OpenACC
- Or, you have ported a few key kernels to the GPU using CUDA
 - but data movement costs outweigh the performance gain
 - OpenACC provides an efficient way of porting the remainder of the application

CUDA Interoperability

```
PROGRAM main
INTEGER :: a(N)
<stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
<stuff>
END PROGRAM main
```

```
__global__ void dbl_knl(int *c) {
    int i = \
        blockIdx.x*blockDim.x+threadIdx.x;
    if (i < N) c[i] *= 2;
}
extern "C" void dbl_cuda_(int *b_d) {
    cudaThreadSynchronize();
    dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
    cudaThreadSynchronize();
}
```

• host_data region exposes accelerator memory address on host

Nested inside data region

Call CUDA-C wrapper (compiled with nvcc; linked with CCE)

- Must include cudaThreadSynchronize()
 - Before: so asynchronous accelerator kernels definitely finished
 - After: so CUDA kernel definitely finished
- CUDA kernel written as usual
- Or use same mechanism to call existing CUDA library

Using the NVIDIA Compiler for CUDA

- Target build for the NVIDIA GPU and access NVIDIA compiler
 - module load craype-accel-nvidia35
- Compile CPU code with PrgEnv "cc" wrapper
 - Either **PrgEnv-gnu** for gcc; or **PrgEnv-cray** for craycc
- Compile GPU CUDA-C kernels with nvcc
 - nvcc -O3 -arch=sm_20
- Link program with PrgEnv "cc" wrapper
 - Only GPU flag needed: -lcudart
 - e.g. no CUDA -L flags needed (added in cc wrapper)

Interoperability with Libraries

• Why would you want to do this?

- You should always use libraries if they are available
 - A lot of effort goes into optimizing them
 - They are likely to use a lot more tricks that you have time/inclination to try

• Examples of libraries:

- Cray libsci_acc
- cuBLAS
- cuFFT
- ...

• To use these with OpenACC code

• Place calls to the library inside host_data regions

Unified X86/GPU Programming Environment

• The Cray XK7 includes the first-generation of the Cray Unified X86/GPU Programming Environment

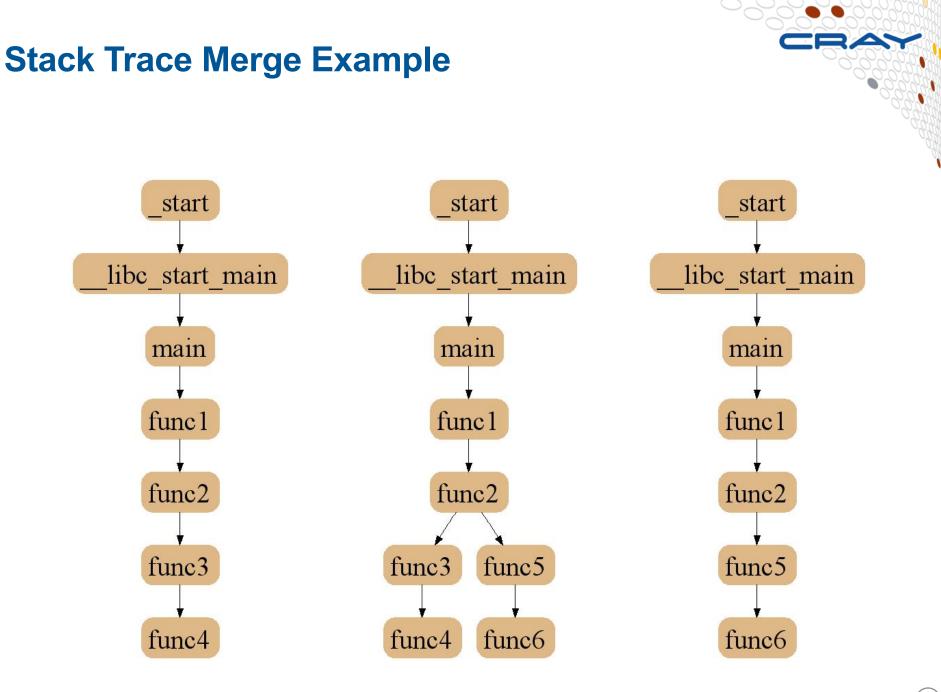
• The Cray XK7 PE supports three classes of users:

- 1. "Hardcore" GPU programmers with existing CUDA ports
- 2. Users with parallel codes, ideally with some OpenMP experience, but less GPU knowledge
- 3. Users with serial codes looking for portable parallel performance with and without GPUs

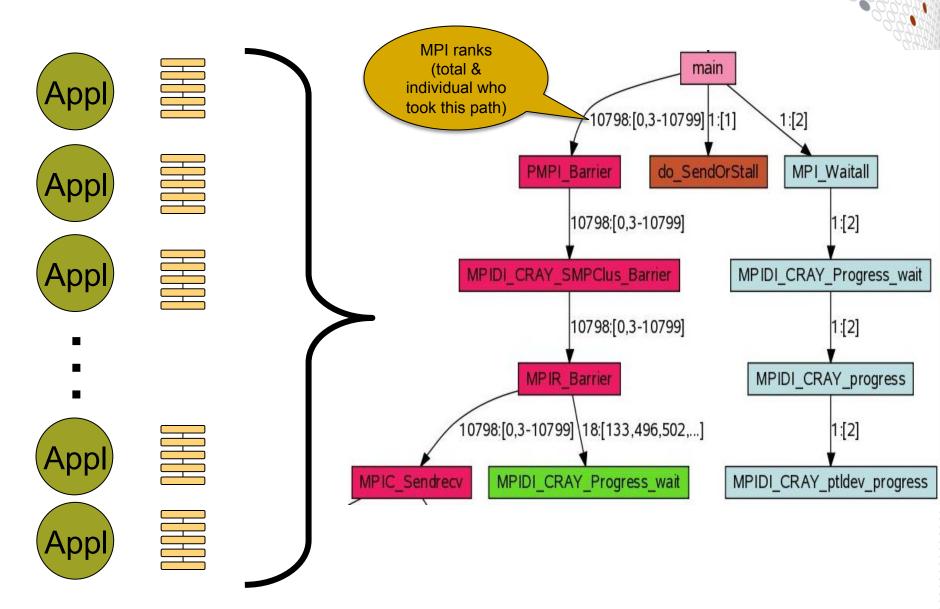
What is Included?

- STAT (Stack Trace Analysis Tool)
- ATP (Abnormal Termination Processing)
- MRNet (Multicast/Reduction Network)
- FTD (Fast Track Debugging)
 - Supported in Igdb and DDT
- Coming: ccdb (Cray Comparative Debugger)

My application hangs!


Stack Trace Analysis Tool (STAT)

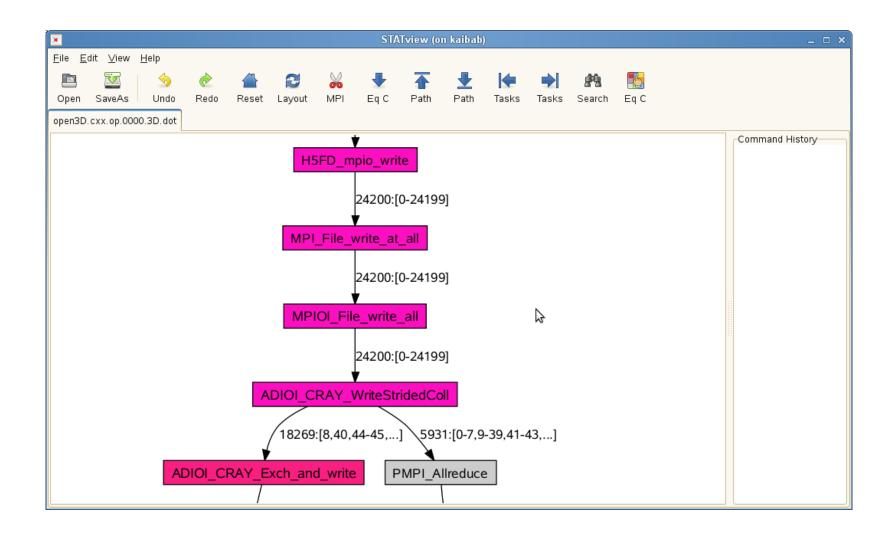
- Stack trace sampling and analysis for large scale applications
 - Sample application stack traces
 - Scalable generation of a single, merged, stack backtrace tree
 - A comprehensible view of the entire application
 - Discover equivalent process behavior
 - Group similar processes
 - Reduce number of tasks to debug
 - 128K processes analyzed in 2.7 seconds, using MRNet


• Merge/analyze traces:

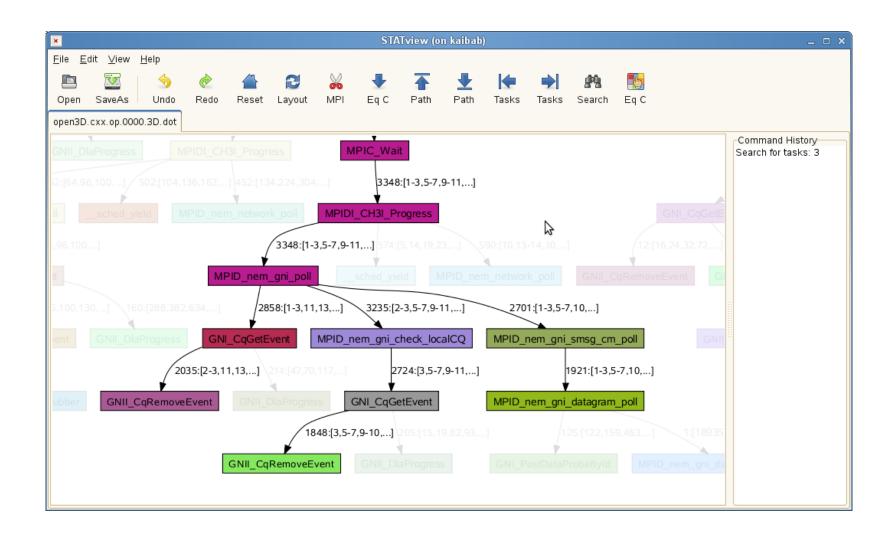
- Facilitate scalable analysis/data presentation
- Multiple traces over space or time
- Create call graph prefix tree
 - Compressed representation
 - Scalable visualization
 - Scalable analysis

WISCONSIN

2D-Trace/Space Analysis


Example: NERSC Plasma Physics Application

- Production, plasma physics PIC (Particle in Cell) code, run with 120K cores on hopper, and using HDF5 for parallel I/O
- Mixed MPI/OpenMP
- STAT helped them to see the big picture, as well as eliminate code possibilities since they were not in the tree


Example Continued - STATview

STATview (on kaibab) _ 🗆 ×															
	dit <u>∨</u> iew								_						
D D D D D D D D D D D D D D D D D D D	SaveAs	🥱 Undo	Redo	Bosot	2 Layout	Ж MPI	🚽 Eq C	The Path	Path	Tasks	Tasks	🚰 Search	Eq C		
	cxx.op.000		Redu	Reset	Layout	IVIET	EqC	Faui	Faui	Idaka	Tasks	Search	EqC		
						-								ſC	ommand History
						fangenen fangenen fangenen f									
					Constant Provide State			~							
			THE OWNER OF	COLUMN CONTRACTOR	and for the second seco				Verson and A						

Example Continued - STATview

Example Continued - STATview

45

Current Release: STAT 1.2.1.3

- module load stat
- man STAT

How to Use STAT

- STAT <pid_of_aprun>
 - Creates STAT_results/<app_name>/<merged_st_file>
 - apstat command can help find aprun PID
- statview <merged_st_file>
- statgui

How to Use STAT (2)

- Work bench for repeated requests
- Allows you to
 - Change granularity
 - Change sampling
 - Continue then resample
- Launches or attaches to application

Abnormal Termination Processing (ATP)

My application crashes!

The Problem Being Solved

- Applications on Cray systems use hundreds of thousands of processes
- On a crash one, many, or all processes might trap
- No one wants that many core files
- No one wants that many stack backtraces
- Accessing and comprehending many stack backtraces is a daunting task

Current Release: ATP 1.6.0

• Automatic

- ATP module loaded by default
 - Signal handler added to application and registered
- aprun launches ATP in parallel with application launch
- Enabled/disabled at runtime via ATP_ENABLED environment variable (can be set by site and/or by user)

• Provides:

- backtrace of first crash to stderr
- merged backtrace trees
- dumps core file set (if limit/ulimit allows)
- Summary of ranks that faulted included in tree

• Tested at 15K PEs