ry 4

CAPS

Many-Core Programming with HMPP 3.0

Write once, deploy many(-core)

Jean-Charles VASNIER

ry

Introduction CAPS

« Computing power comes from parallelism
o Hardware (frequency increase) to software (parallel codes) shift
o Driven by energy consumption : heterogeneity is source of efficiency

« Context of fast moving hardware targets
o e.g. fast GPU improvements (RT and HW), new massively parallel CPU
o Write codes that will last many architecture generations

« Keeping a unique version of the code, preferably mono-language, is
a necessity
o Reduce maintenance cost
o Directive-based approaches suitable
o Preserve code assets

* Addressing many-core programming. challenge implies
o Massively parallel algorithms
o New development methodologies / code architectures
o New programming tools

January 2012 www.caps-entreprise.com 2

ry 4

Agenda CAPS

1. About many-cores

2. Some principles for many-core programming
3. Methodology to migrate legacy codes

4. Many-core programming with HMPP 3.0

5. HMPP Wizard

January 2012 www.caps-entreprise.com 3

ry 4

Many-Cores CAPS

« Massively parallel devices
o Thousands of threads needed

Nl Data/stream/vector
CPU and GPUs linked with a 4 B parallelism to be
PClx bus \ | i | eXp|Oited by GPUs
' sl c.c. CUDA / OpenCL

January 2012 www.caps-entreprise.com 4

ry 4

Software Main Driving Forces CAPS

 ALF - Amdahl’'s Law is Forever
o A high percentage of the execution time has to be parallel
o Many algorithms/methods/techniques will have to be reviewed to scale

serial execution parallel section

time

—> —>
reduced execution time

« Data locality is expected to be the main issue

o Limit on the speed of light
o Moving data will always suffer latency

January 2012 www.caps-entreprise.com 5

ry 4

Addressing many-cores CAPS

« Adirective-based approach for many-core
o CUDA, OpenCL and soon Intel MIC, ...

#pragma hmpp f1 codelet
myfunc(...) {
for ()
for ()
for ()

main () { Message

T passing :
#pragma hmpp f1 callsite -

myfunc (V1[k],V2[k]);

January 2012 www.caps-entreprise.com

ry

CAPS

Some Principles for
Many-Core Programming

ry 4

Express Parallelism, not Implementation CAPS

* Rely on code generation for implementation details
o Usually not easy to go from a low level API to another low level one
o Tuning has to be possible from the high level

o But avoid relying on compiler advanced techniques for parallelism
discovery, ...

o You may have to change the algorithm!
* An example with HMPP

Code generation process N

#pragma hmppcg gridify(j, i)
OpenI\/IP/Threads #pragma hmppcg unroll(4), jam(2)
for(j =0 ; j <p; j+t) {

g 2 for(i =0 ; i <m ; i++) {
o o for (k. = ...) { ...}
Cuda/OpenCL G = vout[j][i] = alpha * ...;
s }
o Q }
S5 o e i
o

Vector ISA

<

January 2012 www.caps-entreprise.com 8

ry 4

Exposing Massive Parallelism CAPS

* Do not hide parallelism with complex coding structure
o Data structure aliasing, ...
o Deep routine calling sequences
o Separate concerns (functionality coding versus performance coding)

« Data parallelism when possible
o Simple form of parallelism, easy to manage
o Favor data locality
o But sometimes too static

« Kernels level
o Expose massive parallelism
o Ensure that data affinity can be controlled
o Make sure it is easy to tune the ratio vector / thread parallelism

January 2012 www.caps-entreprise.com 9

ry

Data Structure Management CAPS

« Data locality
o Makes easy to move from one address space to another one
o Makes easy to keep data coherency

* Do not waste memory

o Memory per core ratio is not improving
* Choose simple data structures

o Enable vector/SIMD computing

o Use library friendly data structures
o May come in multiple forms, e.g. sparse matrix representation

* Forinstance consider “data collections” to deal with multiple
address spaces or multiple devices or parts of a device

o Gives a level of adaptation for dealing with heterogeneity
o Load distribution over the different devices is simple to express

January 2012 www.caps-entreprise.com 10

ry

Debugging Issues CAPS

« Keep code debug-able.

« Keep serial semantic
o Forinstance, implies keeping serial libraries in the application code
o Directives-based programming makes this easy

* Ensure validation is possible even with rounding errors

o Reductions, ...
o Aggressive compiler optimizations

» Use defensive coding practices

o Events logging, parameterize parallelism,
add synchronization points, ...

o Use debuggers (e.g. Allinea DDT)

January 2012 www.caps-entreprise.com 11

ry 4

Dealing with Libraries CAPS

« Library calls can usually only be partially replaced

o No one to one mapping between libraries (e.g.BLAS, FFTW, CuFFT, CULA,
LibJacket)

o No access to all code (i.e. avoid side effects)
o Don’t create dependencies on a specific target library as much as possible
o Still want a unique source code

* Deal with multiple address spaces / multi-GPU
o Data location may not be unique (copies)
o Usual library calls assume shared memory
o Library efficiency depends on updated data location (long term effect)

« Libraries can be written in many different languages
o CUDA, OpenCL, HMPP, etc.

« There is not one binding choice depending on applications/users

o Binding needs to adapt to uses depending on how it interacts with the remainder
of the code

o Choices depend on development methodology

January 2012 www.caps-entreprise.com 12

ry

CAPS

A Methodology for
Legacy Code Migration

M

,2/7

a\\

W

ry 4

Legacy Codes Migration Challenges CAPS

Mastering migration cost
o Ensuring an adequate return on investment
o Minimizing risk as well as manpower

* Producing code that will last many architecture generations

o ltis safe to assume that the node architecture may change with the renewal of the
computer

« Writing developer friendly code
o Application developers may not be multicore / accelerator / parallelism savvy
o Once ported, the application still needs to evolve

« Keeping a unique version, preferably mono-language, of the codes
o Reduce maintenance cost

« Able to use libraries
o No one-to-one replacement (e.g. FFT libraries)
o Must interact with non library accelerated kernels

January 2012 www.caps-entreprise.com 14

Dealing with Legacy Codes

THE CRITICAL STEP

ry 4

CAPS

7 4

*Understand your performance goal (analysis,
definition and achievement)

*Know your hotspots (analysis,
code reorganization, hotspot selection)

N L

«Establish a validation process

*Seta continuousintegration
process with the validation

S
“ v
Port your
Applicationon
Many-core

Define your
Parallel
Project

Hours to Days

Optimize Your
Many-core Application

@
*Reduce data transfers
*Optimize kernel execution

*Provide feedbackto application
programmers forimproving algorithm
data structures/...

*Consider multiple devices

@ v

) Weeks to Months

January 2012 www.caps-entreprise.com

«Exhibit application SIMT parallelism

Pa@ion

*Optimize CPU code

*Parallelize for Many-core
«Validate execution

@ Days to Weeks

Many-core Phase 1
B " operational R LIl
application with Phase 2

known potential

--

A corporate project
*Purchasing Department m

*Scientists

] -~
: «IT Department o ‘!!pi

.
--

ry 4

Go / No Go for GPU Target CAPS

Go

Dense hotspots

Fast kernels

Low CPU-GPU data transfers
Prepare to manycore parallelism

No Go

 Flat profile

» Slow GPU kernels (i.e. no speedup to
be expected)

» Binary exact CPU-GPU results
(cannot validate execution)

* Memory space needed

January 2012 www.caps-entreprise.com 16

ry

CAPS

th

ing wi

Many-Core Programm

HMPP 3.0

ry 4

Scope of HMPP 3.0 Programming CAPS

 Remote procedure calls (RPCs) on accelerator devices
o Parallel loop nests to exploit multiple compute units

#pragma hmpp f1 codelet
myfunc(...) {
for ()
for ()
for ()

main () {

#pragma hmpp f1 callsite
myfunc (V1[k],V2[k]);

January 2012 www.caps—entreprise.bom 18

ry

HMPP Comes in 3 Parts CAPS

» A set of directives to program
hardware accelerators
o Drive your HWAs, manage transfers

* A complete toolchain to build :_
manycore applications | P —
o Build your hybrid application

» A runtime to adapt to platform O T
configuration | |
o With its API

January 2012 www.caps-entreprise.com 19

ry 4

HMPP Overview CAPS

* C and Fortran GPU programming directives
o Define and execute GPU-accelerated versions of code
o Optimize CPU-GPU data movement
o Complementary to OpenMP and MPI

* A source-to-source hybrid compiler
o Generates CUDA and OpenCL kernels
o Works with standard compilers and target tools
o Tuning directives to optimize GPU kernels

* Aruntime library
o Allocates and manages computing resources
o Dispatches computations on CPU and GPU cores
o Scales to multi-GPUs systems

January 2012 www.caps-entreprise.com 20

HMPP Compilation Paths

« HMPP drives the whole
compilation

o Host application compilation

 HMPP runtime is linked to the
host part of the application

o Codelet production
» Target code is produced
* A dynamic library is built

$ hmpp gcc myProgram.c

January 2012

www.caps-entreprise.com

7
CAPS

pr——

__ HMPP
", Container

 HMPP
Target Generalor

em Compiler

Binary host
application

21

ry 4

HMPP Directives Drive Hybrid Applications cAars

HW-specific | HMPP
code generation application

HMPP Runtime

January 2012 www.caps-entreprise.com 22

ry 4

What’s New in HMPP 3.07? CAPS

 Dynamic data management mechanism

o Mirrors identified by their host address

o Simplifies management of data with less directives
* Multi-device programming

o Exploit multiple devices in one compute node

o Distribute collections of data over multiple devices
* New run-time API

o Three bindings for C, C++ and Fortran 90-2003

o Low level OpenCL style programming with OpenCL/CUDA kernel
generation

* Open library integration system
o CPU and GPU libraries coexist in same binary (proxy mechanism)
o Data sharing between HMPP user codelets and libraries
o User can write their own HMPP proxies
O

Proxies provided for cuBLAS, CULA, cuFFT, keeping CPU API.

January 2012 www.caps-entreprise.com 23

Step One: Find Hot Spots

void derive(int nx, double _Complex ..) {
int i;
for (i=1; i<nx/2; ++i) {
wrkqg[i] = (0+I-1) * wrkq[i] * cf;
}
wrkq [0] = 0.0+I*0;
wrkq[nx/2] = 0.0+I*0;

Project

Application Tuning

}

pr2c = fftw_plan_dft_r2c_1ld(n, idata_real, ..

pc2r = fftw _plan_dft_c2r_1d(n, odata_intermediate, ..
30% fftw_execute(pr2c);

derive(n, odata_intermediate, cf);
fftw_execute(pc2r);

fftw_destroy plan(pr2c);

fftw_destroy plan(pc2r);

* Find hotspots, estimate potentialge.gPAmdahls’ Law)
« Check CPU performance, optimize . CPdrexecution

« Setup a validation process

« Estimate paralielisa;"complexity, <

January 2012 www.caps-entreprise.com 24

ry

Analysis of the CPU Code CAPS

Find hotspots, estimate potential (e.g. Amdahls’ Law)
o Using profiling tools

gprof, oprofile, ...

Code instrumentation (gettimeofday(), ...)

O O O

Check CPU performance
o Is the machine enough loaded ?
o Optimize CPU execution, CPU code

Setup a validation process
o To validate that after each porting steps results are correct

Estimate hot spots parallelism; complexity ==

January 2012 www.caps-entreprise.com 25

ry

What is a GPU-friendly Profile CAPS

o Few sections of code to focus on for a good speedup factor
o The less functions to port, the less cost it involves

o A profile for which the sections of code to focus on are data-parallel

o You may discover computational intensive kernels just by varying the
amount of their input data

o Sometimes the parallelism is placed at compute node level, with
independent data distributed over the nodes

« Then gather groups of data onto a same node and parallelize at hardware
level

January 2012 www.caps-entreprise.com 26

Initial Porting, Highlighting Parallelism 4

Analysis

« EXxhibit parallelism
 Push the code onto the GPU

 \alidate execution

Application Tuning

#pragma hmpp <g> group, target=CUDA[/OpenCL]
#pragma hmpp <g> derive codelet, args[*].transfer=atcall
void derive(int nx, double _Complex ..) {

int i;

for (i=1; i<nx/2; ++i) { : :
wrkq[i] = (0+I-1) * wrkq[i] * cf; Build a GPU version

} of the function

wrkq[0] = 0.0+I*0;

wrkq[nx/2] = 0.0+I*0;

}

January 2012 www.caps-entreprise.com 27

ry 4

Accelerate Codelet Function CAPS

 Declare and call a GPU-accelerated version of a function

#pragma hmpp sgemm codelet, target=CUDA:OPENCL, args[*].transfer=atcall
extern void sgemm(int m, int n, int k, £ t alpha,
const float vinl[n][n], con float vin2([n] [n],
float beta, float vout[n][n])’

int main(int argc, char **argv) {

/[* . . . */

Declare CUDA and

for(3 =0 ; j <1000 ; j++) { OPENCL codelets
#pragma hmpp sgemm callsite

sgemm(size, size, size, a
}
/* . . . */

vinl, vin2, beta, wvout);

Synchronous codelet call

January 2012 www.caps-entreprise.com 28

Initial Porting, Highlighting Parallelism

Project
Analysis

* Select implementation for library calls and
h OtS pOtS Application Tuning

 |nsert calls to execute on GPU

Call GPU version of derive

#pragma hmppalt cufft call, name="fftw_plan_dft_r2c_1d"
pr2c = fftw _plan_dft _r2c_ld(n, idata_real, ..);
#pragma hmppalt cufft call, name="fftw _plan_dft c2r 1d"

pc2r = fftw_plan_dft_c2r_l1ld(n, odata_int . :
#pragma hmppalt cufft call, name="fftw_exec Call GPU version of ||brary call
fftw_execute(pr2c);

#pragma hmpp <a

January 2012 www.caps-entreprise.com 29

ry

First Porting Steps using HMPP 3.0 CAPS

« First thing you want is to validate GPU results

o If your algorithm produces wrong results
 Maybe you have a numerical stability problem
* Or your algorithm is not enough parallel

* Insert the codelet directive before the definition of the function to
offload
o Use the ATCALL transfer policy

o HMPP will automatically transfer

» Scalars as INPUT
« Arrays, pointers, ... as INPUT and OUTPUT

* Insert the HMPPALT directive before calls to library functions

« \Validate the result
o To check that the GPU is a valid target for application

o It may take time to execute the application
* Due to all data transfers
* And not optimized kernels

January 2012 www.caps-entreprise.com 30

Transfer Optimizations

Project
Analysis

* Reduce CPU-GPU communication overheac
* Exploit reuse of data on the GPU

int main(int argc, char **argv) {
#pragma hmpp sgemm acquire
#pragma hmpp sgemm allocate, data[vinl;vin2;vout], size={si

[#pragma hmpp sgemm advancedload, data[vinl;vin2;vout]]

(for(3 =0 ; § < 1000 ; j++) {
#pragma hmpp sgemm
sgemm(size, size, size, alpha, vinl, vin2, beta, vout);

L} Iterate 1000 times
| without data transfer

ﬁpragma hmpp sgemm delegatedstore, data[vout]

#pragma hmpp sgemm free
#pragma hmpp sgemm release

Download results

January 2012 www.caps-entreprise.com 31

ry

Storage Policy CAPS

* Mirrored data or simply mirror

o An area of memory on the host is mirrored
on the accelerator

o The HMPP runtime dynamically makes the
link between the host address and the
device address

* Simple data management
o Few directives to manage mirrored data

« Easy to dynamically allocate and free a
mirror

o Use the ALLOCATE and FREE directives

www.caps-entreprise.com 32

Compute Asynchronously

* Perform CPU/GPU computations asynchronously

int main(int

argc, char **argv) ({

ry

CAPS

/* . . . */
#pragma hmpp sgemm allocate, data[vinl;vin2;vout], size={size,size}

/* . . */

Execute

for(j =0 ; j < 1000 ; j++) { asynchronously
#pragma hmpp sgemm callsite, asynchronous

sgemm(size, size, size, alpha, vinl, vin2, beta, vout);

/* . . */

}
/* . . */

#pragma hmpp
#pragma hmpp
#pragma hmpp
}

sgemm synchronize
sgemm delegatedstore, data[vout]
sgemm release

January 2012

Www.caps-entreprise.com

33

ry 4

HMPP Directives Overview CAPS
« CODELET . Specialize a subroutine

« CALLSITE . Specialize a call statement

« SYNCHRONIZE . Wait for completion of the callsite
« ACQUIRE : Set a device for the execution

- ALLOCATE . Allocate memory

- FREE . Free allocated memory

« RELEASE . Release HWA

- ADVANCEDLOAD . Explicit data transfer CPU -> HWA
« DELEGATEDSTORE . Explicit data transfer HWA -> CPU
« GROUP . Groups codelets

» Directives in green are declarative
» Directives in Red are operational

January 2012 www.caps-entreprise.com 34

What About Directives for Code Generation? cars

HW-specific | HMPP
code generation application

HMPP Runtime

January 2012 www.caps-entreprise.com 35

Improving Code Generation

Project
Analysis

 Directive-based GPU kernel code
transformations g

#pragma hmppcg unroll(4), jam(2), noremainder

for(j =0 ; j <p; j++) {
#pragma hmppcg unroll(4), split, noremainder
for(i =0 ; i <m; i++) {

double prod = 0.0; Use pragma to preserve
double vla,v2a ; CPU code
k=0 ;

vla = vinl[k][i] ;
v2a = vin2[j][k] ;
for(k=1 ; k <n ; kt++) {
prod += vla * v2a;
vlia = vinl[k][i] ;
v2a = vin2[j][k] ;

}
prod += vla * v2a;
vout[j][i] = alpha * prod + beta * vout[j][i];

Huary Ui« WWW.CLApo~=CliUuCpPrioT. GO 36

Coo!elt_at Tyning Directives for High Level caps”
Optimization

Slmlggl=]=

High level application tweaking

* By adding properties
o 1D or 2D gridification
* Applying code transformations
o Loop tiling, unroll, jam, permute, fuse, ...
« Using target specific directives
o Micro architecture management (warp size...)
o Memory management (CUDA shared memory, constant...)

January 2012 www.caps-entreprise.com 37

Scaling to Many-many cores

Analysis

« Spread computations on available devices
 Manage data over several memory spaces /
4 Llication

Tuning

float data[n] [x] [vy]:
#pragma hmpp parallel, device="“k%3"
for (k=0;k<n;k++) {
#pragma hmpp <MyGroup> f1 callsite
myparallelfunc(&data[k] ,n) ;

v W W

CPUO CPU 1 GPU 2

Main memory [Device Device
mem mem

d0 di1 d2 d1 d2

January 2012 www.caps-entreprise.com 38

ry

Multi-GPUs sample CAPS

#pragma hmpp <mygroup> group, target=CUDA

#pragma hmpp <mygroup> doit codelet, args[*].mirror, &
#pragma hmpp & args[*].transfer=manual

void doit(float A[1234]) ({ Acquire two devices

}

float X[100][1234] ; // I have 100 arrays
#pragma hmpp <mygroup> acquire, device=0
#pragma hmpp <mygroup> acquire, device=1l

Allocate data on a device
then the other

for (k=0;k<100;k++) {
float *ptr = X[i] ; Z
#pragma hmpp <mygroup> allocate, data[ptr], size={1234}, &
#pragma hmpp & device="k%2”

} Execute the codelets on the

#pragma hmpp parallel | device that owns each mirror
for (k=0;k<100;k++) { "
#pragma hmpp <mygroup> advancedload, data[“X[k]”]

#pragma hmpp <mygroup> doit callsite

doit(X[k])

#pragma hmpp <mygroup> delegatedstore, data[“X[k]”]
}

January 2012 www.caps-entreprise.com 39

Extern Functions CAPS

o Functions called in codelets can be defined in other files
o Avoid code duplication

sum.h extern.c
Import external

#ifndef SUM H \
- declaration

#define SUM_H #include "sum.h'
PLEETE S GUERRE b TEE 7 int main(int argc, char **argv) {
. int i, N = 64;
#endif /* SUM_H */ float A[N], B[N];
#pragma hmpp cdlt region, args[B].io=inout, target=CUDA
sum.c {

#pragma hmppcg extern, sum

#include "sum.h" for(int i =0 ; i < N ; i++) sum 1S an_eXternal
B[i] = sum(A[i], B[i]); function
#pragma hmpp function,target=CUDA }
float sum(float x, float y) { .
return x+y; }
}

_Declare ‘'sum’asa
function called in a
codelet

January 2012 www.caps-entreprise.com 40

ry 4

HMPP Runtime API CAPS

 Available bindings in C/C++ and Fortran

o Low level OpenCL style programming with OpenCL/CUDA kernel
generation

o C++ API throws exceptions

* API call allows you to
Acquire a device
Allocate data

Transfer data

Launch codelets

Free data

Asynchronous operations

O O O O O O O

» Really useful for C++ progranimers

January 2012 www.caps-entreprise.com 41

HMPP3 Summary caps”

* Abstract the programming of manycore architectures
o Arich set of programming and tuning directives
o Distribute computations to exploit CPU and GPU cores in a node
o Mix CPU and GPU libraries in same binary
o Incrementally develop and port applications

* An open source-to-source compiler

o Work with standard compilers and hardware vendor tools
o Ease maintenance by avoiding different languages
o Preserve legacy code

January 2012 www.caps-entreprise.com 42

ry

CAPS

HMPP Wizard

[\

W

A oo. A\

HMPP Wizard

Welcome to HMPP Wizard » Advice Results

© Advice54

Close this tab

88 double t_createl = ctkRealTimer();
89 pr2c = fftw_plan_dft_r2c_1ld(n, idata_real,
FFTW_ESTIMATE) ;
20 pc2r = fftw_plan_dft_c2r_1d(n, odata_intg
FFTW_ESTIMATE) ;

91 double t_create2 = ctkRealTimer (
92
93

94 double t_exec_pr2cl kRealTimer () ;

fediate, odata_real CPU

odata_intermed

ry 4

CAPS

Detectef potential issue
HMPP-ALY-FFT/VERSION1
/exec_DJZ_Z2D.c @line 95 - Advice54: A
call to the standard FFTW function

95 fftw_execute (pr2c);

"fftw_expcute” has been detected inside

926 double t_exec pr2c2 = ctkRealTimer();

97

98

99 double t_filterl = ctkRealTimer();

100 filter(n, (double _Complex *) odata_intermediate,
101 double t filter2 = ctkRealTimer();

102 -

103

104 double t_exec_pc2rl = ctkRealTimer();

November 2011

cf);

22
23
24

a functign.

Advice

Consider using an optimized library for
you application with the HMPP ALT
[proxy.

for (i = 1; i < M-1; ++i) // 2
{

for (3 =1; j < N -1; ++3) // 1
{
int a = rename (3, A);
A[i-1]1[j-1] = a ;
}

fpragma hmpp initLoop codelet, target=CUDA
void initLoop(int M, int N, real A[N][M])
{

into iy Js

25

for (i = 1; i < M-1; ++i) // 2

26
27
28
29
30
31
32
33
34

{
for (3 = 1; j < N -1; ++3) // 1
{
A[i-1][j-1] = 3.14 ;
}

}

fpragma hmpp loopUnrolled codelet, target=CUDA

www.caps-entreprise.com

GPU library usage detection

c\JULd|tools

Detected potential issue

sample/data/src/mycode.c @line 25 -

Advice2: The computation density is low.

Loop Statistics

o Number of array access: 1

o Number of operations: 2 including
0 flops

o Number of intrinsic operations: 0
including O flops

For more details, click here /
Advice

o The computation may fetch few

44

ry 4

HMPP Wizard CAPS

 HMPP wizard synthetizes metrics based on static and
dynamic information
o The result is shown as a HTML page

» Getting dynamic information from profilers

o Gprof
o Oprofile

« (etting static information from code analysis

o Library calls
o Code transformation inside codelets

January 2012 www.caps-entreprise.com 45

ry

Performance Measurements CAPS

« Parallelism is about performance!

Weicome to HMPP Wizard » Performance Analyzer

—
e Track Amdahl's Law Issues === -
o Serial execution is a killer
o Check scalability S . >
o Use performance tools N Ee
HMPP PerfAnalyzer View T

* Add performance measurement in the code

o Detect bottleneck asap
o Make it part of the validation process

January 2012 www.caps-entreprise.com 46

ry 4

Accelerator Programming Model CAPS
Directive-based programming GPGPU Manycore programming

Hybrid Manycore Programming

Parallel computing HPC open standard
Multicore programming
Hardware accelerators programming

7 kS

High Performance Computing

Parallel programming interface
Massively parallel

http://www.caps-entreprise.com
http://twitter.com/CAPSentreprise

Weather Forecasting

A global cloud resolving model

 Resource spent
o 1 man-month (part of the code

already ported)
180 \ m trisol*®
« GPU C1060 improvement AN e
o 11x over serial code on " \ —HTowlTime
Nehalem . \\
« Main porting operation \
o reduction of CPU-GPU 60 -
transfers a0 |
* Main difficulty
o GPU memory size is the o

Harpertown CPU Nehalem CPU Tesla GPU

limiting factor

www.caps-entreprise.com 48

Computer vision & Medical imaging . oAars

| | e @
MultiView Stereo teof]

* Resource spent
o 1 man-month
« Size
o ~1kLoC of C99 (DP)

CPU Improvement
o x 4,86
GPU C2050 improvement

o X 120 over serial code on
Nehalem

Main porting operation
o Rethinking algorithm

January 2012 www.caps-entreprise.com 49

Biosciences, phylogenetics

Phylip, DNA distance

. In association with the HMPP Center Of
Excellence for APAC

« Computes a matric of distances between DNA
distances

. Resource spent

o Afirst CUDA version developed by Shanghai
Jiao Tong University, HPC Lab

o 1 man-month
. Size

o 8700 lines of C code, one main kernel (99%
of the execution time)

« GPU C2070 improvement
o X 44 over serial code on Nehalem

. Main porting operation

o Kernel parallelism & data transfer coalescing
leverage

o Conversion from double precision to simple
precision computation

January 2012

Phylogenetic Tree of Life

Archaea

Bacteria Eucaryota

Slme :
Entamoebae mokds Animals :

Plants
Ciliates

Halophiks

Cyancbacteria

HAanctomyces Flagellates

PAyrodicticum
Bacteroides
Cytophaga

Thermaotoga

Aquifex

Trichomonrads
Microsporidia

Diplomonads

www.caps-entreprise.com 50

Oil & Gas

GPU-accelerated seismic
depth imaging

1 GPU accelerated machine = 4.4
CPU machines
o GPU: 16 dual socket quadcore Intel

Hapertown nodes
connected to 32 GPUs

o CPU: 64 dual socket quadcore Intel
Hapertown nodes

January 2012 www.caps-entreprise.com

GPU
accelerated
Rack

4.4 CPU Racks

performance

A

51

Performances (max)

i Tins
(" Scalar 18457.52 3030.9 4668.67 7531.1 1054.4 15.68 1933.82
_) OMP=8 5040.1 379.09 1479.91 1302.64 1248.35 6.76 348.32
HMPP 820.34 56.88 388.23 156.61 81.58 2.04 29.7
- CUDA 1267.66 75.01 458.95 135.61 66.99 66.51 5313
- ALL NOISE DIFFUS KERSBS SHIFT BOUND FLUX
OMP / SEQ 3.66 8.00 3.15 5.78 0.84 2.32 5.55
. HMPP / SEQ 22.50 53.29 12.03 48.09 12.92 7.69 65.11
CUDA/SEQ 14.56 40.41 10.17 55.53 15.74 0.24 3.64
\\
Speedu
peedup Geom: 128 x 128 x 256
Diffus = FFT FW + diffrac + FFTBW ';‘°M'§I’
KERSBS = KER + SBS
GCdV CEA, DAM, DIF, F-91297 Arpajon 2
Guillaume Colin de Verdiere, Onera XtremCFD Workshop, 7t of October, 2011
52

January 2012 www.caps-entreprise.com

