
Porting the Denovo Radiation Transport Code to Titan:
Lessons Learned

OLCF Titan Workshop 2012

Wayne Joubert
Scientific Computing Group

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

2

Context: Titan Readiness Effort

App	 Science	 Area	
LSMS	 Materials	

PFLOTRAN	 Earth	 Sciences	

CAM/SE	 Climate	

S3D	 Combus4on	

LAMMPS	 Biosciences	

Denovo	 Nuclear	 Energy	

Denovo was selected as one of six early readiness
applications for Titan
The intent was that the experience porting these early
readiness codes would shed light on how to port other
apps going forward to Titan

3

Denovo
•  Used to solve the radiation transport problem for

advanced nuclear reactor design
•  Solves the linear Boltzmann equation in six

dimensions (3-space, 2-angle, 1-energy)
•  Written primarily in C++ under an Agile software

development process with rigorous SQE
•  Scales up to 200K cores on ORNL’s 2 PF Jaguar

system.
•  Denovo is targeted for porting to ORNL’s next-

generation HPC system

4

Denovo Algorithms
•  Primary algorithms: the discrete ordinates

method, 3-D sweep, GMRES linear solver and
various eigensolvers, e.g., Arnoldi

•  The execution time profile has a very prominent
peak: nearly all the execution time (80-99%) is
spent in a 3-D sweep algorithm.

•  Because of this, the 3-D sweep is the central
focus of the effort to port Denovo to a
accelerator-based system

•  However, the sweep is a complex algorithm that
is difficult to parallelize efficiently.

5

Denovo 3-D Sweep Algorithm

•  Most of the Denovo runtime (80-99%) is spent in the KBA sweep
algorithm

•  This is a recursive wavefront algorithm that is difficult to parallelize
•  Essentially a 4-point stencil, where each value depends on the previous

values in x, y and z
•  Induces a set of hyperplanes (wavefronts) that are processed in sequence

to sweep through the grid from a corner

6

Parallel Sweep: 1. High Level View

•  The KBA algorithm (Koch, Baker, Alcouffe from LANL) solves this problem
in parallel using a novel 2-D mapping of the problem to processors

•  The calculation is started at one corner of the grid, other processors start
work when their input data is available

7

Sweep Algorithm: 2. Per-Cell View

In addition to this “macro” view for the whole grid, at each gridcell there is
also significant work to be done:
The input vector for the sweep is initially stored with a “moments” axis. (1)
This moments axis must be transformed to an “angles” axis. (2) Then some
element-level calculations are done, for the element unknowns. (3) Finally,
the result must be transformed back to moments and the result stored in the
output vector.
Thus we have these steps at each gridcell:

1.  Load part of the input vector
2.  Do small matrix-vector product to convert from moments to angles
3.  Do discretization-related calculations on element unknowns
4.  Do small matrix-vector product to convert from angles to moments
5.  Store result in the output vector

8

GPU Architecture
•  The NVIDIA Fermi processor is a manycore

architecture with 512 compute cores.
•  They are programmed via threads.
•  Threads are arranged in groups of 32 (warps)

that compute in lockstep.
•  These are collected into threadblocks.
•  Threadblocks are independent and form a grid.
•  Programs access main (“global”) memory.
•  Programs can also use a faster, smaller

“shared” memory – a programmable cache.
•  Also L1 cache, L2 cache, registers.
•  Connected to CPU by PCIe-2 bus

Images courtesy NVIDIA

9

How to Program the Sweep on the GPU?
•  Decide what language / parallel API to use to program the GPU, through a

careful analysis of the code and algorithms.
•  Options:

1.  CUDA: a minor extension of C/C++ for GPU thread programming,
also available for Fortran 90

2.  OpenCL: a multi-vendor standard similar to CUDA
3.  Compiler directives: PGI, CAPS, Cray, OpenACC ...

•  Sweep is a complex algorithm, with many dimensions. Directives may
not be flexible enough or expose enough hardware functionality to get the
needed performance.

•  NVIDIA supports OpenCL, but going forward CUDA will be better
supported and more in-sync with new hardware features.

•  Thus use CUDA. For portability use dual CPU/GPU coding style.
Program defensively by using a coding style that isolates CUDA
constructs in facade classes, well-positioned to port to future platforms

10

CUDA/OpenCL vs. Directives
•  Which is best?
•  Will depend on the application. We have early readiness apps using both

approaches: LAMMPS, Denovo (CUDA), S3D, CAM/SE (directives).
•  Directives are easier for preexisting serial code by accelerating loops.
•  CUDA allows more careful control of the mapping of the algorithm to the

hardware.
•  In some ways the issue is analogous to OpenMP vs. Pthreads. OpenMP

potentially less invasive to serial code, Pthreads allows more flexibility.
We have codes that use both, e.g., GTC (OpenMP), Madness (Pthreads).

11

Refactor or Rewrite?

•  Would prefer to refactor existing code, if possible.
•  However, the original Denovo sweep had multiply-nested loop structure

spanning multiple levels of the call tree. This would need to be permuted,
which would require major code restructuring. Also, the memory access
pattern was not properly localized for the GPU.

•  Number of lines of code for the sweep not huge (~ thousands).
•  Thus, a rewrite probably easier.

12

Mapping the Algorithm to the GPU
We have many candidate dimensions for parallelism:
space (3), energy, moment/angle, octant, and also
unknown (4 unknowns per gridcell for this
discretization).
We are told by NVIDIA that we need 4K-8K threads for
the GPU to cover various latencies.
Also need the right kind of parallelism – proper
decoupling of data.
Also must have good memory access patterns (reuse of
data loaded from global memory, coalesced stride-1
memory references, good use of registers, shared
memory, caches on the GPU).
Approach: explore each problem dimension for
potential thread parallelism.

13

1. Parallelism in Energy
•  Denovo exposes energy as a parallel

dimension. These are fully independent, perfect
axis for parallelism.

•  Model problem has 256 energy groups – this
helps, but we need enough for 4K-8K threads.

•  Also need to use some of this 256 for node
parallelism.

14

2. Parallelism in Octant
•  Algorithm requires sweeps from 8

different directions.
•  Sweep directions are independent,

thus another 8X thread parallelism.
Previously was an outer loop.

•  Small issue: different octants update
the same output vector, so we need
to schedule properly to avoid write
conflicts, slight loss of parallel
efficiency

15

3. Parallelism in Space

•  We have this recursion, as mentioned
before, that makes the computations non-
independent.

•  However, the global KBA algorithm can be
applied at this small scale.

•  Set up block wavefronts, assign blocks to
threads.

•  Sync between block wavefronts.

16

Intermezzo: GPU Memories

•  With this paralleization scheme, code performed at only about 1% of peak
flop rate, much lower than predicted by the performance model

•  NVIDIA Fermi streaming multiprocessor (SM) has 64K of combined L1
cache + shared memory, 128K register file

•  This sounds big, but it must be shared by hundreds of CUDA threads (!)
•  To effectively use these fast memories, need to find problem axes for

which data can be shared/reused between threads, put in shared memory
instead of registers, thus reduce register spillage

Image courtesy NVIDIA

17

4. Parallelism in Angle, Moment

•  A new strategy to parallelize the moment/angle axes at the gridcell level
– map these axes to CUDA threads in-warp.

•  Small dense matrix-vector products are perfect for thread parallelism –
store vector in shared memory, relieve the register pressure.

•  The two small matrices are the same across all gridcells (!), so they can
be retained in L1 cache, to reduce a potentially high source of memory
traffic.

18

Summary of Mapping of Dimensions

GPU
Compute
Hierarchy

Thread

 Warp

Thread
 block

 Grid

registers 32 threads
execute in
lockstep

up to 48 warps
access shared memory;

can sync warps

fully independent
threadblocks

Denovo
Problem
Dimensions

octant
energy

fully
decoupled

space
use KBA;
need sync

moment
angle
use

threads
in a warp

per-gridcell
unknowns

tightly
coupled

19

Results: Test Problem

•  32x32x128 gridcells
•  16 energy groups
•  16 moments
•  256 angles
•  Linear discontinuous elements –

4 unknowns per gridcell

20

Results: Sweep GPU Performance

AMD	 Istanbul	 	 1	
core	

NVIDIA	 C2050	
Fermi	

RaFo	

Kernel	 compute	 4me	 171	 sec	 3.2	 sec	 54X	
PCIe-‐2	 4me	 (faces)	 -‐-‐	 1.1	 sec	

TOTAL	 171	 sec	 4.2	 sec	 40X	

•  Single core (AMD Istanbul) / single GPU (Fermi C2050) comparison

0
20
40
60
80

100
120
140
160
180

AMD	 Istanbul,	 1	
core

NVIDIA	 C2050	
Fermi

NVIDIA Fermi is 40X faster
than single Opteron core

21

Conclusions: Lessons Learned

1.  Major code restructurings were required – this is required regardless of
the parallel API used. Estimate >50% of development time spent in
code restructuring irrelevant to GPU-specific features, rest of the time
spent tuning code to GPU caches, etc.

2.  CUDA was used to get good performance for this complex algorithm –
directives add an abstraction layer, may not expose all needed
performance. Other codes will be different – depends on the application
(library calls, compiler directives, CUDA/OpenCL).

3.  Isolating CUDA-specific constructs in one place in the code is good
defensive programming to prepare for programming models that may
change. C++ facade classes to hide details are useful.

22

Conclusions: Lessons Learned (2)

4.  Programming in a dual CPU/GPU programming style helps reduce code
redundancy, helps with debugging and improves portability.

5.  It is challenging to negotiate conflict between deep code optimization
and good SWE practice – often it is not easy to have both.

23

Conclusions: Lessons Learned (3)

6.  It is helpful to develop a performance model based on flop rate, memory
bandwidth and algorithm tuning knobs, to guide mapping of the
algorithm to the GPU.

7.  It is worthwhile to write small codes to test performance for simple
operations, incorporate this insight into algorithm design.

8.  It is a challenge to understand what the processor is doing, under the
abstractions, even CUDA. Some details are proprietary.

9.  It is difficult to know beforehand what will be the best strategy for
parallelization or what will be the final outcome – a porting effort could
easily fail if the GPU has inadequate register space for the planned
algorithm mapping.

24

Conclusions: Lessons Learned (4)

10.  Performance can be very sensitive to small tweaks in the code – must
determine empirically the best way to write the code.

11.  Often, the GPU porting effort for the algorithm also improves
performance on the CPU (in this case, in fact, 2X).

12.  Expert help is useful, e.g., NVIDIA forums.

25

Acknowledgements

•  Denovo development team: Tom Evans, Greg Davidson, Josh Jarrell,
Chris Baker

•  Cray: Kevin Thomas
•  NVIDIA: John Roberts, Cyril Zeller, Paulius Micikevicius
•  OLCF compute resources: JaguarPF, Yona, Lens, Chester

26

Supplementary slides

27

Denovo Science Problem
•  For high-resolution nuclear reactor

design
•  Nuclear reactor analysis requires

modeling the flux of moving
neutrons in the reactor core

•  At any spatial gridcell, there is a
quantity of neutrons that is is binned
by (1) direction of particle motion
and (2) energy value

•  This results in a 6-dimensional
problem (3-space, 2-direction, 1-
energy)

•  The fine resolution required along
each of these six dimension leads to
problems of enormous size

28

Sweep Code Programming Model/Style
•  Code is in C++.
•  Decided to implement a single code that can run on both CPU and GPU.

Makes sense for maintainability, also greatly helps debugging.
•  Following older example of MPI, try to put CUDA-related code in one

place, e.g., facade class. Want to be ready for unknown programming
models coming in the future.

29

Sweep Performance Characteristics

•  In order to port to GPU, need to understand the performance behavior of
the sweep algorithm in detail
–  Data access pattern
–  How much time spent in flops, memory access, communication
–  Which problem dimensions can be thread-parallelized on the GPU
–  Is there enough space in the registers, caches to get the needed data reuse

•  Rethink the algorithm from first principles, putting all algorithm design
issues on the table.

•  How do we restructure the algorithm to improve data reuse, expose
thread parallelism?

30

A Sweep Code Performance Model
•  It can be very useful to have a formula that expresses the runtime of a

code in terms of:
•  Flop counts, memory access counts, message counts, ...
•  Hardware characteristics: clock speeds, bandwidths, ...

•  Helps guide the parallelization / optimization process.
•  Can understand performance tradeoffs for design decisions before writing

any code.
•  Understand what dominates (floating point operations, PCIe-2 transfer,

memory bandwidth, etc.) – what is most in need of optimization.
•  Also after writing the code helps diagnose whether performance of the

code is where it should be.

31

Observations

•  40X faster than Istanbul core.
•  Istanbul is 6-core, so Fermi about 7X faster than the entire Istanbul processor.
•  For both CPU and GPU, code attains about 10% of peak flop rate – this is

considered good for this algorithm.
•  Expect more optimizations to be possible going forward.

