

Allinea DDT
Debugging HPC Applications

Dirk Schubert

Senior Software Developer, Allinea Software

dschubert@allinea.com

About Allinea

● HPC development tools company
● Flagship product Allinea DDT

– Now the leading debugger in parallel computing
– The scalable debugger

● Record holder for debugging software on largest machines
● Production use at extreme scale – and desktop

– Wide customer base
● Blue-chip engineering, government and academic research
● Strong collaborative relationships with customers and partners

Bugs in Practice

How to focus and isolate

● A scientific process?
● Hypothesis, trial and observation, ...

● Requires the ability to understand what a program is doing
● Printf
● Command line debuggers
● Graphical debuggers

● Other options
● Static analysis
● Race detection
● Valgrind
● Manual source code review

What are debuggers?

● Tools to inspect the insides of an application whilst it is
running
● Ability to inspect process state

– Inspect process registers, and memory

– Inspect variables and stacktraces (nesting of function calls)

– Step line by line, function by function through an execution

– Stop at a line or function (breakpoint)

– Stop if a memory location changes

● Ideal to watch how a program is executed
– Less intrusive on the code than printf

– See exact line of crash – unlike printf

– Test more hypotheses at a time

Debugging Parallel Applications

● The same need: observation, control, ...
● A complex environment – with complex problems

– More processes, more data
– MPI communication library introduces potential non-

determinism
● Few options..

– Cannot use printf or command line debuggers
● Some bugs only occur at scale

– Need to handle thousands of threads/processes
– Needs to be fast to use and easy to understand

● Graphical source level debugger
for
● Parallel, multi-threaded, scalar or

hybrid code

● C, C++, F90, Co-Array Fortran,
UPC, CUDA, OpenACC

● Strong feature set
● Memory debugging

● Data analysis

● Managing concurrency
● Emphasizing differences

● Collective control

“Make as simple as possible, no
more”

Allinea DDT in a nutshell

Fixing everyday crashes

● Typical crash scenario:
● Threads/processes can be anywhere

● Too many to manually examine
individually

● A good overview is important
● Allinea DDT merges stacks from

processes and threads into a tree

● Leap to source for crashes

● Information scalably without overload

● Common fault patterns evident
instantly
● Divergence, deadlock

Process Control

● Interacting with application
progress is easy with DDT
● Step, breakpoint, play, or set data

watchpoints based on groups

● Change interleaving order by
stepping/playing selectively

● Group creation is easy
● Integrated throughout Allinea DDT -

eg. stack and data views

● Clear need to see data

● Too many variables to trawl manually

● Allinea DDT compares data automatically

● Smart highlighting

● Subtle hints for differences and changes

● New: Now with sparklines!

● More detailed analysis

● Full cross process comparison

● Historical values via tracepoints

Simplifying data divergence

Tracepoints

● A scalable print alternative
● Merged print – with a sparkline graph showing

distribution
● Change at runtime – no recompilation required

Large Array Support

● Browse arrays
● 1, 2, 3, … dimensions
● Table view

● Filtering
● Look for an outlier

● Export
● Save to a spreadsheet

● View arrays from multiple
processes
● Search terabytes for rogue

data – in parallel

GPU debugging with Allinea DDT

● Almost like debugging a CPU – we
can still:
● Run through to a crash

● Step through and observe

● CPU-like debugging features
● Double click to set breakpoints

● Hover the mouse for more information

● Step a warp, block or kernel

● Follow threads through the kernel

● Simultaneously debugs CPU code

● CUDA Memcheck feature detects
read/write errors

Examining GPU data

● Debugger reads host
and device memory
● Shows all memory

classes: shared,
constant, local, global,
register..

● Able to examine
variables

● … or plot larger arrays
directly from device
memory

Overviews of GPUs

● Device overview shows
system properties
● Helps optimize grid sizes
● Handy for bug fixing – and

detecting hardware failure!

● Kernel progress view
● Shows progress through

kernels
● Click to select a thread

• Using a workload scheduler
– Machines are available when the scheduler decides (by night ?)
– Can be tricky to get a big cluster exactly when the developer wants it

User and administrator friendly
Offline debugging

• Offline debugging : printf replacement
– Tracepoints and offline debugging

– Job runs without debugger interface and
record variables

• Worlds first scalable batch
debugger

– Set tracepoints, breakpoints, and run !

– Memory debugging errors, crashes

– Reports in HTML or plain text

Extreme machine sizes

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011

0

100000

200000

300000

400000

500000

600000

Growth in HPC core counts

Average Cores
Largest
Smallest

Year

C
o

re
 c

o
u

n
t

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

2000

4000

6000

8000

10000

12000

14000

16000

HPC core counts

Average Cores Smallest

C
o

re
 c

o
u

n
t

 Progress requires ever
more CPU hours
– Machine sizes are

exploding

– Skewed by largest
machines

– … but a common trend
everywhere else

– Software is changing to
exploit the machines

A simple parallel debugger

● A basic parallel debugger

● Aggregate scalar debuggers

– They work: good starting point

– Control asynchronously

● Implement support for many platforms and MPI
implementations

● Develop user interface

– Simplify control and state display

● Initial architecture

● Scalar debuggers connect to user interface

– Direction connections - linear performance

● Any per-process item is an eventual bottleneck

– Operating system limitations
● File handles on the GUI

● Threads, processes

– I/O limitations
● Linear access counts on the best networked file systems

are still linear

– Memory and computation limitations

● Machines still getting bigger...

User Interface

Controller

Debugger

Process

Controller

Debugger

Process

Bug fixing as scale increases

● Can we reproduce at a smaller scale?
● Attempt to make problem happen on fewer nodes

– Often requires reduced data set – the large one may not fit
● Smaller data set may not trigger the problem

– Does the bug even exist on smaller problems?
● Didn't you already try the code at small scale?

– Is it a system issue – eg. an MPI problem?

● Is probability stacking up against you?
– Unlikely to spot on smaller runs – without many many runs
– But near guaranteed to see it on a many-thousand core run

● Debugging at extreme scale is a necessity

How to make a Petascale debugger

● A control tree is the solution
● Ability to send bulk commands and

merge responses

– 100,000 processes in a depth 3 tree

● Compact data type to represent sets
of processes

– eg. For message envelopes

– An ordered tree of intervals?

– Or a bitmap?

● Develop aggregations

– Merge operations are key

– Not everything can merge losslessly

– Maintain the essence of the information
● eg. min, max, distribution

0 50,000 100,000 150,000 200,000
0

0.05

0.1

0.15

DDT 3.0 Performance Figures

All Step
All
Breakpoint

MPI Processes

T
im

e
 (

S
e

co
n

d
s)

For Petascale and beyond

● Partnership with largest users
● Oak Ridge National Laboratories

● LLNL, ANL, CEA and others

● High performance debugging - even
at 220,000 cores
● Step all and display stacks: 0.1

seconds

● Logarithmic

● Usability is a “Big Thing”
● Scalable interface and features

Research

● Debugging is about observing the anomalies
● Anomaly detection is easier when thousands of “trials” are

running together
– Parallel debugging could be easer than single threaded

● Can past behaviour help users to identify current issues?
● Can we make developing and debugging code easier with

today's flux in programming models?
– Heterogeneous systems/models: CUDA, OpenACC, OpenCL, for

GPUs, Intel MIC, ...

– PGAS languages - Coarray Fortran, UPC to take the pain of MPI away

– Task parallel models – Cilk, OpenMP 3, and others …

● With multi/many-core mobile phones and tablets – what
analogies work in embedded computing?

The Future

● Concurrency will become greater
● 2012 or early 2013 – DDT will debug a million core

system
● International and national groups are preparing for

Exascale
– Systems expected 2018-2020
– 100x more powerful than today's most powerful system
– Orders of magnitude more components – fault tolerance issues
– More hybrid environments expected to give better green

credentials

● Programming models will continue to change

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

