Using CUDA C, CUDA Fortran,
and OpenCL on a Cray XK6

At the end of this talk you should be
able to

Build a CUDA C code
Build a CUDA Fortran code
Build an OpenCL code

Share data between CUDA and libsci_acc
Share data between OpenACC and CUDA

Share data between OpenACC and libsci_acc

CUDA/OpenCL PE integration

* As you would expect, much of the complexity
of using CUDA/OpenCL on an XK6 has been
simplified via compiler wrappers.

* Loading the cuda module
— Adds nvcc to the path
— Adds CUDA/OpenCL includes automatically
— Adds -Icuda automatically
— Changes to dynamic linking
— Does not automatically link in -lOpenCL

CUDA/OpenCL PE integration

* Loading the xtpe-accel-nvidia20 module

— Automatically loads the cuda and libsci_acc
modules

— Enables OpenACC directives in CCE
— Turns on dynamic linking

CUDA/OpenCL PE integration

 nvcc does not know about MPI headers

— Simplest solution: isolate CUDA C and MPI codes into
separate files

— More Complicated solution: explicitly include the MPI
include directory in the nvcc compile

* Building a .cu file enables C++ name mangling, so
— C codes will need to be built with the CC compiler or...
— Add extern “C” to continue using cc compiler

Some Gotchas

* The module versions on chester have been
temporarily locked at versions that are not
current.

— Sometimes you will need to swap several modules
(even if they’re already loaded) to get things to
build and link properly.

— I’ve coded the Makefiles in the examples to help
you with this when they can.

— These problems will be fixed on the final machine

Code Samples for this talk

* Please copy
/ccs/proj/trn001/cray/titan_workshop examp

les.tgz

* Please hang on to these examples and slides
to refer to when trying to build your codes.

CUDAFORC

CUDA for C - What?

CUDA Cis a programming model that has been created
and is supported by Nvidia.
It consists of both library calls and language extensions.

— Only Nvidia’s nvcc compiler understands the language
extensions

Lots of tutorials and examples exist online

Requires explicitly rewriting important parts of your
code to

— Manage accelerator memory

— Copy data between CPU and accelerator

— Execute on the accelerator

CUDA C (serial)

* The Plan:

— Write a CUDA C kernel and a C (or Fortran) main
program

— Build and link with nvcc
— Launch executable with aprun

* The Code: examplel_ serial/scaleitC.cu

* Supported PEs: Any
— Works best with GNU or Cray (with -hgnu flag)

CUDA C (MPI)

The Plan:

— Write a CUDA C kernel and a launcher function in a .cu file containing
no MPI

— Write a C (or Fortran) main program with MPI
— Build .cu nvcc, rest with cc (or ftn)
— Link via cc (or ftn)
— Launch executable with aprun
The Code: example2_mpi/scaleitC*

Supported PEs: Any
— Works best with GNU or Cray (with -hgnu flag)
Gotchas
— nvcc uses C++ name mangling unless extern “C” is used.

— |f CUDA and MPI must exist in the same file, it’s necessary to point
nvcc to the MPI include directory

CUDA FORTRAN

CUDA Fortran - What?

 CUDA Fortran is a parallel to CUDA for C created
by PGI and Nvidia and supported by PGI.

* |tis a mixture of library calls and Fortran
extensions to support accelerators.

* Requires explicitly rewriting important parts of
your code to
— Manage accelerator memory

— Copy data between CPU and accelerator
— Execute on the accelerator

CUDA Fortran (serial)

The Plan

— Create a Fortran module containing CUDA kernel and data

— Create Fortran main, which calls launcher function from
above module

— Build and Link with ftn
— Run with aprun

The Code: examplel_ serial/scaleitF.F90
Supported PEs: PGl Only

Gotchas

— CUDA Fortran requires the use of Fortran modules, if you
have pure F77 code, it will need to be updated to F90

CUDA Fortran (mpi)

The Plan

— Create a Fortran module containing CUDA kernel and data

— Create Fortran main, which calls launcher function from
above module

— Build and Link with ftn
— Run with aprun

The Code: example2 _mpi/scaleitF.F90
Supported PEs: PGl Only

Gotchas

— CUDA Fortran requires the use of Fortran modules, if you
have a pure F77 code, it will need to be updated to F90

BUILDING A PARALLEL OPENCL
CODE

OpenCL - What?

OpenCL is a set of libraries and C language
extensions for generic parallel programming over
a variety of devices.

Industry standard maintained by Kronos Group
and supported by multiple vendors.

Functionally similar to low-level CUDA driver API.

Requires explicitly rewriting important parts of
your code to

— Manage accelerator memory

— Copy data between CPU and accelerator

— Execute on the accelerator

OpenCL

* The Plan:

— Write an OpenCL kernel and a launcher function in
a.c

— Write a C (or Fortran) main program with MPI
— Build with cc (and maybe ftn)

— Link via cc (or ftn) adding -IOpenCL

— Launch executable with aprun

* The Code: example3/
e Supported PEs: GNU

SHARING DATA BETWEEN CUDA
AND LIBSCI

LibSci and CUDA for C

What: Part of the code relies on LibSci
routines and part has been written in CUDA
The Plan:

— Build and use CUDA for C as before

— Use libsci_acc’s expert interface to call device
kernels with your existing device arrays.

The Code: example4 cudaC_libsci/
Supported PEs: GNU & Cray (with -hgnu)

Libsci + CUDA for C

e Use cudaMalloc and
cudaFree to manage
the device memory

* Use cublasSetMatrix
and cublasGetMatrix
to copy to/from the
device

e Use dgetrf_acc_ with
your device pointers
to run dgetrf on the
device

/* Copy A to the device */

cudaMalloc(&d A, sizeof(double) *1lda*M) ;

cublasSetMatrix(M, N, sizeof (double), A2,
lda, 4 A, 1da);

/* Calling the accelerator API of dgetrf */
dgetrf acc_(&M, &N, d A, &lda, ipiv, &info);

/* Copy A in the device back to the host */

cublasGetMatrix(M, N, sizeof(double), d A,
lda, A, 1lda);

cudaFree(d A);

LibSci and CUDA Fortran

What: Part of the code relies on LibSci
routines and part has been written in CUDA
Fortran

The Plan:

— Build and use CUDA Fortran as before

— Use libsci_acc’s expert interface to call device
kernels with your existing device arrays.

The Code: example5 cudaF_libsci/
Supported PEs: PGl

OpenACC - Fortran

* Use CUDA Fortran to
declare and manage
device arrays.

* Call LibSCI expert
interface to launch
kernel on device with
your data.

! allocatable device arrays

real, device, allocatable, dimension(:, :)
Adev,Bdev,Cdev

! Start data xfer-inclusive timer and allocate
the device arrays using

! F90 ALLOCATE
allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))

! Copy A and B to the device using F90 array
assignments

Adev = A(1:N,1:M)
Bdev = B(1:M,1:L)

! Call LibSCI accelerator Kernel
call sgemm acc ('N', 'N', N, L, M, 1.0, Adev,
N, Bdev, M, 0.0, Cdev, N)

! Ensure Kernel has run
r = cudathreadsynchronize ()

! Copy data back from device and deallocate
C(1:N,1:L) = Cdev
deallocate(Adev, Bdev, Cdev)

SHARING DATA BETWEEN OPENACC
AND CUDA FORC

OpenACC & CUDA C

e The Plan

— Write a CUDA C Kernel and a Launcher function that
accepts device pointers.

— Write a C or Fortan main that uses OpenACC directives
to manage device arrays

— Use acc host data pragma/directive to pass
device pointer to launcher

— Build .cu with nvcc and rest per usual
* The Code: example6_openacc_cuda/
* Supported PEs: Cray

OpenACC C-main

* Notice that there is
no need to create
device pointers

* Use acc data region
to allocate device
arrays and handle data
movement

*Use acc parallel loop
to populate device
array.

* Use acc host_data
region to pass a device
pointer for array

/* Allocate Array On Host */
a = (double*)malloc(n*sizeof (double)) ;

/* Allocate device array a. Copy data both to
and from device. */
#pragma acc data copyout(a[0:n])
{
#pragma acc parallel loop
for (i=0; i<n; i++)
{
af[i] = i+1;

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, é&rank);

/* Use device array when calling
scaleit launcher */

#pragma acc host data use device(a)

{

ierr = scaleit launcher (a, &n, &rank);

}

OpenACC Fortran-main

* Notice that there is
no need to create
device pointers

* Use acc data region
to allocate device
arrays and handle data
movement

* Use acc parallel loop
to populate device
array.

* Use acc host_data
region to pass a device
pointer for array

integer,parameter :: n=16384

real(8) :: a(n)

!Sacc data copy(a)
!Sacc parallel loop
do i=1,n
a(i) = 1i
enddo
!Sacc end parallel loop

!Sacc host data use device (a)

ierr = scaleit launcher(a, n, rank)

!Sacc end host data
!Sacc end data

SHARING DATA BETWEEN OPENACC
AND LIBSCI

OpenACC and LibSCl

* The Plan:

— Use OpenACC to manage your data

— Possible use OpenACC for certain regions of the
code

— Use LibSCl’s expert interface to call device routines
* The Code: example7 openacc_libsci
e Supported PEs: Cray

OpenACC with LibSCI - C

* OpenACC data region
used to allocate device
arrays for A, B, and C
and copy data to/from
the device.

January 2012 OLCF Titan Workshop 30

OpenACC with LibSCI -
Fortran

* OpenACC data region
used to allocate device
arrays for A, B, and C
and copy data to/from
the device.

January 2012 OLCF Titan Workshop 31

PE Support Summary

CUDA for C CUDA LibSci_acc OpenAcc OpenCL
Fortran

Full Support

Limited/Forthcoming Support

Currently No Support

January 2012 OLCF Titan Workshop 32

