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Motivation:  Changing World of Fuels and Engines 

• Fuel streams are rapidly evolving 
• Heavy hydrocarbons  

 Oil sands 
 Oil shale 
 Coal 

• New renewable fuel sources 
 Ethanol 
 Biodiesel 

• New engine technologies 
• Direct Injection (DI 
• Homogeneous Charge  

Compression Ignition (HCCI) 
• Low-temperature combustion 

 
• New mixed modes of combustion  

(dilute, high-pressure, low-temp.) 
 
• Sound scientific understanding is 

necessary  to develop predictive, 
validated multi-scale models! 
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Combustion chemistry 

• Example, natural gas combustion 
 CH4 + 2O2 => CO2 + H2O 
• Occurs through a reaction network producing and 

consuming intermediate species 
– CO, OH, H2O2, HO2, CH3, … 

• Detailed chemical mechanisms are needed to compute 
– Flame structure and stability 
– Emissions 
–  Validate reduced reaction mechanisms 
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Detailed chemical kinetics are expensive 

From Lu and Law, PECS, 2009 

• Chemical source term 
evaluation is computationally 
intensive 

• Thousands of elementary 
reaction steps accumulated 
to global species reaction 
rates 

• Often the target for model 
reductions or algorithmic 
improvements 

• How fast can we compute 
detailed chemical kinetics on 
accelerators? 
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Chemistry Kernels 
• Reaction rates, thermodynamic properties and transport 

coefficients account for 55% of time. 
– Complex chemical kinetic models needed to address multi-stage ignition 

and flame dynamics  

• Point-wise functions that are independent of DNS software’s 
mesh data structure and MPI-layer 
– Uses Chemkin API 

• Used across other combustion codes in the community. 
– Impacts other HPC and workstation-scale combustion applications. 

• Accelerator library targets the DNS chemistry needs and beyond 
Kyle Spafford (ORNL) et al., “Accelerating S3D: A GPGPU Case Study,” in Seventh International 
Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Platforms 
(HeteroPar 2009). Delft, The Netherlands, 2009 
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Keiki: Code generator for 
CUDA chemistry kernel 

General software library for 
combustion applications 

Background: In the beginning there 
was… 

S3D: MPI Combustion Solver 

CUDA chemistry kernel 

S3D-Hybrid: MPI with OpenACC 
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Accelerator library for combustion kinetics 

• Conservation equation in a typical combustion application 
 
 
 

 
• Chemistry kernel evaluates the chemical kinetics for large 

mechanisms. 
• Well optimized on CPUs and achieves more than 20% of peak 

on AMD opterons 
• Porting to GPU and larger chemistry requires higher levels of 

parallelism 
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Parallelizing reaction kinetics (CKWYP) 

• Grid-level parallelism (several independent states)  
– Will provide MPI parallelism  
– In some cases, also SMP-like parallelism 

• Grid-level vectorization does not provide sufficient performance 
– 32(states) * 4000 variables * 8bytes = 1000 kB 

• Current capacity in shared memory/L1 cache = 64kB 
• Need to go deeper for vector parallelism 

– Equation level parallelism 
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Data flow in the rates kernel 

• P, T 
• Concentrations 
• O(100) species 

State 

• O(1000) reactions 
• Stoichiometry and 

rate parameters 

Elementary 
Reaction rates • O(100) species 

• Stoichiometry 

Species reaction 
rates 

• Data movement should be minimized while also vectorizing 
• Expose concurrency (independent blocks) within the reaction 

network 
• Redundant computation to achieve parallelism 
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Partitioning at species/reaction level 

• Similar to partitioning the grid for distributed memory 
parallelism (MPI) 

• Why partition the computation at species/reaction level? 
– Asynchronous execution to hide latencies and data transfers 

(memcpy across PCI) 
– Distribute work to multiple accelerators assigned to a single host 
– Allow finer grained parallelism at the chemistry level to multiply the 

scalability of the flow solver 

• Keiki treats the chemical kinetics as a graph and partitions it 
to minimize edgecut and maximize parallel performance 
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Reaction network as a graph 

• Chemical reaction network is a bi-partite graph between two 
sets of vertices  
– The species form one set 
– The reactions form the second set 
– Stoichiometry of the reaction network defines the graph 

• The adjacency matrix of the 
graph is 
 
 

• Where B is the M x N 
stoichiometry matrix 
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Partitioning the graph 

• Graph partitioning software Metis and PaToH were used to 
partition the bi-partite graph 
– A good quality partition minimizes edge-cut with maximum load balance 
– Reorders the network, without changing the answers 

• Edge-cut induces redundant computation or synchronization 
points 

• Partitions should be sized to meet the vector length and memory 
requirement 
– Large enough to have enough number of threads per thread block 
– Control shared memory requirement to obtain high occupancy 

• Need a sufficient number of partitions that can execute 
concurrently 
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Partitioning iso-octane chemistry 
• LLNL’s detailed mechanism for gasoline surrogate composed 

of 858 species and 3606 reactions 
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Partitioning iso-octane chemistry 
(contd) 

• The quality of partitioning gets better as the chemistry model 
gets bigger 
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Keiki – Code Generator 

Chemistry 
Model 

 

• Chemkin Standard mechanism and 
thermodynamics data 

Parser/A
nalyzer 

• Perl code for parsing input files 
• Interface to graph analysis/partitioning 

CUDA Code 
Generator 

• Mechanism/target specific code 
• Plus mechanism independent code 
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Performance results 
• Performance on dual 6-core Opteron CPU and Fermi GPU were 

compared for 52-species n-heptane and 858 species iso-octane 
chemistry 
– CPU peak = 2*62.4 = 125 GF 
– GPU peak = 515 GF 

• The CPU code was well optimized and tuned for performance 
• The execution times on GPU were 3X faster than the CPU 
• Work in progress to measure and tune performance on Kepler 
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GPU library coupled to combustion CFD 
• Work in progress: 
• A flamelet equation solver is being 

developed around the CUDA library 
• CUDA library for chemical kinetics is 

being coupled to Forte in partnership 
with Reaction Design 
– Forte ported to Jaguar (Cray XK6) 
– Software linking and API are being 

explored 
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Summary 

• New software and techniques were developed to enable the 
computation of combustion chemistry on GPU accelerators 
using the CUDA programming model 

• Significant potential to accelerate the computation of very 
large detailed mechanisms 

• What started out as an effort to accelerate S3D has been 
extended to much larger chemical mechanisms.  
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