Preparing WL-LSMS for First Principles
Thermodynamics Calculations on Accelerator and
Multicore Architectures

)

@GO OLEE ==-—
Don Nicholson \.

Oak Ridge National Laboratory

Markus Eisenbach

Oak Ridge National Laboratory

/""”W U.S. DEPARTMENT OF
Q@,

WiENERGY

Motivation

* Density Functional Calculations have proven to be a useful tool to study the
ground state of many materials.

* For finite temperatures the situation is less ideal; one is often forced to rely on
model calculation with parameters either fitted to first principles calculations or
experimental results.

* Fitting to models is especially unsatisfactory in inhomogeneous systems,
nanoparticles or other systems where the model parameters could vary
significantly from one site to another.

Solution:
Combine First Principles calculations with statistical mechanics methods

Team

Oak Ridge National Laboratory
Markus Eisenbach, Don Nicholson, Junqi1 Yin,

Khorgolkhuu Odbadrakh, Ying Wai Li)

University of Tennessee
Aurelian Rusanu

Florida State University
Gregory Brown

Pittsburgh Supercomputing Center
Yang Wang

University of Georgia
David Landau, Dilina Perera

This work was sponsored in parts by the US DOE Offices of Advanced Scientific Computing Research and Basic
Energy Sciences and by the Center for Nanophase Material Sciences, the Center for Defect Physics, an Energy
Frontier Research Center funded by the US DOE Office of Basic Energy Sciences. This research used resources of
the Oak Ridge Leadership Computing Facility at ORNL, which is supported by the US DOE, Office of Science.

Fr(JAK
- //:'._j J_“ ~

, «@&OLCFeeee R

Thermodynamic Observables

 Thermodynamic observables are related to the
partition function Z and free energy F

Z(ﬁ) — Z e—/gH({fz‘})
{&:}
F(T) = —kgTIn Z(1/kpT)

* |f we can calculate Z(f8) thermodynamic
observables can be calculated as logarithmic
derivatives.

Wang-Landau Method

® Conventional Monte Carlo methods calculate
expectation values by sampling with a weight given by
the Bolzmann distribution

® In the Wang-Landau Method we rewrite the partition
function in terms of the density of states which is
calculated by this algorithm

Z(8) = Z e BH{E:}) — /g(E)e_’BEdE
{&:}

® To derive an algorithm to estimate g(E) we note that if
randomly generated states are accepted with a
probability proportional to 1/g(E) each energy interval is
visited with the same frequency (flat histogram)

Metropolis Method Wang-Landau Method

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

7 — /B_E[x]/kBTdX 7 /W(E)Q_E/kBTdE
Compute partition function and If configurations are accepted with
other averages with configurations probability 1/W all energies are visited
that are weighted with a equally (flat histogram) if W(E)=g(E).

Boltzmann factor
Sample configuration where Boltz- 1. Begin with prior estimate,eg W (E) =1
mann factor is large.

1. Select configuration

2. Propose move, accepted with probability

E; = Ex] Ay =min{l, W (E;)/W (Ey)}
2. Modify configuration (move) 3. If move accepted increase DOS
Ef :E[Xf] %4 (Ef) —}W(Ef) x f f>1

3. Accept move with probability 4. Iterate 2 & 3 until histogram is flat
A;_; = min{1,e’Fi=F)} 5 Reduce f — f=/f andgobackto

Not quite embarrassingly parallel

Metropolis MC acceptance: A, F = min{ 1, ol (Ei_Ef)}

Wang-Landau acceptance:

Ai—}f = min{l, ea(wﬂ(f“f)_wﬂ(mi)}

random walker { W

| | | | global update of joint DOS at every MC step

random walker 2 W\/

/ limited by latency ~ microseconds

local calculation of energy and observables ~ millisecond to minutes

Organization of the WL-LSMS code using a
master-slave approach

Master/driver node controlling WL
acceptance, DOS, and histogram

< >

Communicate moment
directions and energy

RN
4

LSMS running
on N
processors to
compute
energy of
particular spin-
configurations

/

Nearsightedness and the locally self-consistent
multiple scattering (LSMS) method

® Nearsightedness of electronic
Q Q Q Q Q Q Q matter - Prodan & Kohn,

PNAS 102, 11635 (2005)

Q Q Q Q Q Q Q = Local electronic properties such

as density depend on effective

Q Q Q Q potential only at nearby points.
® Locally self-consistent multiple
Q Q ‘ Q Q scattering method - Wang et
al., PRL 75, 2867 (1995)
Q Q Q Q = Solve Kohn-Sham equation on a
cluster of a few atomic shells
around atom for which density Is
computed
= Solve Poisson equation for
entire system - long range of

bare coulomb interaction

Locally Self-consistent Multiple Scattering (LSMS) method

= Massively Parallel O[N] approach

» Approximate total electron density by sum of
locally determined site densities

> At each at each site-rapproximate_scattering
path matrix fer infinite sytem by that of\a finite
locafiteracgtion zone (LI nprising M-sites

Input.
T i Compute.

Receivis:

Send:
Result:

A parallel implementation and scaling of the LSMS method:
perfectly scalable at high performance

_/
N
_/

2\ l/“‘\ l/“‘\ NN If N
(R | G N G B G N G B G

I\
N
_/
A~
__/
N
_/
N\

A
)

7\ |/ N

190-00C
100000

N
o /)
7N
_/
7\
__/

T —

WA A DI TAY

|‘\¥. _

1‘/4‘\
l\\ /

OO

l‘/-‘\
_/

*Need only block 1 of

‘(o) = ()

*Calculation dominated
by ZGEMM

*Sustained performance
similar to Linpack

Refactoring LSMS 1 to LSMS 3

* LSMS 1 assumes one atom / MPI rank

* But: This might not be ideal with current and future multicore CPU

* Highly impractical for accelerators (GPUs)

* Increase code flexibility adapt to new architectures and new physics

* Reduce the amount of code that needs to be rewritten
(this is essentially a one person effort)

* LSMS 1:
Fortran (mainly 77) for LSMS
C++ for Wang-Landau

LSMS 3

* Multiple atoms / MPI| rank
* multithreading (OpenMP) in LSMS
* enable efficient use of accelerators
* New (less rigid) input file format
* Retain Wang-Landau part form LSMS_ 1
* LSMS 3:
Top level routines and data structures: C++

New communication routines: C++
Many compute routines from LSMS_1: Fortran

LSMSSystemParameters Isms;
LSMSCommunication comm,;
CrystalParameters crystal,
LocalTypelnfo local,;

/l Initialize communication and accelerator
// Read the input file

communicateParameters(comm,Isms,crystal);
local.setNumLocal(distribute Types(crystal,comm));
local.setGloballd(comm.rank,crystal);
buildLIZandCommLists(comm,Isms,crystal,local);
loadPotentials(comm,lsms,crystal,local);
setupVorpol(lsms,crystal,local,sphericalHarmonicsCoeficients);
calculateCoreStates(comm,Isms,local);
energyContourlntegration(comm,lsms,local);

calculateChemPot(comm,Isms,local,eband);
s @OLCFeeee

gy — T
LI TT Yy 1=
AN T

Multiple Atoms / MPI rank

An important step to enable efficient use of multicore and accelerator architectures: Allow
for more work / MPI rank!

In LSMS: multiple atoms / MPI rank
necessitates new communication pattern

For all atoms /in crystal do
Build the local interaction zone LIZ/=

OOOOOOC {i[dist(x/x/)<r 7} of atom /
1900000 for all atoms jin LIZ/do
00000 add atom /to liat R/of data to receive for
0000 atom | {tmatFrom}
8:::33; add atom /to liat S/ of data to send from
OO0 = atom /{tmatTo}

‘ - end for

end for

remove duplicate entries from Sjand R/
18 GGOLCFe e e @

Multiple Atoms / MPI rank

Matrix<xComplex> tmatStore;

local
00000

t matrices needed for building the
local tau matrices

Building the tau matrices:

(1) Prepost receives for remote t matrices

(2) Loop over all local atom (OpenMP)
calculate local t matrices

(3) Send local t matrices

(4) wait for completion of communication

expectTmatCommunication(comm,local); (e.g. MPI_lrecv)

for(int i=0; i<local.atom.size(); i++)
calculateSingleScattererSolution(Isms,local.atom[i],vr[i],energy,prel,pnrel, solution]i]);

sendTmats(comm,local); (e.g. MPI_lIsend)
finalizeTmatCommunication(comm); (e.g. MP1_Wait)

v @&OLCFeeee

Calculating the tau matrix

for(int i=0; i<local.num_local; i++)
calculate TauMatrix(Isms,local,local.atom[i],energy,prel,tau_ii);

1) For all local atoms (possibility for multithreading)
a) build m matrix (m=I-tG) (multithreading or accelerator)
b) invert m matrix (multithreading or accelerator)

C) - ——1
T=|1-1G,

m has rank k * #LI1Z and can be broken in k * k blocks mj;

(
(
(
(

_ 1]
m@j — Iéw — tiGO
only the diagonal block of the inverse corresponding to site i=0 is needed

T == I—tGO:

00

-1

00

v &GOLCFeeee

caICUIat"‘g GO Rij describes the geometry of the system

ng blocks can be calculated independently: (L={l,m}), E complex

GU LL"()— 47T‘Zl 2 iCL’L”DL”(E)
L

D¥(E) = —i'"""VEN(VERy;)Y; (Ri;)

_ @+ D~ [m])! im
Y = \/ 1l + [m|)! Py,(cos 0)e'™?

using Clebsch-Gordan coefficients Cti~,
spherical Hankel functions h;,
and spherical harmonics YL

Note that all ngLL, can be calculated independently - high parallelism

R~

i CoS ¢ = e

% R:II 2 R’y 2 Rz 2 _ 1]
] \/ + + cos @ Ri \/R%Q N R?j2

, &OLCFeeoee

Building m on the GPU

1) Allocate all the necessary memory (both for parameters that remain constant,
such as atom position, as well as all the work space) at the beginning of the program
- allocation of memory on GPUs as well as the allocation of pinned memory on the
CPU is very expensive.

2) Build GO on the GPU:
makeBGijs_kernel<<<num_blocks,num_threads,sm.total,s>>>(...);

num_blocks: one block/atom in LIZ
num_threads: thread over |,I’

sm.total: shared memory size (depends on Imax)
s: we use multiple streams to allow the concurrent calculations for multiple atoms
(one CUDA stream / OpenMP thread)

3) calculate 1-tG using zgemm_cublas

2 OLCFeooeo It

Block Inverse

The LSMS method requires only the first diagonal block of the inverse matrix

Recursively apply Schur complement

(415" - (142070

The block size is a performance tuning parameter:

* Smaller block size: less work
* Larger block size: higher performance of matrix-matrix multiply

Performance of LSMS dominated by double complex matrix matrix multiplication

ZGEMM

- OLCFeeeo “CAIDGE

Main zblock_lu loop
BLAS: CPU, LAPACK: CPVU

n=blk _sz(nblk)
joff=na-n
do iblk=nblk,2,-1
m=n
joff=joff
n=blk sz(iblk-1)
joff=joff-n
c invert the diagonal blk_sz(iblk) x blk_sz(iblk) block
call zgetrf(m,m,a(ioff+1,ioff+1),Ida,ipvt,info)
c calculate the inverse of above multiplying the row block
c blk_sz(iblk) x ioff
call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt,
& a(ioff+1,1),lda,info)
if(iblk.gt.2) then
call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),Ida,
& a(ioff+1,k),Ida,cone,a(joff+1,k),Ida)
call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),Ida,

& a(ioff+1,joff+1),lda,cone,a(1,joff+1),Ida)
endif

enddo

call zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),cmone,
& a(1,blk_sz(1)+1),lda,a(blk_sz(1)+1,k),Ida,cone,a,lda)

24 GGOLCFe e e @

25

Main zblock _lu loop
BLAS: CPU
LAPACK: CPU

do iblk=nblk,2,-1
call zgetrf(...)
call zgetrs(...)

call zgemm(...)
call zgemm(...)

enddo

call zgemm(...)

GGSOLCFe o e o

26

Main zblock_lu loop - GGD

BLAS: GPU (CUDA)

LAPACK: GPU (CULA device API)
(or libsci_acc)

call cublas_set matrix(...) (t only. m calculated on GPU)
do iblk=nblk,2,-1

call cula_device zgetrf(...)

call cula_device zgetrs(...)

call cublas_zgemm(...)
call cublas_zgemm(...)

enddo
call cublas_zgemm(...)

call cublas_get matrix(...) (tau_00 only)

GGSOLCFeeoee

WL-LSMS3

* First Principles Statistical Mechanics of Magnetic Materials

* |dentified kernel for initial GPU work

— zblock_lu (95% of wall time on CPU)

— kernel performance: determined by BLAS and LAPACK: ZGEMM,
ZGETRS, ZGETRF

* Preliminary performance of zblock_lu for 12 atoms/node of
Jaguarpf or 12 atoms/GPU

— For Fermi C2050, times include host-GPU PCle transfers
— Currently GPU node does not utilize AMD Magny Cours host for

compute
Jaguarpf node [Fermi C2050 |Fermi C2050
(12 cores AMD |using CUBLAS |using Cray
Istanbul) Libsci
Time (sec) 13.5 11.6 6.4

. @SOLCFeeee Slide provided by Cray

Performance and scaling

One node on Jaguar/Titan has a CPU theoretical peak of 140.8
GFlop/s

LSMS achieves 95.3 GFlop/s per node with CPU only
With Fermi GPUs it achieves 344 GFlop/s (3.61x speedup)

Kepler sees further improved performance
—Preliminary scaling results are near ideal: (fixed # of WL steps)

1400

1200 - L e
[m——0—{—g—0- o

1000

“ 800 |-
o |
E
3 600 -

400

200 }

0 [1 , . :] , : : I , : : I : : .]
0 2000 4000 6000 8000

31 &GOLCFe e e @ # of Titan nodes

Conclusions
Multithreading and Accelerators enable significantly reduced
runtimes for first principles calculations

—this leads to better statistics/faster convergence for Monte-Carlo

Multiple acceleration strategies:

—zblock_lu (most important kernel @ 95% runtime in CPU version of the
code)

_laccelerated by using vendor optimized libraries for matrix inversion and multiplication

—m Matrix construction (~30% of the remaining CPU runtime)
_laccelerated using hand-coded CUDA and library provided matrix multiplication

Future work:

—hybrid calculation (use both CPU and GPU simultaneously for
calculations)

—move more work to GPUs

"e.g. Green’s function calculation or single site solvers
32 GGOLCFeeee

33

@OLCFeeee

§ 7
ll \“\\ .\.\.
=IO

1\1\
t

S
e

3|

Single Site Wave Functions in
Multiple Scattering Theory

In calculating the Green function, we need solutions, both regular and irregular,
of the following single site Schrédinger equation, for atom » (=1, 2,..., N),

V4V, (7) 6] (F €)= €8] (7 ;)
V2 +V,(7) |J1(F e) = €T (7 s€)

r

LIJﬁh(r‘) F EQH;

where the single scattering potential is V (7) = _
0, otherwise.

The boundary conditions are
yj(\Ner)Y (#), and

s j (Ver)Y, (7),

'r.':_} |:'_-'

regular solutions @, (7 ;€)

r, =0

irregular solutions J /(7 ;€)

where R 1s the bounding sphere radius of 2 , and index L = {/,mj}.

+w @OLCFeeee

Solution of the Integral Equations

By breaking the single scattering potential into spherical and non-spherical
components, such that

V (F)=V (r)+V (F), where V (r)=-2Z /r,asr —0,

we obtain the single site solutions as
0:(7 :€) =0/ ()Y, () + (7 ;€), with ¢ (7. ;6)——— j,(Ver,), and
JI(7 €)= T (r,;€)Y, () + T2 (F ;€), with T (r,;6) ————> j,(Ver,).

T » O

Here ﬁf (r ;€) and :f "(r ;€) are the solutions of a radial differential equation which

can be solved using a finite difference method. The non-spherical solutions are

6,(Fie)=[K.\ V ()Y, (B)+V, (), (Fse) |d'F, and

F-l'.'

J,Gie)=| KGNV 0LY,G)+V, I, () |dF,

where the kemel function (»” =max{r ,»’} and r~ =min{r ,r’}) 1s

K. 7)=—eX ¥, ()| j,(Jer)m (Jer?)—n,(Ner))j,(Jerd) |¥;, ()

s @OLCFeeee

Computational Challenges

In the current implementation, we expand the single site
solutions and the potential in spherical harmonics so that the

integral equations become a set of coupled one dimensional
integral equations.

* The equations are solved numerically on a logarithmic grid
(= 1000 points) along the radial direction and are solved
iteratively (> 10 iterations)

* The subscript index L of the single site solutions is usually
cut off at 25, which corresponds to /.. = 4, and the single

max
site solutions for each L index are calculated independently.

* For each subscript index L of the single site solutions, if
their spherical harmonic expansion is cut off at /’ = 8, there
are 81 (= (8+1)?) coupled integral equations for regular and
irregular solutions, respectively.

« @OLCFeeee

	Preparing WL-LSMS for First Principles Thermodynamics Calculations on Accelerator and Multicore Architectures
	Motivation
	Team
	Thermodynamic Observables
	Wang-Landau Method
	Metropolis Method Wang-Landau Method
	Not quite embarrassingly parallel
	Organization of the WL-LSMS code using a master-slave approach
	Nearsightedness and the locally self-consistent multiple scattering (LSMS) method
	Locally Self-consistent Multiple Scattering (LSMS) method
	A parallel implementation and scaling of the LSMS method: perfectly scalable at high performance
	Refactoring LSMS_1 to LSMS_3
	LSMS_3
	Slide Number 15
	Multiple Atoms / MPI rank
	Multiple Atoms / MPI rank
	Calculating the tau matrix
	Calculating G0
	Building m on the GPU
	Block Inverse
	Main zblock_lu loop�BLAS: CPU, LAPACK: CPU
	Main zblock_lu loop�BLAS: CPU�LAPACK: CPU
	Main zblock_lu loop – GGD�BLAS: GPU (CUDA)�LAPACK: GPU (CULA device API)� (or libsci_acc)
	WL-LSMS3
	Performance and scaling
	Conclusions
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

