
A Preview of MPI 3.0: The Shape of Things to Come

Manjunath Gorentla Venkata
manjugv@ornl.gov

Joshua Hursey

hurseyjj@ornl.gov

2

Overview of Seminar Series

•  Monday, June 25 - 3-4 pm
– MPI Process (brief)
–  Timeline to 3.0
– MPI 3.0 Fortran Bindings
– MPI 2.2

•  Tuesday, June 26 - 3-4 pm
–  Collectives in MPI 3.0:

•  Neighborhood
•  Nonblocking

–  Communicator Creation:
•  Noncollective
•  Nonblocking duplication

•  Thursday, June 28 - 3-4 pm
– MPI Matched Probe/Recv
–  RMA / One-sided

enhancements
–  Tool Interfaces
– MPI <next>

•  Fault Tolerance
•  Hybrid, collectives, …

3

MPI Topology and Collectives Support

•  Topology Functions (MPI 2.1)
•  Create a Graph or Cartesian topology and query it,

nothing else
•  Each rank specifies full graph

•  Scalable Graph topology (MPI‐2.2)
•  Each rank specifies a subset of the Graph

4

MPI Topology and Collectives Support

•  Neighborhood Collectives (MPI-3.0)
•  Communication functions on the neighbors of the topology

(Cartesian, Graph, Distributed Graph)
•  All processes in the communicator call the collective, but

communication only along the edges of process topology
(neighbors)

•  Topology and Neighborhood Collectives
Users can define a communication topology and perform
communication between neighbors in this topology

5

Need for Neighborhood Collectives

•  Many applications and libraries exhibit sparse
communication patterns
•  Example: Weather prediction applications, PETSc

•  Many architectures support sparse communication
efficiently
•  Cray XE/XK node has six neighbors

•  Implementation complexity can be reduced if sparse
communication is abstracted by libraries

Hoefler et al. : Implemention and Performance Analysis of Non-Blocking Collective Operations for MPI

6

MPI_NEIGHBOR_ALLGATHER

MPI_Neighbor_allgather(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

•  Send same data element to all neighbor processes
•  Receive a distinct data element from each of the

neighbor
•  Signature of sendtype and recvtype must be same at the

corresponding processes
•  Order determined by MPI_(Dist)Graph_Neighors
•  V version of the call is valid

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

7

Neighborhood Collectives
(Cartesian Communicator)

•  Communication between nearest neighbors
•  All processes in the communicator are required to call the

collective
•  Number of sources and destinations are equal to 2 * num

dimensions
•  The order of neighbors in buffers is in dimension order,

and in each dimension first negative neighbor, and then
positive neighbor

8

MPI_NEIGHBOR_ALLGATHER
(Cartesian Communicator)

•  Buffer order: In dimension order, first negative, and then positive

0 1 2

3 4 5

6 7 8

Process 4

Sendbuf
Process 5

Process 7

Process 3

Process 1

Proc 3 Proc 5 Proc 1 Proc 7
Recvbuf

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

9

MPI_NEIGHBOR_ALLGATHER
(Cartesian Communicator)

0 1 2

3 4 5

6 7 8

Process 7
Proc 6

Sendbuf

Recvbuf

Process 8Process 6

Process 4

Proc 8 Proc 4

Not updated or communicated

10

Neighborhood Collectives

(Dist Graph or Graph Communicator)

•  Communication between arbitrary neighbors
•  All processes should call the collective
•  Order is determined by MPI_{Dist}Graph_Neighbors call

Equivalent to regular collectives, when each process
creates graph treating all processes in the communicator as
neighbors

11

MPI_NEIGHBOR_ALLGATHER
(Dist Graph Communicator) 7.6. NEIGHBORHOODCOLLECTIVE COMMUNICATION ON PROCESS TOPOLOGIES27

❞✛❅
❅❘✛ ❇
❇
❇
❇
❇❇▼

✰✑
✑

✑
✑
✑✑✸

✁
✁
✁✁✕▼❇❇

❇
❇
❇❇◆

❍❍❍❍❍❍❍❍

recvbuf

sendbuf

d0

s0

s1

s2 s3

d2, s4

d3, s5

d1

s0 s1 s2 s3 s4 s5

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at all other processes. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

Rationale. For optimization reasons, the same type signature is required indepen-
dently of whether the topology graph is connected or not. (End of rationale.)

The “in place” option is not meaningful for this operation.
The vector variant of MPI_NEIGHBOR_ALLGATHER allows one to gather different

numbers of elements from each neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

•  Between two processes, it sends and receives the same amount
of data

•  MPI_IN_PLACE is not meaningful

Thanks to Torsten Hoefler (UIUC)

12

MPI_NEIGHBOR_ALLTOALL

 MPI_Neighbor_alltoall(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

•  Send a distinct data element to all neighbor process
•  Receive a distinct data element from each of the

neighbor
•  Type signature of sendtype and recvtype must be same

at the corresponding processes
•  Order determined by MPI_(Dist)Graph_Neighors
•  V and W versions of the call is valid

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

13

Neighborhood Collectives Summary

•  Scalable Graph Topology Creation

•  Neighborhood Collectives
•  MPI_Neighbor_Allgather{v}
•  MPI_Neighbor_Alltoall{v,w}

•  Neighborhood Collectives (Cartesian Communicator)

•  Neighborhood Collectives (Graph Communicator)

14

Nonblocking Collectives

•  Collectives: A global synchronization, data communication,
or a reduction operation

•  Blocking Collectives: Returns when completed

•  Nonblocking Collectives: Splits the invocation and
completion of an operation
•  Properties

•  Synchronization decoupled from invocation

•  Enables asynchronous progress (not guaranteed)
•  Multiple outstanding operations

•  Out of order completion

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

15

Nonblocking Collective Routines in MPI 3.0

MPI_IBARRIER	 MPI_IALLTOALLW	

MPI_IBCAST	 MPI_IREDUCE	

MPI_IGATHER	 MPI_IALLREDUCE	

MPI_IGATHERV	 MPI_IREDUCE	 SCATTER	 	

MPI_ISCATTER	 MPI_ISCAN	

MPI_ISCATTERV	 MPI_IEXSCAN	

MPI_IALLGATHER	 MPI_INEIGHBOR_ALLGATHER	

MPI_IALLGATHERV	 MPI_INEIGHBOR_ALLGATHERV	

MPI_IALLTOALL	 MPI_INEIGHBOR_ALLTOALL	

MPI_IALLTOALLV	 MPI_INEIGHBOR_ALLTOALLV	

MPI_IREDUCE_LOCAL	 MPI_IREDUCE_SCATTER_BLOCK	
	

16

Nonblocking Collectives Semantics

•  Multiple nonblocking collectives can be outstanding
and their progress is independent

 MPI_Request req1, req2;

 MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req1);

 MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req2);

 MPI_Wait(&req2, MPI_STATUS_IGNORE);

 MPI_Wait(&req1, MPI_STATUS_IGNORE);

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/109

17

Nonblocking Collectives Semantics

•  Blocking and nonblocking collectives can be interleaved

 MPI_Request req;

 MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req);

 MPI_Bcast(rbuf, rcnt, type, 0, comm);

 MPI_Wait(&req1, MPI_STATUS_IGNORE);

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/109

18

Nonblocking Collectives Semantics

•  Order of nonblocking collectives on a communicator
should be the same

 switch(rank) {

 case 0:

 MPI_Ibcast(buf, count, type, 0, comm, &req);
 MPI_Barrier(comm);

 MPI_Wait(&req, MPI_STATUS_IGNORE);

 break;

 case 1:

 MPI_Barrier(comm);

 MPI_Ibcast(buf, count, type, 0, comm, &req);

 MPI_Wait(&req, MPI_STATUS_IGNORE);
 break;

 }

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/109

19

Nonblocking Collectives Semantics

•  Matching of blocking and nonblocking collectives are
invalid

 switch (rank) {

 case 0:
 MPI_Ibcast(buf, count, type, 0, comm, &req);

 MPI_Wait(&req, MPI_STATUS_IGNORE);

 break;

 case 1:

 MPI_Bcast(buf, count, type, 0, comm);

 break;

 }

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/109

20

Nonblocking Collectives Advantages

•  Communication – Computation Overlap

•  Noise Resiliency

•  Asynchronous Progress

•  Multiple Outstanding Operations

21

Nonblocking Collectives Provides Better

Computation-Communication Overlap

•  64-process MPI_Ialltoall and progress examined with MPI_Test
•  With network interface offload support one can achieve close to 100%

overlap

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
ve

rl
a
p
 in

 P
e
rc

e
n
ta

g
e

Message Size (bytes)

 Cheetah Offloaded Alltoall
 Cheetah Host Alltoall

Gorentla et al. : Exploring the All-To-All Collective Optimization Space with ConnectX CORE-Direct

22

System Noise

•  Noise: OS related activity that steals CPU from the
application
•  Timer tick
•  Hardware Interrupts
•  Kernel Daemons

23

Collective (Global) Performance Cost of System

Noise

No Noise System Noise

Noise

24

Impact of System Noise on MPI_Allreduce

 10

 15

 20

 25

 30

 35

 1 10 100 1000 10000 100000

Fa
ct

or
 S

lo
wd

ow
n

Size (bytes)

(a) MPI Allreduce

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 1 10 100 1000 10000 100000

Fa
ct

or
 S

lo
wd

ow
n

Size (bytes)

(b) MPI Bcast

Figure 8: Performance impact of MPI Allreduce and MPI Bcast for a 2.5% net processor noise signature
with a 10Hz frequency and 2500us duration

Impact of MPI Usage Differences on Noise Sensitivity. To understand how these different uses of

MPI effect each application’s sensitivity to noise, we examined the performance of these specific operations

under the 2.5% low-frequency noise signature to which SAGE demonstrated sensitivity in section 5. Figure 8

shows the performance impact of this signature on MPI Allreduce and MPI Bcast operations for 128 nodes.

From this figure, we can see that MPI Bcast is much less sensitive to this noise signature than MPI Allreduce,

with MPI Bcast showing a factor of 2–4 slowdown and MPI Allreduce showing a factor of 12–35 slowdown.

In addition, small MPI Allreduce calls appear to be much more sensitive to this noise signature than larger

operations.

Based on this, we believe that SAGE’s sensitivity to OS noise comes from a combination of sources:

SAGE spends more time in MPI Allreduce than CTH, MPI Allreduce operations are more sensitive to

noise over MPI Bcast operations, and SAGE’s smaller MPI Allreduce operations are impacted to greater

degree than CTH’s larger ones. In addition, CTH is likely able to absorb some of the injected noise due to

the fact that it spends 60% of its time in operations that can potentially absorb noise (MPI Send, MPI Wait,

and MPI Recv).

7 Related Work

As mentioned previously, Petrini et al. [13] most recently raised the visibility of the impact of OS noise

on application performance. Their thorough study investigated performance issues from OS noise on a

large-scale cluster built from commodity hardware components, running a commodity operating system, and

14

Ferreira et al. : The Impact of System Design Parameters on Application Noise Sensitivity

25

Nonblocking Collectives Resilient to System Noise

Effects

Blocking Collective Nonblocking Collective

26

Nonblocking Collectives:
Impact on Parallel 3D FFT Kernel Performance

Parallel 3D FFT Performance

22 ISC '11

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

512 600 720 800

R
un

-T
im

e
(s

)

Problem Size

Blocking
H-Test
Offload

 P3DFFT Application kernel run-time Comparison with 128 processes
P3DFFT with Offload-Ialltoall performs about 13.5% better than default
P3DFFT and about 12% better than P3DFFT with Host-based-Test

Lower is
Better

` 13%

`

23%

K. Kandalla et al. : High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on
InfiniBand Clusters: A Study with Parallel 3D FFT

27

Nonblocking Collectives Summary

•  Nonblocking Collectives Semantics

•  Nonblocking Collectives Advantages
•  Communication-Computation Overlap
•  Noise resiliency

•  Nonblocking Performance Results

28

Noncollective Communicator Creation

MPI_Group_comm_create(MPI_Comm in, MPI_Group grp, int
tag, MPI_Comm *out)

•  grp is a sub-group of communicator (in)
•  No cached information passes from old communicator to

the new one

•  Create a communicator with less processes – good for
fault tolerance, scalability

Thanks to Torsten Hoefler (UIUC), Martin Schulz (LLNL), and James Dinan (ANL)

29

Nonblocking Communicator Duplication Function

•  Duplicates communicator without blocking
•  Provides a way to overlap communicator creation

with other computation
•  Semantics

•  Restrictions and assumptions of nonblocking collectives
apply here

•  Error to use newcomm before completion of
MPI_Comm_idup creation

•  Attributes changed after MPI_Comm_idup called is not
copied to new communicator

MPI_Comm_idup(MPI_Comm comm, MPI_Comm *newcomm,
MPI_Request *request)

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

30

Implementation Status

Open	 MPI	 MPICH2	

Nonblocking	 CollecAves	 Supports	 ParAally	 	
(limited	 release)	

Supports	 	

Neighborhood	 CollecAves	 No	 Support	 No	 Support	

Nonblocking	 Communicator	
Duplicate	

	
No	 Support	

	
Supports	

NoncollecAve	 Communicator	
Create	

	
No	 Support	 	

	
Supports	

31

Acknowledgements

•  Center for Computational Sciences
•  MPI Forum

•  Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

