
A Preview of MPI 3.0: The Shape of Things to Come

Manjunath Gorentla Venkata
manjugv@ornl.gov

Joshua Hursey

hurseyjj@ornl.gov

2

•  New functions

•  New datatypes

•  Minor function updates

•  Text changes (not covered)

•  Errata (not covered)

Overview of New Features in MPI 2.2

3

Virtual Topologies

•  Virtual Topologies
•  Provides users a convenient way to rename processes
•  Provides users a naming scheme reflecting the

communication
•  Provides implementers information to optimize performance

for user supplied communication graph

4

Topology Mapping Example

3 5 2

6

1

4

7

0

1312
1791

144

2830 1869 2970

6511743

Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology
Adaption

0

1

2

3

4

5

6

7

2442

144
58003055

1869

Node 0

Node 1 Node 3

Node 2

0

3

1

2

5

6

4

7

1935

1869

651

Node 0

Node 1 Node 3

Node 2

Naive Mapping Optimized Mapping

5

MPI 2.1 Topology Support

•  Cartesian topology
•  Each process is identified by a Cartesian co-ordinate

•  Graph topology
•  Process organization is defined by Graphs
•  Each process is represented by a node, and communication

between processes is represented by edges

6

MPI 2.1 Topology Routines

•  ndims – number of dimensions of Cartesian grid
•  dims – number of processes in each dimension
•  periods – array specifying whether the grid is periodic (true) or

not (false) in each dimension
•  reorder – ranking may be reordered (true) or not (false)

(logical)

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims,
const int *periods, int reorder, MPI_Comm *comm_cart)
	

7

MPI 2.1 Topology Routines

•  nnodes – Total number of nodes
•  index – array storing the neighbors of all previous nodes
•  edges – stores edges of the all processes
•  reorder – ranking may be reordered (true) or not (false)

(logical)

MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int
*index, const int *edges, int reorder, MPI_Comm *comm_graph)
	

8

MPI 2.1 Graph Topology Interface is Not Scalable

•  Each process stores the whole graph
•  Each process requires O(n^2) memory

•  Each process requires Ω(n) memory for sparse

 graphs

•  Processes cannot attach communication weights for edges

9

Distributed Graph Functions

•  Properties
•  Each process contributes all its incoming and outgoing edges
•  Requires no communication for building the graph
•  Doubles the size of graph

•  Example
Process 0

indegree – 0 sources {}
outdegree- 2 Destinations {1,2}

Process 1
indegree – 1 sources {0}
outdegree- 2 Destinations {2, 3}

0 2

1
3

4

MPI_DIST_GRAPH_CREATE_ADJACENT
(comm_old, indegree, sources, sourceweights, outdegree,
destinations, destweights, info, reorder, comm_dist_graph)
	

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

10

Distributed Graph Functions (cont.)

•  Properties
•  Each process contributes a subset of the graph
•  Requires communication for building the graph

•  Example
Process 0

n : 2
Sources {0,2}
Degrees {1,1}
Destinations {1,4}

Process 1
n : 2
Sources {1,3}
Degrees {1,1}
Destinations {3,4}

0 2

1
3

4

MPI_DIST_GRAPH_CREATE(comm_old, n, sources, degrees,
destinations, weights, info, reorder, comm_dist_graph)

Thanks to Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

11

Adjacency Information Query Functions

MPI_Dist_graph_neighbors_count(MPI_Comm comm, int
*indegree, int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm	
 comm,	
 int	
 maxindegree,	
 int	

sources[],	
 int	
 sourceweights[],	
 int	
 maxoutdegree,	
 int	
 des>na>ons[],int	

destweights[])	

•  Returns number of neighbors

•  Returns neighbors list

12

Reduction Operations

Process 1

1

2

3

4

Process 1

4

MPI_Reduce_scatter_block (void *sendbuf, void *recvbuf, int
recvcount, MPI_Datatype datatype, MPI_Op op, MPI_Comm
comm)

Example of a 4-process reduce scatter block

Data after reduction and scatter operation

Data at each process

Process 2

8

Process 3

12

Process 4

16

Process 2

1

2

3

4

Process 3

1

2

3

4

Process 4

1

2

3

4

13

Reduction Operations (cont.)

•  inbuf – address of input buffer
•  inoutbuf – address of input-output buffer
•  count - number of elements in each buffer

MPI_Reduce_local(void *inbuf, void *inoutbuf, int count,
MPI_Datatype datatype, MPI_Op op)

MPI_Op_commuta>ve(MPI_Op	
 op,	
 int	
 *commute)	

•  commute - true if op is commutative, false otherwise
(logical)

14

Read Access Restrictions on Send Buffer

•  Reading sendbuffer while operation is in progress is valid

•  Example

MPI_Isend(buff, count, MPI_INT, dest, TAG_ARBITRARY, comm, &request);
fprintf(stdout,”Buffer Value %d”, *buff);
MPI_Wait(&request, MPI_STATUS_IGNORE);

15

MPI_INPLACE Valid for More Functions

•  MPI_ALLTOALL
•  MPI_ALLTOALLV

•  MPI_ALLTOALLW

•  MPI_EXSCAN

16

New Predefined Types

•  Datatypes to take advantage of changes in C language
standard (c99)
•  MPI_(U)INT{8,16,32,64 }_T
•  MPI_C_BOOL
•  MPI_C_FLOAT_COMPLEX
•  MPI_C_DOUBLE_COMPLEX
•  MPI_C_LONG_DOUBLE_COMPLEX

•  Datatypes that can be passed between languages without
conversion
•  MPI_AINT
•  MPI_OFFSET

17

Status of C++ Language Bindings

•  C++ bindings are deprecated in MPI 2.2
•  C++ bindings are going away in MPI 3.0

18

Summary

•  Optimized topology construction
•  New reduction operations

•  Support for MPI_INPLACE

•  Support for new predefined datatypes

•  C++ bindings deprecated

19

Acknowledgments

•  Center for Computational Sciences
•  MPI Forum

•  Torsten Hoefler (UIUC) and Martin Schulz (LLNL)

