e
CRANY
\

Porting Applications with CUDA
Fortran and OpenACC

CUDA Fortran R

o \
\

e CUDA Fortran is an extension of Fortran developed in \
cooperation between Nvidia and PGI that provides similar
capabilities and limitations to CUDA for C.

e Pros

e It's FORTRAN - No reason to port parts of an existing FORTRAN code
toC

e Close to the metal performance
e CUDA for C experience and best practices apply
e IT'S FORTRAN!!

e Cons

e Not Portable - Only available from PGI and Nvidia
e Requires separate CPU and GPU code paths

e One more Pro - Mixes well with OpenACC and CUDA
Libraries

What does it look like? - CUDA Fortran Kernel

real (kind=real kind) :: gv(nv,nv,2),vvtemp (nv,nv
do g=1,gsize
do k=1,nlev
do j=1,nv
do i=1,nv
gv(i,j, 1) = &
elem%metdet (i, j) * (elem®¥Dinv(1l,1,i,]j)*v5d(i,j, k,q,1) + &
elem%Dinv(1,2,i,]j)*v5d(i,]j,k,q,2))
gv(i,j,2) = &
elem%metdet (i, j) * (elem®¥Dinv(2,1,i,]j)*v5d(i,j, k,q,1) + &
elem%Dinv(2,2,i,]j)*v5d(i,j,k,q,2))
enddo
enddo
do j=1,nv
do 1=1,nv
dudx00=0.0d0
dvdy00=0.0d0
do i=1,nv
dudx00 = dudx00 + deriv&%Dvv(i,l1) * gv(i,j,1)
dvdy00 = dvdy00 + deriv&%Dvv(i,l1) * gv(j,i,2)
end do
div4dd(l ,j,k,g) = dudx00
vvtemp(j ,1) = dvdy00
end do
end do
do j=1,nv
do i=1,nv
div4d(i,j,k,q)= elem%rmetdetp(i,]j) * &
(rdx*div4d (i, j,k,q) +rdy*vvtemp (i, j))
end do
end do
end do
end do

What does it look like? - CUDA Fortran
Launcher

do g=1,gsize
do k=1,nlev
do j=1,nv
do i=1,nv
gv(i,j, 1) = &
elem%metdet (i, j) * (elem®¥Dinv(1l,1,i,]j)*v5d(i,j, k,q,1) + &
elem%Dinv(1,2,i,]j)*v5d(i,]j,k,q,2))
gv(i,j,2) = &
elem%metdet (i, j) * (elem®¥Dinv(2,1,i,]j)*v5d(i,j, k,q,1) + &
elem%Dinv(2,2,i,]j)*v5d(i,]j,k,q,2))
enddo
enddo
do j=1,nv
do 1=1,nv
dudx00=0.0d0
dvdy00=0.0d0
do i=1,nv
dudx00 = dudx00 + deriv&%Dvv(i,l1) * gv(i,j,1)
dvdy00 = dvdy00 + deriv&%Dvv(i,l1) * gv(j,i,2)
end do
div4dd(l ,j,k,g) = dudx00
vvtemp(j ,1) = dvdy00
end do
end do
do j=1,nv
do i=1,nv
div4d(i,j,k,q)= elem%rmetdetp(i,]j) * &
(rdx*div4d (i, j, k,q) +rdy*vvtemp (i, j))
end do
end do
end do
end do

L
cRAY |
o

S \
\

CUDA Fortran Optimization

e CUDA Fortran is just CUDA, so the same tools and \
techniques apply
e Use CUDA profiler by setting COMPUTE PROFILE=1 at runtime.

e Use -Mcuda=ptxinfo for register and memory usage, useful with the
Nvidia occupancy calculator

e Shared memory, constant memory, coalesced memory
operations, warp-divergence, etc. work just like CUDA for
C

e Data transfer is key
e It doesn’t matter how fast your kernel is if you're copying data
inefficiently.
e “Pin” your buffers to gain PCle bandwidth and
asynchronous transfer

CRANY
3

CUDA FORTRAN Best
Practices

Use Interface Blocks =R

® \
\

e Fortran Interface blocks allow module addone mod
overloading procedure name interface addone

dependent on input types module procedure &
addone host,addone dev

e The “device” attribute can be end interface

used to specialize input contains
arguments. subroutine addone host (B,N)
e So... by creating a generic integer :: N

real (8) :: B(N)
end subroutine
subroutine addone dev (B,N)

interface, CPU and GPU routines
can have the same calling
sequence and will be picked at

integer :: N
runtime according to be local to real (8) ,device :: B(N)
memory type (dim3) :: griddim, &

blockdim
end subroutine
end module

e e
AN
\

S \
\

Use CudaMemCpy rather than ‘=*

e CUDA Fortran has an awesome feature that allows
copying data (syncrhonously) using the standard assign
operator (=)

e In several cases, we saw assignment result in many, small
copies, rather than 1 large.

e Replacing with a call to cudaMemCpy or
cudaMemCpyAsync gave much better results

e Aside: In theory one could overload the ‘=* operator within
a module and implement this shortcut oneself, but we did
not try this.

@ @
CRANY
3

e

Remember that memcpy is faster than PCle

\

e It’s tempting to think that streaming PCle copies over
chunks is cheaper than packing/unpacking buffers

e Don’t do this:

do i=1l,nchunks
cudaMemcpy chunk
end do

e DDR3 Memory is capable of > 12 GB/s
e PCle is capable of < 6GB/s

e Do this instead.:
pack chunks on device (chunks,buffer)
cudaMemcpy buffer
unpack chunks on host (buffer, chunks)

e Make sure your buffer is “pinned”

\

ee
CRANY
3

Stupid Programmer Tricks

CUDA Fortran and OpenACC can do that??

Start with something simple...

e Create Vectors A & B, both of length N.
e We don’t need to initialize them on the
CPU, so create and initialize each on the

device

e Return the results to the CPU, where
they’ll be output.

e What does this really show?

e OpenACC is great at the high-level

e No need for multiple copies of each
array (device/host)

e When possible, populate device
arrays on the device to avoid the cost
of a copy

CRANY
2z \
\
program main
integer, parameter :: &
N = 1000
real (8) :: A(N),B(N)
integer :: i

!Sacc data create(d), &
copyout (B)

1Sacc parallel

A(:) =1.0

1Sacc end parallel

I$Sacc parallel

B(:) 2.0 * A(:)

!1Sacc end parallel

1Sacc end data

print *,B(1:6),"\n...\n",&
B ((N-5) :N)
end program

Add some CUDA Fortran

module addone mod
use cudafor
implicit none
private
public interface addone
module procedure addone host,addone dev
end interface

contains
subroutine addone dev (B,N)
integer :: N

real (8) ,device :: B(N)
type (dim3) :: griddim, blockdim

griddim = dim3 (ceiling(real (N)/real(512)),1,1)

blockdim = dim3(512,1,1)

call addone kernel<<<griddim,blockdim>>>(B,N)

print *, "device"
end subroutine
attributes (global) &
subroutine addone kernel (B,N)
integer,value :: N
real(8) :: B(N)
integer i
i = ((blockIdx%x - 1) * blockDim%x) + &
threadIdx%x
if (i.le.N) then
B(i) = B(i) + 1
endif
end subroutine
end module

ee
CRANY
3

program main
use addone mod

integer, parameter :: N = 1000
real(8) :: A(N),B(N)
integer :: i

'Sacc data create(A), copyout (B)
'$acc parallel

A(:) =1.0

'$Sacc end parallel

!'$Sacc parallel

B(:) =2.0 * A(:)

'Sacc end parallel

'DEVICE
call addone (B,N)

1Sacc end data

'HOST
call addone (B,N)

print *,B(1:6),"\n...\n",B((N-5):N)

end program

® ©
CRANY
)

® \
\

Add in a library or two...

program main
use addone mod
use cublas

e What’s my point of this silly example?

integer, parameter :: N = 1000
real (8) :: A(N),B(N) e Just because you choose 1
integer :: 1

programming model today, doesn’t
!Sacc data create(A), copyout (B)
!Sacc parallel
A(:) =1.0
!Sacc end parallel

mean you’re stuck with that choice.

e Mixing CUDA C, CUDA Fortran,

'$acc parallel Libraries, and OpenACC is both
B(:) = 2.0 * A(:) _

1$acc end parallel possible and reasonable.

I DEVICE e More on this in a moment...

call addone (B,N)

call daxpy(N,alpha,A,1,B,1)
'Sacc end data

'HOST
call addone (B,N)

print * ,B(1:6),"\n...\n",B((N-5):N)

end program

ee
CRANY
3

My recommendations

If | were starting today, what would | do?

My Recommendations

e Start with OpenACC ¥

e OpenACC has matured to the point that it is useful for most
applications.

e If you do a lot of partial array updates and/or partial derived type
updates, you may still have some trouble

e |t helps to have an efficient OpenMP code first.
e Get the data movement figured out first.

e If it takes longer to copy the data back and forth than computing on the
CPU, kernels can be infinitely fast and it won’t matter.

e If you find things that are hard or inefficient to do via
directives, fall back to CUDA (C or Fortran)

e Don’t forget to use accelerated libraries when available.
e Report bugs!!
e Compilers won't get better if we don’t know they’re broken.

e Poor performance is a bug too, if you can beat our performance, show
us the code.

	Porting Applications with CUDA Fortran and OpenACC
	CUDA Fortran
	What does it look like? - CUDA Fortran Kernel
	What does it look like? - CUDA Fortran Launcher
	CUDA Fortran Optimization
	CUDA FORTRAN Best Practices
	Use Interface Blocks
	Use CudaMemCpy rather than ‘=‘
	Remember that memcpy is faster than PCIe
	Stupid Programmer Tricks
	Start with something simple…
	Add some CUDA Fortran
	Add in a library or two…
	My recommendations	
	My Recommendations

