
A Preview of MPI 3.0:
The Shape of Things to Come

Manjunath Gorentla Venkata
manjugv@ornl.gov

Joshua Hursey

hurseyjj@ornl.gov (or jhursey@uwlax.edu)

2

Overview of Seminar Series

• Monday, June 25 - 3-4 pm:
–  MPI Process (brief)
–  Timeline to 3.0
–  MPI 3.0 Fortran Bindings
–  MPI 2.2

•  Tuesday, June 26 - 3-4 pm
–  Collectives:

•  Neighborhood
•  Nonblocking

–  Communicator Creation:
•  Noncollective
•  Nonblocking duplication

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

3

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

4

MPI_Comm_split_type

•  The 'split_type' specifies how to partition a communicator
•  MPI Defines: MPI_COMM_TYPE_SHARED

Split the communicator into subcommunicators, each of which can create
a shared memory region.

•  Implementations can define additional types and/or use info argument
(e.g., L2 cache, NUMA domain, I/O controller…)

• What split_types would be useful to your application?

MPI_COMM_SPLIT_TYPE(comm, split_type, key, info, newcomm)	
MPI Defines: MPI_COMM_TYPE_SHARED	 New!	

5

MPI_Comm_split_type:
Availability

• Proposal: #287
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/287

• Open MPI
•  MPI_COMM_TYPE_SHARED: All processes on the same "node"
•  Available today: Open MPI trunk
•  Scheduled release: Open MPI 1.7 (next feature series)
•  https://svn.open-mpi.org/trac/ompi/wiki/MPIConformance

• MPICH2
•  MPI_COMM_TYPE_SHARED: All processes on the same "node"
•  Available today: MPICH2 trunk, 1.5beta1
•  Scheduled release: MPICH2 1.5 (next release)

6

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

7

MPI Matched Probe/Recv

• MPI_Probe/Recv cannot be used in a thread safe manner
•  Probing for a message does not imply that a subsequent receive will

actually receive that message.
•  Limits the ability to build some programming models on top of MPI

• Need to couple the MPI_Probe with the following MPI_Recv
•  New type: MPI_Message	

MPI_Probe(MPI_ANY_SOURCE, 0, comm, &status);	
	
MPI_Get_count(&status, MPI_BYTE, &len);	
buf = malloc(len);	
	
/* Thread B can jump in here an steal the message */	
	
MPI_Recv(buf,len,MPI_BYTE,status.MPI_SOURCE,0,comm, MPI_STATUS_IGNORE);	

Douglas Gregor, Torsten Hoefler, Brian Barrett, and Andrew Lumsdaine,
"Fixing Probe for Multi-Threaded MPI Applications." Tech. Report, 2009.
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR674
Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

8

• New Recv calls the reference an MPI_Message
•  Receive only the MPI_Message previously probed

MPI Matched Probe/Recv

• New Probe calls with an MPI_Message
•  If successful, "keep" the message and store it in the MPI_Message
•  No other Probe/Recv can match this message except MRecv(msg)

MPI_IPROBE(source, tag, comm, flag, status)	
MPI_PROBE(source, tag, comm, status)	
	
MPI_IMPROBE(source, tag, comm, flag, message, status)	
MPI_MPROBE(source, tag, comm, message, status)	

MPI_RECV(buf, count, datatype, source, tag, comm, status)	
MPI_IRECV(buf, count, datatype, source, tag, comm, request)	
	
MPI_MRECV(buf, count, datatype, message, status)	
MPI_IMRECV(buf, count, datatype, message, request)	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

New!	

New!	

9

MPI Matched Probe/Recv

MPI_Message msg;	
MPI_Status status;	
	
MPI_MProbe(MPI_ANY_SOURCE, 0, comm, &msg, &status);	
	
MPI_Get_count(&status, MPI_BYTE, &len);	
buf = malloc(len);	
	
MPI_Recv(buf, len, MPI_BYTE, &msg, MPI_STATUS_IGNORE);	

MPI_Probe(MPI_ANY_SOURCE, 0, comm, &status);	
	
MPI_Get_count(&status, MPI_BYTE, &len);	
buf = malloc(len);	
	
/* Thread B can jump in here an steal the message */	
MPI_Recv(buf,len,MPI_BYTE,status.MPI_SOURCE,0,comm, MPI_STATUS_IGNORE);	

• Without Matched Probe/Recv : Not thread safe

• With Matched Probe/Recv : Thread safe

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

New!	

10

MPI Matched Probe/Recv:
Availability

• Proposal: #38
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/38

• Open MPI
•  Available today: Open MPI trunk
•  Scheduled release: Open MPI 1.7 (next feature series)
•  https://svn.open-mpi.org/trac/ompi/wiki/MPIConformance

• MPICH2
•  Available today: MPICH2 trunk, 1.5beta1
•  Scheduled release: MPICH2 1.5 (next release)

11

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

12

RMA/One-Sided Enhancements

• Disclaimer:
•  I am not an RMA-guy!
•  RMA semantics are oftentimes subtle for good performance reasons

•  A full seminar on just this topic is needed to really understand how to use the model
•  Here are some references for those that want more details:

•  Ticket 270: Updated RMA Proposal
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/270

•  Overview with discussion of Bonachea's and Duell's critique
http://meetings.mpi-forum.org/secretary/2011/05/slides/rma-overview-5-11-4up.pdf

•  Torsten Hoefler: CSCS 2012 Tutorial Slides
http://www.unixer.de/teaching/mpi_tutorials/cscs12/

•  I'll present a general overview & present some highlights

13

RMA/One-Sided Enhancements:
Terminology

• Origin Process: Process with the source buffer, initiates the operation
•  Target Process: Process with the destination buffer, does not explicitly

call communication functions
• Epoch: Virtual time where operations are in flight. Data is consistent after

new epoch is started.
•  Access Epoch: Rank acts as origin for RMA calls
•  Exposure Epoch: Rank acts as target for RMA calls

• Ordering: Only for accumulate operations: order of messages between
two processes (default: in order, but can be relaxed)

• Assert: Assertions about how the one-sided functions are used. Think of
them as "fast" optimizations hints

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

14

RMA/One-Sided Enhancements:
Creating a Window

• Expose Consecutive Memory (memory allocated by user):

• Expose Consecutive Memory (memory allocated by MPI):

•  This can improve the performance on systems with RDMA

• Window of Dynamically Attached Memory (Dynamic Win.):

•  Irregular applications that need to expand the window size after creation
•  Allows registration of non-overlapping regions of memory locally

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)	
MPI_WIN_FREE(win) – This will –not- deallocate memory.	

MPI_WIN_ALLOCATE(size, disp_unit, info, comm, baseptr, win)	
MPI_WIN_FREE(win) – This will deallocate memory!	

MPI_WIN_CREATE_DYNAMIC(info, comm, win)	
MPI_WIN_ATTACH(win, base, size)	
MPI_WIN_DETACH(win, base)	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

New!	

New!	

15

RMA/One-Sided Enhancements:
Communication

• All communication calls are nonblocking:
•  Call initiates the transfer, but transfer may continue after the call returns
•  Transfer is completed when a synchronization call is issued

• Put memory to a target and Get memory from a target
•  Nonblocking, bulk completion at the end of the epoch

• Request Based Put/Get :
•  Request used to query local completion (local buffer consistency)

MPI_PUT(origin_addr, origin_count, origin_datatype,	
 target_rank, target_disp, target_count, target_datatype, win)	
MPI_GET(origin_addr, origin_count, origin_datatype,	
 target_rank, target_disp, target_count, target_datatype, win)	

MPI_RPUT(origin_addr, ..., target_rank, target_disp, ..., win, req)	
MPI_RGET(origin_addr, ..., target_rank, target_disp, ..., win, req)	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

16

RMA/One-Sided Enhancements:
Accumulation

• Remote Accumulations
•  Accumulate origin into the target

• Remote Get and Accumulate
•  Accumulate origin into the target, returns content before accumulation
•  Generalized fetch and add (use MPI_REPLACE for fetch & set)

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype,	
 target_rank, target_disp, target_count, target_datatype, op, win)	
MPI_RACCUMULATE(origin_addr, origin_count, origin_datatype,	
 target_rank, target_disp, target_count, target_datatype, op, win,	
 request)	

MPI_GET_ACCUMULATE(origin_addr, origin_count, origin_datatype,	
 result_addr, result_count, result_datatype,	
 target_rank, target_disp, target_count, target_datatype, op,win)	
MPI_RGET_ACCUMULATE(origin_addr, origin_count, origin_datatype,	
 result_addr, result_count, result_datatype,	
 target_rank, target_disp, target_count, target_datatype, op,win,	
 request)	
	 Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

17

RMA/One-Sided Enhancements:
Accumulation

•  Fetch and Op:
•  Common use case: A single element fetch & op
•  Similar to MPI_Get_accumulate, but a more limited interface

• Compare and Swap:
•  Compares the compare buffer with the target buffer
•  If compare and target are identical then replaces the value at target with

origin.
•  Original target value is returned in result.

MPI_FETCH_AND_OP(origin_addr, result_addr, datatype,	
 target_rank, target_disp, op, win)	

MPI_COMPARE_AND_SWAP(origin_addr, compare_addr, result_addr, datatype,	
 target_rank, target_disp, win)	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

18

RMA/One-Sided Enhancements:
Synchronization Modes

• Active Target:
•  Data moved from one process to another, and

both are explicitly involved in the transfer.

• Passive Target:
•  Data moved from one process to another, and

only the origin process is explicitly involved in the transfer.

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

19

RMA/One-Sided Enhancements:
Synchronization: Active Target

• MPI_WIN_FENCE
•  All RMA calls started before fence will complete
•  Ends/starts access, and/or exposure epochs

• Specify access/exposure epochs separately
•  Post: Begin exposure epoch to group
•  Start: Begin access epoch to group
•  Complete: Finish access epoch (origin completion, not target)
•  Wait: Finish exposure epoch (completes at target)

MPI_WIN_FENCE(assert, win)	
MPI_WIN_POST(group, assert, win) – exposure epoch	
MPI_WIN_START(group, assert, win) – access epoch	
MPI_WIN_COMPLETE(win) – access epoch	
MPI_WIN_WAIT(win) – exposure epoch	
MPI_WIN_TEST(win, flag) – exposure epoch	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

20

RMA/One-Sided Enhancements:
Synchronization: Passive Target

•  Lock/Unlock
•  Starts an access epoch of the type specified to a specific rank

•  Lock_all/Unlock_all
•  Starts a shared access epoch from origin to all ranks (not collective)

• Passive synchronization primitives
•  Can only be called within lock/unlock or lockall/unlockall epochs

MPI_WIN_FLUSH(rank, win)	
MPI_WIN_FLUSH_LOCAL(rank, win)	
MPI_WIN_FLUSH_ALL(win)	
MPI_WIN_FLUSH_LOCAL_ALL(win)	
MPI_WIN_SYNC(win)	

MPI_WIN_LOCK(lock_type, rank, assert, win)	
MPI_WIN_UNLOCK(rank, win)	

MPI_WIN_LOCK_ALL(assert, win)	
MPI_WIN_UNLOCK_ALL(win)	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

21

RMA/One-Sided Enhancements:
Synchronization: Passive Target

• MPI_WIN_FLUSH(rank, win)
•  Completes all RMA operations with target rank at both origin and target

• MPI_WIN_FLUSH_LOCAL(rank, win)
•  Completes all RMA operations with target rank at origin

• MPI_WIN_FLUSH_ALL(win)
•  Completes all RMA operations with all ranks at both origin and target

• MPI_WIN_FLUSH_LOCAL_ALL(win)
•  Completes all RMA operations with all ranks at origin

• MPI_WIN_SYNC(win)
•  Synchronize private and public window copies (~memory barrier)

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

22

RMA/One-Sided Enhancements:
Shared Memory Windows

• Allocate a shared memory segment in the window
•  All processes in comm must be in shared memory

MPI_Comm_split_type()!
•  Returns a pointer to the start of local rank's part of memory
•  Memory can be accessed with direct load/store instructions
•  Two allocation modes:

•  Contiguous (default): Process i's memory starts where process (i-1)'s memory ends
•  Non-Contiguous (info=alloc_shared_noncontig): Possible memory optimizations

•  Query operation to determine remote rank's memory location
•  Important for non-contiguous cases

MPI_WIN_ALLOCATE_SHARED(size, info, comm, baseptr, win)	
MPI_WIN_SHARED_QUERY(win, rank, size, baseptr)	
	

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

23

RMA/One-Sided Enhancements:
…

•  Two Memory Models
•  Unified: public and private window are identical
•  Separate: public and private window are separate

• See document and slides for more details
•  Ticket 270: Updated RMA Proposal

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/270
•  Torsten Hoefler: CSCS 2012 Tutorial Slides

http://www.unixer.de/teaching/mpi_tutorials/cscs12/

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL), Brian Barrett (SNL)

24

RMA/One-Sided Enhancements

• Proposal: #270, #284
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/270
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/284

• Open MPI
•  Available today: Open MPI branch (under development)
•  Scheduled release: Open MPI 1.7 (next feature series)
•  https://svn.open-mpi.org/trac/ompi/wiki/MPIConformance

• MPICH2
•  Available today: In development
•  Scheduled release: MPICH2 1.5 (next release)

25

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

26

Tools Interface (MPI_T)
*New "Tools" Chapter in MPI 3.0

•  Implementation independent API to access (and potentially
modify) internal MPI layer information
•  All API routines prefixed with MPI_T_

• Goals:
•  Provide access to MPI internal information

•  Configuration and control information
•  Performance information
•  Debugging information

•  Standardized access to this information (build on success of PMPI)
•  MPI_T is an MPI implementation agnostic specification

•  No particular implementation model assumed
•  Ability to provide no/varying amount of information

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

27

Tools Interface (MPI_T)
General Approach

• Basic concept:
Implementation exposes a set of named variables
•  Set of variables and naming left to MPI implementation
•  MPI_T provides query functions to detect variables
•  Semantics of the variable are provided as clear text
•  Routines provided to read and write values of these variables

• Split into performance and control variables
•  Performance: Internal performance data (software counters in MPI)

•  Number of packets sent, time spent blocking, memory allocated, …
•  Control: Configuration information/environment variables

•  Eager limit, startup control, buffer sizes, buffer management, …

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

28

Tools Interface (MPI_T)
General Approach

• Mainly intended for tool development!
•  Document environment (list all configuration variables)
•  Set configurations on particular platforms

• Number of variables can change at runtime
•  Implementations my load variables on-demand (lazy loading)

• Mechanisms to write control variables
•  Opportunities for (auto) tuning
•  Might be limited:

•  Some configurations cannot be changed
•  Some configurations are fixed after a certain point (e.g., MPI_Init)
•  Some configurations must be applied globally

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

29

Tools Interface (MPI_T)
General Approach

• Binding variables to MPI Objects
•  Message traffic on a given communicator
•  Remote accesses to a specific RMA window
•  I/O buffer setting for a particular MPI file

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

30

Tools Interface (MPI_T)
General Approach

• Access to internal performance variables
•  Example: # of messages sent, # cycles waited, total memory allocated
•  Usage scenarios:

•  Calipers within a PMPI tool
•  Used within a signal handler for a sampling tool

•  Variables can be started and stopped, and accessed within "sessions"
•  Sessions: An object to provide isolation between multiple users of MPI_T
•  Start/Stop then Read/Write/Reset/ReadReset

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

31

Tools Interface (MPI_T)
Summary

• Query interface to ask for provided variables
•  Variables numbered from 0 to N-1
•  Routine to ask for N
•  Routine to ask for metadata for each variable

• Handle allocation and free
•  Enable access to a particular variable
•  Binds an MPI_T variable to an MPI object

• Binding of variables
•  Enables the restriction of a variable to a particular object
•  Instantiates the concrete variable in the context of the object
•  One variable can be bound to multiple objects

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

32

Tools Interface (MPI_T)
Summary

• Performance Variables:
•  Allocate session
•  Allocate handle
•  Reset/Write variables
•  Start/Stop variables
•  Read/Readreset variables
•  Free handle & Free Session

• Control Variables
•  Allocate handle
•  Read/Write variable

•  Scoping to define to which ranks a configuration change must be applied to
•  Free handle

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

33

Tools Interface (MPI_T)

• Proposal: #266
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/266

• Open MPI
•  Available today: In development
•  Scheduled release: Unknown
•  https://svn.open-mpi.org/trac/ompi/wiki/MPIConformance

• MPICH2
•  Available today: MPICH2 trunk, 1.5beta1
•  Scheduled release: MPICH2 1.5 (next release)
•  Some limitations – see release notes

34

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces (MPIR)
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

35

Process Acquisition Interface (MPIR)

• Standard support for 3rd party tools (e.g., debuggers)
•  Tools loaded independently from the application

• Requirement:
•  Where to find all MPI Processes?
•  How to attach or inspect them?

•  Typical work flow:
•  Point debugger to this mechanism
•  Gather all host/PID information
•  Launch daemons on all hosts
•  Daemons use PID information to attach to all MPI processes
•  Central debugger controls MPI processes through daemons

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

36

Process Acquisition Interface (MPIR)

• MPIR: Process Acquisition Interface for MPI
•  Not actually part of the MPI standard

"The MPIR Process Acquisition Interface, Version 1.0" – side document
•  Established as the de-facto standard
•  Implemented by all major MPI version

• Components:
•  Handshake protocol to gain control over MPI processes

•  Support for both launch and attach cases
•  Access to a process table listing all MPI processes in a job

•  Limitations (plans for a MPIR-2 in the future)
•  MPI process table is static, monolithic data structure
•  Support for fault tolerance unclear

Thanks to Torsten Hoefler (ETH Zürich), Martin Schulz (LLNL)

37

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

38

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

39

Fault Tolerance (#323)
User-Level Failure Mitigation (ULFM RTS)

•  Fault tolerance is important to HPC applications
•  Large scale and long runtimes lead to increased opportunity for failure to

disrupt the application (MTTI, MTBF, …)
•  Projected that process failure will become a normal event in the future
•  C/R techniques alone will not be enough to handle the rate of failure

•  Natural & Algorithm Based Fault Tolerance (ABFT)
e.g., checksums stored in peers, rewinding computation, redundant computation

• Entire HPC software stack lacks support for portable, fault
tolerant applications.

Dongarra, J., Beckman, P., et al., “The International Exascale Software Roadmap,”
International Journal of High Performance Computer Applications, 2011 (to appear).

40

Algorithm-Based Fault Tolerance (ABFT)
Techniques
•  Faulty Subgroups

•  Ensemble-style applications
•  Extensive reliance on error handlers

• Recovery Blocks
•  Iterative applications
•  Execution block followed by an

acceptance test
•  Linear Algebra Libraries

•  Encapsulate fault tolerant versions
of commonly used linear algebra
operations.

•  FT-LA project to support
ScaLAPACK

41

Algorithm-Based Fault Tolerance (ABFT)
Techniques
• Portable, Transparent, Scalable Fault Tolerance Libraries

•  Combinations of:
•  Application level checkpoint/restart,
•  Message logging,
•  Replication,
•  Containment domains,
•  Transactions, …

•  All sitting above a fault tolerant message passing environment
Application

Numerical Libraries

MPI
Network

System*

FT Library

Application

Numerical Libraries

MPI
Network

System*

Application

Numerical Libraries

MPI
Network

System*

42

Fault Tolerance (#323)
User-Level Failure Mitigation (ULFM RTS)

• Application involved fault tolerance (not transparent FT)
• Starting with fail-stop process failure

•  A process failure in which the MPI process permanently stops
communicating with other MPI processes, and its internal state is lost.

•  Two Complementary Proposals:
•  Run-Through Stabilization: (Target: MPI-3.0) (Target: MPI-3.1)

•  Continue running and using MPI even if one or more MPI processes fail
•  Process Recovery: (Target: MPI-3.1) (Target: MPI-3.2?)

•  Replace MPI processes in existing communicators, windows, file handles

MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

43

User-Level Failure Mitigation (ULFM)
Run-Through Stabilization (RTS) Proposal

•  Failures are managed on a per-communicator basis
•  MPI_ERR_PROC_FAILED: operation failed due to process failure

• Point-to-Point Communication
•  Communication between active processes is unaffected by the failure of

a non-participating process.
• Collective Communication

•  Fault-aware: Will not hang in the presence of process failure, but may not
return the same return code at all processes.

• Communicator Creation
•  Behave as other collectives. Therefore, it is possible that some

processes see a valid communicator while others do not.
•  MPI_COMM_SHRINK(comm, &newcomm)

MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

44

User-Level Failure Mitigation (ULFM)
Run-Through Stabilization (RTS) Proposal
•  MPI_COMM_SHRINK(comm, &newcomm)	

•  A special fault tolerant creation operation that creates a new
communicator with just the alive processes of an input communicator.

•  MPI_COMM_REVOKE(comm)	
•  Any one process can revoke the communication context of a

communicator at all processes
•  All subsequent, non-local operations on that communicator will return an

error MPI_ERR_REVOKED	
•  Eventually all other processes will see the error, even if they did not call
MPI_COMM_REVOKE().

•  MPI_COMM_AGREE (comm, &flag)  
MPI_COMM_IAGREE(comm, &flag, &req)	
•  Collective fault tolerant agreement operation that will return uniformly at

all processes with the same return code and value for flag.
•  flag is boolean argument & agreement on logical AND of input values.

MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

45

Early Experimentation Results:
ULFM RTS MPI Prototype

• NetPIPE Latency/Bandwidth
•  <1% overhead in shared memory latency
•  Negligible impact on shared memory bandwidth
•  Negligible impact on performance over the Gemini interconnect

• Collectives:
•  Existing collectives over point-to-point did not need to be modified
•  The collectives only needed to error out when a failure is encountered
•  No additional overhead for collective operations

• Agreement:
•  Log scaling performance results presented at EuroMPI 2011
•  Performance similar to an MPI_Allreduce over the alive processes.

Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and Jack
J. Dongarra. "An Evaluation of User-Level Failure Mitigation Support in MPI." EuroMPI, 2012
Hursey, J., Naughton, T., Vallee, G., Graham, R., “A Log-Scaling Fault Tolerant Agreement
Algorithm for a Fault Tolerant MPI,” EuroMPI, 2011.

46

Fault Tolerance (#323)
User-Level Failure Mitigation (ULFM RTS)

• Proposal: #323
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323

• Open MPI
•  Available today: Beta release

•  http://www.open-mpi.org/~jjhursey/projects/ft-open-mpi/
•  Scheduled release: Unknown

• MPICH2
•  Partial support in the MPICH2 trunk, but not to the current proposal.
•  Available today: Unknown
•  Scheduled release: Unknown

• Other implementations working on support at the moment.

47

Overview of Seminar Series

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

48

MPI <next>: 3.1/4.0
A small sampling of what is in the works

• Hybrid Programming Models
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPI3Hybrid
•  How to support co-existence with other models?
•  Endpoints (#310, #311)
•  Helper Threads (#217)

• Collectives
http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi3-coll
•  Scalable variants of vector collectives (#264) (e.g., MPI_GATHERDV)

•  File I/O
http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi3-io
•  Immediate versions of nonblocking I/O collectives (#273)
•  MPI_File_stat (#295)

49

Overview of Seminar Series

• Monday, June 25 - 3-4 pm:
–  MPI Process (brief)
–  Timeline to 3.0
–  MPI 3.0 Fortran Bindings
–  MPI 2.2

•  Tuesday, June 26 - 3-4 pm
–  Collectives:

•  Neighborhood
•  Nonblocking

–  Communicator Creation:
•  Noncollective
•  Nonblocking duplication

•  Thursday, June 28 - 3-4 pm
–  MPI_Comm_split_type()
–  MPI Matched Probe/Recv
–  RMA / One-sided enhancements
–  Tool Interfaces
–  MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

50

A Preview of MPI 3.0:
The Shape of Things to Come

•  Thanks to:
•  Brian Barrett (SNL)
•  Torsten Hoefler (ETH Zürich)
•  Rolf Rabenseifner (HLRS)
•  Craig Rasmussen (University of Oregon)
•  Martin Schulz (LLNL)
•  Jeff Squyres (Cisco Systems)

• MPI Forum:
•  Meetings: http://meetings.mpi-forum.org
•  Documents: http://www.mpi-forum.org

• ORNL Representatives:
•  Manjunath Gorentla Venkata: manjugv@ornl.gov
•  Brian Smith: smithbe@ornl.gov

