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Motiva tion  
•  Density Functional Calculations have proven to be a useful tool to study the 
ground state of many materials. 

•  For finite temperatures the situation is less ideal; one is often forced to rely on 
model calculation with parameters either fitted to first principles calculations or 
experimental results. 

•  Fitting to models is especially unsatisfactory in inhomogeneous systems, 
nanoparticles or other systems where the model parameters could vary 
significantly from one site to another. 

Solution: 
Combine First Principles calculations with statistical mechanics methods 
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Thermodynamic  Obs ervables  

• Thermodynamic observables are related to the 
partition function Z and free energy F 
 
 
 
 
 

• If we can calculate Z(β) thermodynamic 
observables can be calculated as logarithmic 
derivatives. 

 



Wang-Landau Method 

• Conventional Monte Carlo methods calculate 
expectation values by sampling with a weight given by 
the Bolzmann distribution 

• In the Wang-Landau Method we rewrite the partition 
function in terms of the density of states which is 
calculated by this algorithm 

 

 

• To derive an algorithm to estimate g(E) we note that if 
randomly generated states are accepted with a 
probability proportional to 1/g(E) each energy interval is 
visited with the same frequency (flat histogram) 



Metropolis  Method      Wang-Landau Method 

Compute partition function and 
other averages with configurations 
that are weighted with a 
Boltzmann factor 

Sample configuration where Boltz-
mann factor is large. 

If configurations are accepted with 
probability 1/W all energies are visited 
equally (flat histogram) if W(E)=g(E). 

4. Iterate 2 & 3 until histogram is flat 

1. Select configuration 

2. Modify configuration (move) 

3. Accept move with probability 

2. Propose move, accepted with probability 

1. Begin with prior estimate, eg 

3. If move accepted increase DOS 

5. Reduce                              and go back to 1 

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001) 



global update of joint DOS at every MC step ... 

Wang-Landau acceptance: 

Not quite  embarras s ingly para lle l 

Metropolis MC acceptance: 

random walker 1 

random walker 2 

local calculation of energy and observables ~ millisecond to minutes 

limited by latency ~ microseconds 



Organiza tion  of the  WL-LSMS code  us ing  a  
mas te r-s lave  approach  

Master/driver node controlling WL 
acceptance, DOS, and histogram Communicate moment  

directions and energy 
LSMS running 
on N 
processors to 
compute 
energy of 
particular spin-
configurations 



Nears ightednes s  and  the  loca lly s e lf-cons is ten t 
multip le  s ca tte ring  (LSMS) method 

•Nearsightedness of electronic 
matter - Prodan & Kohn, 
PNAS 102, 11635 (2005) 
- Local electronic properties such 

as density depend on effective 
potential only at nearby points. 

• Locally self-consistent multiple 
scattering method - Wang et 
al., PRL 75, 2867 (1995) 
- Solve Kohn-Sham equation on a 

cluster of a few atomic shells 
around atom for which density is 
computed 

- Solve Poisson equation for 
entire system - long range of 
bare coulomb interaction 
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 Massively Parallel O[N] approach 
 Approximate total electron density by  sum of 

locally determined site densities 
 At each at each site i approximate scattering 

path matrix for infinite sytem by that of a finite 
localiteraction zone (LIZ) comprising  M-sites 



A parallel implementation and scaling of the LSMS method: 
perfectly scalable at high performance 

j 

l 

m k •Need only block i of    
•  
•Calculation dominated  
  by ZGEMM 
•Sustained performance 
  similar to Linpack 



Refac toring  LSMS_1 to  LSMS_3 

• LSMS_1 assumes one atom / MPI rank 
 
• But: This might not be ideal with current and future multicore CPU 
 
• Highly impractical for accelerators (GPUs) 
 
• Increase code flexibility adapt to new architectures and new physics 
 
• Reduce the amount of code that needs to be rewritten 
  (this is essentially a one person effort) 
 
• LSMS_1: 

Fortran (mainly 77) for LSMS 
C++ for Wang-Landau 



LSMS_3 

• Multiple atoms / MPI rank 
 
• multithreading (OpenMP) in LSMS 
 
• enable efficient use of accelerators 
 
• New (less rigid) input file format 
 
• Retain Wang-Landau part form LSMS_1 
 
• LSMS_3: 

Top level routines and data structures: C++ 
New communication routines: C++ 
Many compute routines from LSMS_1: Fortran 
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  LSMSSystemParameters lsms; 
  LSMSCommunication comm; 
  CrystalParameters crystal; 
  LocalTypeInfo local; 
 
// Initialize communication and accelerator 
// Read the input file 
 
  communicateParameters(comm,lsms,crystal); 
 
  local.setNumLocal(distributeTypes(crystal,comm)); 
 
  local.setGlobalId(comm.rank,crystal); 
 
  buildLIZandCommLists(comm,lsms,crystal,local); 
 
  loadPotentials(comm,lsms,crystal,local); 
 
  setupVorpol(lsms,crystal,local,sphericalHarmonicsCoeficients); 
 
  calculateCoreStates(comm,lsms,local); 
 
  energyContourIntegration(comm,lsms,local); 
 
  calculateChemPot(comm,lsms,local,eband); 
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Multiple Atoms / MPI rank 

An important step to enable efficient use of multicore and accelerator architectures: Allow 
for more  work / MPI rank! 
 
In LSMS: multiple atoms / MPI rank 

necessitates new communication pattern 
 

 For all atoms i in crystal do 
 Build the local interaction zone LIZi = 
 {j|dist(xi,xj)<rLIZ} of atom i 
 for all atoms j in LIZi do 
  add atom j to liat Ri of data to receive for 
  atom I {tmatFrom} 
  add atom i to liat Sj of data to send from 
  atom j {tmatTo} 
 end for 
end for 
remove duplicate entries from Sj and Ri 
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Multiple Atoms / MPI rank 

Matrix<Complex> tmatStore; 

local remote t matrices needed for building the 
local tau matrices 

Building the tau matrices: 

(1) Prepost receives for remote t matrices 
(2) Loop over all local atom (OpenMP) 

calculate local t matrices 
(3) Send local t matrices 
(4) wait for completion of communication 

  expectTmatCommunication(comm,local);           (e.g. MPI_Irecv) 
 
  for(int i=0; i<local.atom.size(); i++) 
    calculateSingleScattererSolution(lsms,local.atom[i],vr[i],energy,prel,pnrel, solution[i]); 
 
  sendTmats(comm,local);                         (e.g. MPI_Isend) 
  finalizeTmatCommunication(comm);               (e.g. MPI_Wait) 
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Calculating the tau matrix 

for(int i=0; i<local.num_local; i++)     
calculateTauMatrix(lsms,local,local.atom[i],energy,prel,tau_ii); 

(1) For all local atoms (possibility for multithreading) 
(a) build m matrix (m=I-tG) (multithreading or accelerator) 
(b) invert m matrix (multithreading or accelerator) 
(c)  

m has rank k * #LIZ and can be broken in k * k blocks mij 

only the diagonal block of the inverse corresponding to site i=0 is needed 
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Calculating G0  

blocks can be calculated independently:  (L={l,m}), E complex 
 

using Clebsch-Gordan coefficients CLL’L’’, 
spherical Hankel functions hl, 

and spherical harmonics YL 
 
Note that all             can be calculated independently - high parallelism 

Rij describes the geometry of the system 
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Building m on the GPU 

1) Allocate all the necessary memory (both for parameters that remain constant, 
such as atom position, as well as all the work space) at the beginning of the program 
- allocation of memory on GPUs as well as the allocation of pinned memory on the 
CPU is very expensive. 
 
2) Build G0 on the GPU: 
 
 makeBGijs_kernel<<<num_blocks,num_threads,sm.total,s>>>(...); 
 
num_blocks: one block/atom in LIZ 
num_threads: thread over l,l’ 
sm.total: shared memory size (depends on lmax) 
s: we use multiple streams to allow the concurrent calculations for multiple atoms 
(one CUDA stream / OpenMP thread) 
 
3) calculate 1-tG using zgemm_cublas 
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Block Inverse 

The LSMS method requires only the first diagonal block of the inverse matrix 
 
Recursively apply Schur complement 

The block size is a performance tuning parameter: 
 
• Smaller block size: less work 
• Larger block size: higher performance of matrix-matrix multiply 
 

Performance of LSMS dominated by double complex matrix matrix multiplication 
 

ZGEMM 
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Main zblock_lu loop 
BLAS: CPU, LAPACK: CPU 

      n=blk_sz(nblk) 
      joff=na-n 
      do iblk=nblk,2,-1 
      m=n 
      ioff=joff 
      n=blk_sz(iblk-1) 
      joff=joff-n 
c invert the diagonal blk_sz(iblk) x blk_sz(iblk) block 
      call zgetrf(m,m,a(ioff+1,ioff+1),lda,ipvt,info) 
c calculate the inverse of above multiplying the row block 
c blk_sz(iblk) x ioff 
      call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt, 
     &     a(ioff+1,1),lda,info) 
      if(iblk.gt.2) then 
      call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),lda, 
     &     a(ioff+1,k),lda,cone,a(joff+1,k),lda) 
      call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),lda, 
     &     a(ioff+1,joff+1),lda,cone,a(1,joff+1),lda) 
      endif 
      enddo 
      call zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),cmone, 
     &     a(1,blk_sz(1)+1),lda,a(blk_sz(1)+1,k),lda,cone,a,lda) 
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Main zblock_lu loop 
BLAS: CPU 
LAPACK: CPU 

      do iblk=nblk,2,-1 
      ... 
 
      call zgetrf(…) 
      call zgetrs(…) 
       
      call zgemm(…) 
      call zgemm(…) 
       
      enddo 
 
      call zgemm(…) 
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Main zblock_lu loop – GGD 
BLAS: GPU (CUDA) 
LAPACK: GPU (CULA device API) 
                        (or libsci_acc) 

      call cublas_set_matrix(…)  (t only. m calculated on GPU)    
 
      do iblk=nblk,2,-1 
      ... 
 
      call cula_device_zgetrf(…) 
      call cula_device_zgetrs(…)  
 
      call cublas_zgemm(…) 
      call cublas_zgemm(…) 
       
      enddo 
 
      call cublas_zgemm(…) 
 
      call cublas_get_matrix(…)   (tau_00 only) 
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WL-LSMS3 
• First Principles Statistical Mechanics of Magnetic Materials 

• Identified kernel for initial GPU work 
– zblock_lu (95% of wall time on CPU) 
– kernel performance: determined by BLAS and LAPACK: ZGEMM, 

ZGETRS, ZGETRF 

• Preliminary performance of zblock_lu for 12 atoms/node of 
Jaguarpf or 12 atoms/GPU 
– For Fermi C2050, times include host-GPU PCIe transfers 
– Currently GPU node does not utilize AMD Magny Cours host for 

compute 
Jaguarpf node 
(12 cores AMD 
Istanbul) 

Fermi C2050 
using CUBLAS 

Fermi C2050 
using Cray 
Libsci 

Time (sec) 13.5 11.6 6.4 

Slide provided by Cray 
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Performance and scaling 
�One node on Jaguar/Titan has a CPU theoretical peak of 140.8 

GFlop/s 

�LSMS achieves 95.3 GFlop/s per node with CPU only 

�With Fermi GPUs it achieves 344 GFlop/s (3.61x speedup) 

�Kepler sees further improved performance 
–Preliminary scaling results are near ideal: (fixed # of WL steps) 
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Conclusions 
�Multithreading and Accelerators enable significantly reduced 

runtimes for first principles calculations 
– this leads to better statistics/faster convergence for Monte-Carlo 

�Multiple acceleration strategies: 
–zblock_lu (most important kernel @ 95% runtime in CPU version of the 

code) 
�accelerated by using vendor optimized libraries for matrix inversion and multiplication 

–m Matrix construction (~30% of the remaining CPU runtime) 
�accelerated using hand-coded CUDA and library provided matrix multiplication 

�Future work: 
–hybrid calculation (use both CPU and GPU simultaneously for 

calculations) 
–move more work to GPUs 

�e.g. Green’s function calculation or single site solvers 
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