

Introduction to Unix

Mitch Griffith

2

Welcome!

• Today’s Agenda:
–  The basics
– What is Unix?
–  Unix commands you can’t live

without
–  The vi editor
–  Compiling and make
–  C Programming Language

 U. S. Department Of Energy 2

3

The basics

• Hardware
• Software
• Application software
• System software

 U. S. Department Of Energy 3

4

Hardware

• Everything that can be touched
in a computer
• Microprocessor
• Primary memory
• Secondary memory
• Network cables
• Printers
• Keyboards, mice, etc

5

Software
• Programming used to be difficult

–  Rewire the whole machine each time

• Makes the hardware usable
• System software (operating systems)

–  Controls hardware
–  Applications do not need to know how to use

hardware
–  Kernel vs. utilities
– GUI vs. CLI

• Application software
– Word processing
–  Spreadsheets
– Games

6

Unix

• Operating system
• Developed in early ‘70s by AT&T at Bell Labs
• Multi user system
• Unix has come to mean any Unix-like operating

system
• Andrew Tanenbaum created Minix

–  Textbook demonstration

• Linus Torvalds created Unix-like kernel
–  Linux was born
–  Technically linux is the kernel only

7

Unix characteristics

• Multi-user operation
–  Accounts for users
–  Permissions based

• Command line interface (CLI)
–  No GUI (sort of)

•  X11 is a standard for doing GUI on unix systems

• Utility programs
–  Navigate system
–  Execute programs

• Device management through files

8

Unix characteristics

• Data security
–  Permissions based

•  Read / write / execute
–  File system based

• Data processing through filters
–  Text manipulating programs used heavily

9

Unix – accounts

• All users have a distinct account name
–  i.e. bob, mary, userx11, superdude, etc

• All accounts have passwords
–  Don’t use common passwords (name, birthday,
‘password’, etc)

–  Authentication vs. authorization

• All accounts have a default home directory
– More on file systems and directories in a bit

• All accounts have configuration files
–  For individual preferences

• All accounts have a command interpreter
–  Program that accepts and executes commands

10

Unix - permissions

• All data is stored in files
–  Files are collections of data lumped together

•  Addresses, recipes, raw data, etc

• All files have permissions
–  Read / write / execute

• Permissions based on:
– Who you are & what group you are in

• Permissions are divided into three categories

11

Unix - permissions

• Example:
-rw-r--r-- 1 csep100 ccsstaff 303 Aug 28 14:21 staff 222 Jun 4 mpi.pbs

• Close up:

-rw-r--r--

12

Unix commands you can’t live without

•  man – read system manual pages

•  pwd – identify the working directory

•  cd – change the working directory

•  echo – display a string

•  ls – display contents of directory

•  cat – display text of file

•  more – display text of file

•  cp – copy a file

•  mv – move a file

•  rm – remove a file

•  mkdir – create a directory

•  rmdir – remove a directory

•  exit – end session

13

Unix commands you can live without,
but who’d want to
•  ssh – initiate remote connection

•  scp – copy a remote file

•  tar – archive files

•  find – find files or directories

•  less – less is more (with benefits)

•  vi – edit files

•  env – environment variables

•  hostname – list name of current machine

•  ln – create links

•  history – show command history

•  ps – show running processes

•  kill – kill a running process

•  chmod – change permissions

14

Unix file system

• Hierarchical file structure
–  Directories
–  Files

• Directories
–  Contain files and/or other directories (subdirectories)

• Files
–  Contain data (text, binary, etc)

15

Hierarchical (tree) file system

• There is one parent directory per file system
–  Root aka ‘/’
–  Everything else is contained in this directory

•  Subdirectories
•  Files

• Pathnames – name (address) of the file/directory
–  /ccs/home/csep100
–  Absolute vs. relative pathnames

• Navigating directories
• Creating files, directories

–  Redirection, pipes

16

Shell scripts

• Programs to help automate recurring task
• Text files that are interpreted by shell program

–  Interpreted vs compiled languages

• Example

17

Shell script basics

• Comments
• Values
• Variables
• Arrays
• Selection
• Loops

18

Shell script - comments

• Comments are not executed
• Useful in documenting you scripts
• # = comment everything to right
• Exception is very first line of script

–  #!/bin/bash

19

Shell script - values

• Values are object used in your script
–  String values – ‘bobby’
–  Numerical values – 94

• String values are quoted
–  ‘bobby’ – just a string, no processing
–  “bobby” – a string, but with processing
–  `bobby` - execute this string and get output back

• Numerical values can have math performed on
them using the special form $(())
–  x=$((2+2))
–  echo $x
–  4

20

Shell script - variables

• Use variables when the values may change
• Example

–  x=hello
–  echo $x
–  hello
–  x=5
–  echo $x
–  5

•  If you want to treat a string as a variable
–  let x=5*5

21

Shell scripts - arrays

• Arrays are variable with 1 or more elements
–  x=(a b c d)
–  echo ${x[0]}
–  a
–  echo $x
–  a
– Where’s everything else?
–  echo ${x[@]}
–  a b c d

22

Shell scripts - selection

•  If this, then that, else something else
–  if … then … elif … fi

#!/bin/bash!
if [$1 = 'hello'];!

 then!
 echo hello yourself!

 elif [$1 = 'howdy'];!

 then!
 echo howdy to you too!

 else!
 echo nobody home!

fi!

23

Shell script - loops

• For this number of times, do something
for name in bobby doug frank; do!

 echo $name!

done!

!

let x=1!

until [$x -eq 10]; do!

 echo $x!

 let x=$x+1!

done!

!

let x=1!

while [$x -ne 10]; do!

 echo $x!

 let x=$x+1!

done!

24

Exercise – Part 1

• Create a bash script that performs the following
actions:
–  Create a text file called ex1.txt
– Overwrite the ex1.txt and add to it your: name, email
–  Create a directory called exercise1
–  Create four subdirectories within the exercise1

directory: sub0/, sub1/, sub2/, sub3/
–  Create 1 subdirectory is sub0, 2 in sub1, 3 in sub2, 4

in sub3

25

Exercise – Part 2

• Modify your shell script to do the following:
–  Copy ex1.txt using relative path names into the

following subdirectories:
•  exercise1/sub0/sub0
•  exercise1/sub2/sub1
•  exercise1/sub3/sub0
•  exercise1/sub3/sub1

–  Rename the files just copied to <your name>.txt
–  For each file just renamed, copy it back up one

directory:
•  Example: exercise1/sub3/sub1/bobby.txt -> homework1/sub3/

bobby.txt

26

Questions?

http://www.olcf.ornl.gov

HPC Fundamentals
Programming Languages

Mitch Griffith

28

Programming Languages
• Computers execute instructions, i.e.:

– Move data to a memory location
–  Add data in one memory location to another
–  Jump to next instruction to execute

• Programming languages allow the order of
instructions to be controlled
–  Each type of processor has different instructions

• Low-level vs. high-level languages
– Machine languages
–  Assembly languages
–  High-level languages

•  Interpreted vs. compiled

29

Machine languages

•  Its what computers understand
–  Low level language
–  Specific to a particular architecture

•  x86, IA-32, x86-64, AMD64, Motorola's 6800 and 68000

• Binary instructions
– General form
6 5 5 5 5 6 bits
[op | rs | rt | rd |shamt| funct] R-type
[op | rs | rt | address/immediate] I-type
[op | target address] J-type

• Example
000010 00000 00000 00000 10000 000000

30

Assembly language

• One-to-one mapping to machine instruction
• Specific to each architecture

–  Usually provided by manufacturer or processor

•  Low-level language
• Uses mnemonics representation of instructions

–  mv ax, es
–  add ip, ax

• Example:
Machine code= 000010 00000 00000 00000 10000 000000
Assembly = jmp 1024

31

High-level languages

• Abstract representation of program
–  Details of architecture are hidden
–  More portability
–  Easier to program

• Structured for humans not machines
• Examples

–  C++
–  Fortran
–  Java
–  Python
–  Perl
–  Hundreds exist

32

Interpreted vs. compiled

•  Interpreted languages
–  Require special programs that execute other programs
–  Typically 1 line at a time
–  Shell script, Python, Perl

• Compiled languages
–  Do not require a separate program to execute
–  Does require a program called a compiler
–  Typically faster than interpreted languages (not always)
–  C/C++, Fortran

33

Interpreted languages

• Start with a text file (call source file)
–  1st line is typically #!<path to interpreter program>

•  #!/bin/bash or #!/bin/perl, etc.

•  Interpreter reads and executes one line at a time
–  Syntax errors are caught immediately
–  Does not look forward to see what’s next

• Programmers can usually test singe statements in
interpreter
–  echo “hello”

34

Compiled languages

• Starts with text file (source code)
• A compiler program:

–  Coverts source into assembly language
–  Assembly is converted into machine code (object code)
–  Object code is linked with other object code to make executable by

linker program (often part of compiler

•  Final code does not need an interpreter to execute
–  Can execute on own

•  ./programName

•  Typically faster than interpreted languages
–  Doesn’t require overhead of running another program

35

C basics

• Comments
• Variables
• Constants
• Selection
• Loops
• Functions

 U. S. Department Of Energy 35

36

C program example – Hello World

#include <stdio.h>!

!

void main(void)!

{!

 printf(“Hello World\n”);!

}!

 !

 U. S. Department Of Energy 36

37

Hello World +

#include <stdio.h>!

void main(void)!

{!

 int x;!

 x=10;!

 printf(“Hello World\n”);!

 printf(“x=%d”,x);!

}!

 U. S. Department Of Energy 37

38

Hello World ++

#include <stdio.h>!

!

int main(int argc, char** argv)!

{!

 printf(“Hello World, %s\n”,
argv[1]);!

 return (0);!

}!

 U. S. Department Of Energy 38

39

Variables

•  Typical variables and their size!

 U. S. Department Of Energy 39

40

Variable declaration

•  int I;
•  char c;
• double dbl;
•  float f;
•  int i=0;
•  const pi=3.14159265;

 U. S. Department Of Energy 40

41

Arrays

• One dimensional
–  int i [10];
–  char str [25];

• Two dimensional
–  int d [2][2];

 U. S. Department Of Energy 41

42

Selection

•  if condition then something else something else.
if (x < 10)!
{!

printf(“low\n”);!

}!

 U. S. Department Of Energy 42

43

Loops

• While condition do!
while (x < 10)!
{!

printf(“low\n”);!
x++;!

}

• Do until condition!
do!
{!
!printf(“low\n”);!
!x++;!
} while (x<10);

 U. S. Department Of Energy 43

44

Loops

• For expression do
for (i=0; i<10; i++)!
{!
!printf(“low\n”);!
}!

 U. S. Department Of Energy 44

45

Functions

• Recurring pieces of code!
!

<return> func (parameters)!

{!

!body!

}!

 U. S. Department Of Energy 45

46

Questions?

http://www.olcf.ornl.gov

