
Implementing Molecular Dynamics on Hybrid High Performance Computers - Short
Range Forces

W. Michael Browna,∗, Peng Wangb, Steven J. Plimptonc, Arnold N. Tharringtond

aNational Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
bNVIDIA, Santa Clara, CA, USA

cSandia National Laboratory, Albuquerque, New Mexico, USA
dNational Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Abstract

The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to
their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-
performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to
these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel
hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed
memory and accelerator cores with shared memory, 2) minimizing the amount of code that must be ported for efficient acceleration,
3) utilizing the available processing power from both multi-core CPUs and accelerators, and 4) choosing a programming model for
acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package
LAMMPS, however, the methods can be applied in many molecular dynamics codes. Specifically, we describe algorithms for
efficient short range force calculation on hybrid high-performance machines. We describe an approach for dynamic load balancing
of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA
and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPUs and
180 CPU cores.
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1. Introduction

Graphics processing units (GPUs) have become popular as
accelerators for scientific computing applications due to their
low cost, impressive floating-point capabilities, and high mem-
ory bandwidth. Numerous molecular dynamics codes have
been described that utilize GPUs to obtain impressive speedups
over a single CPU core [29, 33, 18, 1, 19, 4, 6, 13, 26, 10]. The
incorporation of error-correcting codes and double-precision
floating-point into GPU hardware now allows the accelerators
to be used by production codes. These advances have made
accelerators an important consideration in high-performance
computing (HPC). Lower cost, electrical power, space, cooling
demands, and reduced operating system images are all poten-
tial benefits from the use of accelerators in HPC [16]. Several
hybrid platforms that include accelerators in addition to con-
ventional CPUs have already been built and more are planned.

The trend toward hybrid HPC platforms that use accelerators
in addition to multi-core CPUs has created a need for new MD
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algorithms that effectively utilize all of the floating-point capa-
bilities of the hardware. This has created several complications
for developers of parallel codes. First, in addition to a parallel
decomposition that divides computations between nodes with
distributed memory, the workload must be further divided for
effective use of shared memory accelerators with many hun-
dreds of cores. This can be accomplished, for example, by fur-
ther dividing the simulation domain into smaller partitions for
use by accelerator processors. Other options include decom-
posing the work by atom or using a force-decomposition that
evenly divides force computation among accelerator cores.

In addition to partitioning the work among accelerator cores,
it will likely be beneficial in many cases to also utilize the pro-
cessing power of CPU cores. This is due to the fact that many
GPU algorithms are currently unable to achieve peak floating-
point rates due to poor arithmetic intensity. GPU speedups are
often reported versus a single CPU core or compared to the
number of CPU processors required to achieve the same wall
time for a parallel job. For HPC, it is important to consider
the speedup versus multi-core CPUs and take into account non-
ideal strong scaling for parallel runs. Comparisons with a sim-
ilar workload per node on clusters with multi-core nodes are
more competitive. In addition to algorithms with poor arith-
metic intensity, some algorithms might benefit from assigning
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different tasks to CPU and accelerator cores, either because one
task might not be well-suited for processing on an accelerator or
simply because the time to solution is faster. Additionally, uti-
lizing CPU cores for some computations can reduce the amount
of code that must be ported to accelerators.

Another complication that arises in software development for
hybrid machines is the fact that the instruction sets differ for the
CPU and accelerators. While software developers have had the
benefit of “free” performance gains from continuously improv-
ing x86 performance, software for hybrid machines currently
must be ported to a compiler suitable for the new architectures
[8]. It is undesirable to port an entire legacy code for use on
accelerators [22], and therefore minimizing the routines that
must be ported for efficient acceleration is an important con-
cern. This is further complicated by the fact that developers
must choose a programming model from a choice of different
compilers and/or libraries. Development tools are less mature
for accelerators [6] and therefore might be more susceptible to
performance sensitivities and bugs. Currently, the CUDA Run-
time API is commonly used for GPU acceleration in scientific
computing codes. For developers concerned with portability,
OpenCL offers a library that targets CPUs in addition to GPUs
and that has been adopted as an industry standard [28]. Our cur-
rent concerns in adopting the OpenCL API include the immatu-
rity of OpenCL drivers/compilers and the potential for lagging
efficiency on NVIDIA hardware.

In this work, we present our solution to these issues in an
implementation of MD for hybrid high-performance computers
in the LAMMPS molecular dynamics package [23], however,
the methods are applicable to many parallel MD implementa-
tions. We describe our algorithms for accelerating neighbor
list builds and short-range force calculation. Our initial fo-
cus on short-range force calculation is because 1) short-range
models are used extensively in MD simulations where elec-
tronic screening limits the range of interatomic forces and 2)
short-range force calculation typically dominates the computa-
tional workload even in simulations that calculate long-range
electrostatics. We evaluate two interatomic potentials for ac-
celeration - the Lennard-Jones (LJ) potential for van der Waals
interactions and the Gay-Berne potential for ellipsoidal meso-
gens. These were chosen in order to present results at extremes
for low arithmetic intensity (LJ) and high arithmetic intensity
(Gay-Berne) in LAMMPS. We describe an approach for uti-
lizing multiple CPU cores per accelerator with dynamic load
balancing of short-range force calculation between CPUs and
accelerators. We describe the Geryon library that allows our
code to compile with both CUDA and OpenCL for use on a va-
riety of accelerators. Finally, we present results on a parallel
test cluster containing 30 Fermi GPUs and 180 CPU cores.

2. Methods

2.1. LAMMPS

In this work, we are considering enhancements to the
LAMMPS molecular dynamics package [23]. LAMMPS is par-
allelized via MPI, using spatial-decomposition techniques that

partition the simulation domain into smaller subdomains, one
per processor. It is a general purpose MD code capable of sim-
ulating biomolecules, polymers, materials, and mesoscale sys-
tems. It is also designed in a modular fashion with the goal
of allowing additional functionality to be easily added. This is
achieved via a variety of different style choices that are specified
by the user in an input script and control the choice of force-
field, constraints, time integration options, diagnostic compu-
tations, etc. At a high level, each style is implemented in the
code as a C++ virtual base class with an appropriate interface
to the rest of the code. For example, the choice of pair style
(e.g. lj/cut for Lennard-Jones with a cutoff) selects a pairwise
interaction model that is used for force, energy, and virial cal-
culations. Individual pair styles are child classes that inherit the
base class interface. Thus, adding a new pair style to the code
(e.g. lj/cut/hybrid) is as conceptually simple as writing a new
class with the appropriate handful of required methods or func-
tions, some of which may be inherited from a related pair style
(e.g. lj/cut). As described below, this design has allowed us to
incorporate support for acceleration hardware into LAMMPS
without significant modifications to the rest of the code. Ide-
ally, only the computational kernel(s) of a pair style or other
class need to be re-written to create the new derived class.

2.2. Accelerator Model

For this work, we consider accelerators that fit a model suited
for OpenCL and CUDA. Because OpenCL and CUDA use dif-
ferent terminology, we have listed equivalent (in the context of
this paper) terms in Table 1. Here, we will use OpenCL ter-
minology. The host consists of CPU cores and associated ad-
dressable memory. The device is an accelerator consisting of 1
or more multiprocessors each with multiple cores (note that for
OpenCL this device might be the CPU). The device has global
memory that may or may not be addressable by the CPU, but
is shared among all multiprocessors. Additionally, the device
has local memory for each multiprocessor that is shared by the
cores on the multiprocessor. Each core on the device executes
instructions from a work-item (this concept is similar to a thread
running on a CPU core). We assume that the multiprocessor
might require SIMD instructions and branches that could result
in divergence of the execution path for different work-items are
a concern. In this paper, the problem is referred to as work-item
divergence. We also assume that global memory latencies can
be orders of magnitude higher when compared to local memory
access.

We assume that access latencies for coalesced memory will
be much smaller. Coalesced memory access refers to sequen-
tial memory access for data that is correctly aligned in memory.
This will happen, for example, when data needed by individual
accelerator cores on a multiprocessor can be “coalesced” into
a larger sequential memory access given an appropriate byte
alignment for the data. Consider a case where each accelerator
core needs to access one element in the first row of a matrix
with arbitrary size. If the matrix is row-major in memory, the
accelerator can potentially use coalesced memory access; if the
matrix is column-major, it cannot. The penalties for incorrect
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Table 1: Equivalent OpenCL and CUDA terminology.

OpenCL CUDA
Local memory Shared memory

Work-item Thread
Work-group Thread Block

Command Queue Stream

alignment or access of non-contiguous memory needed by ac-
celerator cores will vary depending on the hardware.

A kernel is a routine compiled for execution on the device.
The work for a kernel is decomposed into a specified number of
work-groups each with a specified number of work-items. Each
work-group executes on only one multiprocessor. The number
of work-items in a work-group can exceed the number of cores
on the multiprocessor, allowing more work-items to share local
memory and the potential to hide memory access latencies. The
number of registers available per work-item is limited. A device
is associated with one or more command queues. A command
queue stores a set of kernel calls and/or host-device memory
transfers that can be executed asynchronously with host code.

2.3. Parallel Decomposition

The parallel decomposition for hybrid machines consists of a
partitioning of work between distributed memory nodes along
with a partitioning of work on each node between accelerator
cores and possibly CPU cores. For LAMMPS, we have chosen
to use the existing spatial decomposition [23] to partition work
between MPI processes with each process responsible for fur-
ther dividing the work for an accelerator. This is similar to the
approach that is used in NAMD acceleration [29]. An alterna-
tive task-based approach has also been proposed [13]; however,
this has been designed only to scale to multiple GPUs on a sin-
gle desktop.

The partitioning of work for the accelerator can be achieved
in several ways. For MD, we can divide the simulation into
routines for neighbor calculation, force calculation, and time
integration - all of which can potentially be ported for accelera-
tion. Previous work has included running only the force calcu-
lation on the GPU [33], running the neighbor and force calcula-
tions on the GPU [29, 18, 26], and running the entire simulation
on the GPU [1, 19, 4, 6, 13]. A breakdown of the time spent
in each routine for a CPU simulation in LAMMPS for the LJ
and Gay-Berne test cases is shown in Figure 1 up to 180 cores
(12 cores per node). Because the time integration represents
a small fraction of the work load, we have focused our initial
work on porting neighbor and force routines for acceleration.
The advantage of this approach is that the many auxiliary com-
putations in LAMMPS, used for time integration or calculation
of thermodynamic data, do not need to be ported or maintained
for acceleration to be fully compatible with LAMMPS features.
The disadvantage is that on current accelerators, all data must
be transferred from the host to the device memory and vice-
versa on each timestep, not just ghost particles for interprocess
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Figure 1: Percentage of loop time spent on pairwise forces, neighbor calcula-
tion, and MPI communications for LAMMPS on a conventional cluster (dual
hex-core Opteron per node). Top: Breakdown for a strong scaling benchmark
using the Lennard-Jones potential with a cutoff of 2.5 and 864000 particles.
Bottom: Breakdown for a strong scaling benchmark using the Gay-Berne po-
tential with a cutoff of 7 and 125000 particles.

communication. Additionally, the integration time will become
a larger fraction of the computational effort in the accelerated
code.

Due to the modularity in LAMMPS, acceleration is achieved
with no significant modification to the existing code. A new
pair style using acceleration is derived from the non-accelerated
parent class. The accelerated pair style does not request a neigh-
bor list from the CPU, calculating the list on the accelerator in-
stead. A user can switch from CPU calculation of the neighbors
and forces to accelerator calculation by switching the pair style
in the input script. Although it is not a focus of this work, the
same procedure can be used to port additional functionality to
the accelerator. By adding a new option to the pair style and
deriving computes and fixes that utilize accelerators, the host-
device communication can be reduced with data transfer for all
particles only when necessary for I/O.
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Options for parallel decomposition on the accelerator for
neighbor, force, and time integration routines include spatial
decomposition, atom decomposition, force decomposition or
some combination of these approaches for different routines.
The algorithms we chose, along with the strategy for partition-
ing work between the CPU and accelerator are discussed below.

2.4. Neighbor List Calculation
For short-range force calculations in MD, the force summa-

tions are restricted to atoms within some small region surround-
ing each particle. This is typically implemented using a cutoff

distance rc, outside of which particles are not used for force cal-
culation. The work to compute forces now scales linearly with
the number of particles. This approach requires knowing which
particles are within the cutoff distance rc at every timestep. The
key is to minimize the number of neighboring atoms that must
be checked for possible interactions. Traditionally, there are
two basic techniques used to accomplish this. The first idea,
that of neighbor lists, was originally proposed by Verlet [31].
For each atom, a list is maintained of nearby atoms. Typically,
when the list is formed, all neighboring atoms within an ex-
tended cutoff distance rs = rc + γ are stored. The list can be
used for multiple timesteps until an atom has have moved from
a distance r > rs to r < rc. The optimal value for γ will depend
on simulation parameters, but is typically small relative to rc.

The second technique commonly used for speeding up MD
calculations is known as the link-cell method [15]. At every
timestep, all the atoms are binned into 3-D cells of side length
d where d = rc or slightly larger. This reduces the task of find-
ing neighbors of a given atom to checking in 27 bins. Since
binning the atoms requires only O(N) work, the extra overhead
associated with it is acceptable for the savings of only having
to check a local region for neighbors. The fastest approach will
typically be a combination of neighbor lists and link-cell bin-
ning and this is the approach used in LAMMPS.

In the combined method, atoms are binned only once every
few timesteps for the purpose of forming neighbor lists. In this
case atoms are binned into cells of size d, and a stencil of bins
that fully overlap a sphere of radius rs is defined. For each parti-
cle in a central bin, the stencil of surrounding bins is searched to
identify the particle’s neighbor list. At intermediate timesteps
the neighbor lists alone are used in the usual way to find neigh-
bors within a distance rc of each atom. The optimal choice of
bin size is typically d = 0.5rs. The combined method offers
a significant savings over a conventional link-cell method since
there are far fewer particles to check in a sphere of volume 4πrs

3

than in a cube of volume 27rc
3. For pairwise forces, additional

savings can be gained due to Newton’s third law by computing
a force only once for each pair of particles. In the combined
method this is done by searching only half the stencil of bins
surrounding each atom to form its neighbor list. This has the
effect of storing atom j in atom i’s list, but not atom i in atom
j’s list thus halving the number of force computations to per-
form. Here, we refer to this as a half neighbor list as opposed
to a full neighbor list, where the i, j pair is stored twice.

In GPU implementations, all three approaches have been
used for calculating neighbors. Neighbor lists calculated with

a brute force distance check of all pairs of particles have been
used [6, 5, 26]. Although this approach has a O(N2) time com-
plexity, it can be faster than other approaches for a smaller num-
ber of particles because coalesced memory access can be used
to load particle positions. Link cell approaches have also been
implemented [29, 19, 24, 13]. This approach is convenient for
accelerated force calculations that use a spatial decomposition;
particles in each cell can be stored in local memory for much
faster access in cutoff and force evaluation. The combined ap-
proach has also been used [1, 4] and is our choice for most of
the potential energy models used in LAMMPS. This is due to
the favorable time complexity and the atom decomposition used
for force calculations in accelerated potentials. The drawback is
that the neighbor kernel can become memory bound due to the
non-coalesced global memory fetches required to obtain each
particle’s position. In CPU implementations, sorting atoms by
spatial position can be used to decrease memory latencies [20]
and this approach is currently used in LAMMPS with a sort
occurring at some specified frequency. This approach has also
been shown to improve performance in GPU-accelerated neigh-
bor calculations [1] and it is the approach used in the HOOMD
simulation package. In our implementation we do not imple-
ment spatial sorting for the accelerator, but rely on the CPU
sort to reduce cache miss counts.

In our implementation, two arrays are used for storing the
particles in each cell, the cell list. Let nlocal be the number of
particles in the subdomain for a process, nghost be the number
of ghost particles for the process, and nall = nlocal + nghost.
One array, CellID, of at least size nall lists the cell id of all local
and ghost particles in a packed manner. A second array, Cell-
List, of size ncell+1 lists the starting position of each cell in the
first array. Here ncell is the total number of cells. One advan-
tage of this storage scheme is that it can handle cases where a
few cells have significantly more particles than most other cells
with much more efficient memory utilization. This data struc-
ture may lead to misaligned access of the cell list which may
lead to a performance drop. However, this is not a problem in
practice for two reasons. First, the neighbor-list build kernel is
compute-bound which means the memory load time is only a
small fraction of the whole kernel time. Thus, even if the load
time may increase due to the misaligned access, it will not in-
crease the kernel time significantly. Second, the new L1 cache
on NVIDIA’s Fermi architecture significantly reduces the per-
formance drop due to misaligned access.

The algorithm for building the cell list is divided into 4 steps.

1. Initialize CellList[i]=i.
2. Calculate CellID.
3. Sort using CellID and CellList as the key-value pair.
4. Calculate CellCounts from CellList.

Steps 1 and 2 are embarrassingly parallel and can be combined
into a single kernel. In this kernel, work-item i is assigned to
particle i and will calculate the ID of the cell particle i belongs
to and store the result to CellID[i].

For step 3, we use the radix sort routine in the NVIDIA
CUDPP library [25], with CellID as the key and CellList as
the value. After the sort, particles belonging to each cell will
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be ordered correctly. In step 4, the number of particles in each
cell are counted. We launch at least nall work-items. Work-
items 0 and nall − 1 first initialize boundary cases. Then each
remaining work-item with ID less than nall checks the cell ID
of the work-item to its left; if it is different from the current
work-item, the current work-item corresponds to a cell bound-
ary. In this case, the work-item will store the boundary position
to the CellCounts array. The CellList array is allocated at the
beginning of the simulation with storage for nall × 1.10 par-
ticles. If the number of local and ghost particles grows past
this value, it is reallocated, again allowing room for up to 10%
more particles. The CellCounts array is allocated at each cell
list build using the the current size of the simulation subdo-
main. In our implementation, the CUDA compilation resulted
in a kernel that uses 12 registers and 68 bytes of local memory
for the cell ID calculation and 6 registers and 32 bytes of local
memory for the CellCounts kernel.

After the cell list is built, the neighbor list kernel is executed
for building the neighbor list. The neighbor list requires an
array with storage for at least nlocal counts of the number of
neighbors for each local particle. Additionally, a matrix with
at least enough storage for nmax × nlocal neighbors is required
where nmax is the current maximum number of neighbors for a
particle. Initially, space is allocated for nlocal × 1.1 counts in
the array and 300 × nlocal × 1.1 neighbors in the matrix. If the
number of neighbors is found to be greater than the available
storage space, reallocation is performed, again reserving room
for 10% extra neighbors or local particles. Using a matrix to
store neighbors is inefficient when the density of particles is not
uniform throughout the simulation box. This approach is bene-
ficial for GPU implementations, however, because it allows for
coalesced memory access of neighboring particles during the
force calculation [1]. For cases where a relatively small number
of particles have a much greater neighbor count (e.g. colloidal
particles in explicit solvent), we have shown that a tail list im-
plementation can provide for efficient memory access [32]. In
the tail list implementation, the last row of the neighbor matrix
can be used to point to additional neighbors stored in a separate
packed array.

The neighbor list kernel assigns one work-group to one cell.
One work-item in the group calculates the neighbor list for one
particle in the cell. If the particle number is larger than the block
size, the block will iterate over the particles until all particles
are processed. When calculating the neighbors for a particle,
the work-item iterates through all the particles in its cell along
with the 26 neighboring cells and calculates their distances to
the particle. If the work-item finds a particle that is within rs,
it will increase the neighbor count and add the neighbor to the
neighbor list. Note that we are evaluating 26 neighbor cells in
the accelerated case to build a full neighbor list. This is be-
cause the cost of atomic operations to avoid memory collisions
in the force update is currently generally greater than doubling
the amount of force calculations that must be performed [1].
In our implementation, the CUDA compilation of the neighbor
list kernel used 42 registers and 1360 bytes of local memory for
single precision.

The kernels for building the cell and neighbor lists can be

compiled to use particle positions in either single or double pre-
cision. Because the kernels do not have the full functionality of
the LAMMPS neighbor list (e.g. simulation in a triclinic box),
acceleration for the neighbor list build is an option that can be
specified in the input script. In the case where acceleration is
not used for neighbor builds, data must be copied to the device
and organized into the same neighbor matrix and counts array
format used in the accelerated build. Whenever a neighbor re-
build occurs on the CPU, this is accomplished using a packed
neighbor array of size 131072 on the host. This size was cho-
sen to reduce the footprint of write-combined memory on the
host and to allow for packing in a loop concurrently with data
transfer to the device. In this process, a double loop over all lo-
cal particles and over all particle neighbors is used to pack the
array until it is filled with 131072 neighbors. Then, an asyn-
chronous copy of the packed array to the device is placed in the
command queue. The process is repeated using a second array
of 131072 elements. Once this has been filled, the host blocks
to assure that the first data transfer has finished, starts another
data transfer, and repeats the process. A second host array al-
located with at least nlocal elements, stores the starting offset
within the device packed array of each particles neighbors. Af-
ter all neighbors have been copied to the device, this array is
copied to a similarly sized array allocated on the device.

This is followed with execution of an unpack kernel on the
device. In this kernel, each work-item is assigned an atom. The
work-item loops over all neighbors in the packed array, placing
them in the neighbor matrix for coalesced access in the force
evaluation. It should be noted that the time for neighbor list
build for pair-potentials will be longer than that typically per-
formed on the CPU because a full neighbor list must be built for
accelerator force calculation instead of a half list. The unpack
kernel requires 5 registers and 28 bytes of shared memory for
the CUDA compilation.

For both neighbor calculation and force evaluation, atom po-
sitions must be copied to the device. In LAMMPS, positions
are stored in a 3× nall double precision matrix. Because length
3 vectors are inefficient (and in fact not currently defined) for
OpenCL, we use length 4 vectors to store each atom’s position.
The extra element is used to store the particle type. This allows
the position and type to be obtained in a single fetch, but re-
quires repacking the atom positions at each timestep. Because
single precision is much more efficient on many accelerators,
this step can include type-casting to single precision. The array
for repacking positions is stored in write-combined memory on
the host. Using the same technique as all other allocations, the
array initially allows room for 10% more particles and ghosts
than currently in the subdomain with reallocation as necessary.

2.5. Force Kernels
Force calculation has typically been implemented in GPU

codes using atom decompositions. A notable exception is the
NAMD code [24]. In their approach, termed small-bin cutoff

summation, each work-group selects which bin it will traverse.
The atoms in the bin are loaded into local memory to allow very
fast access to particle positions. The drawback of this approach
is that the maximum number of atoms that can be evaluated in
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a work-group is dictated by the amount of local memory on the
device. This will change depending on the device and precision
used to store the positions. In NAMD, when atom positions
will not fit in local memory, “bin overflow” is calculated con-
currently on the CPU. Because LAMMPS is used for a wide
variety of simulations, some with very large neighbor lists [30],
we have chosen to use an atom decomposition as the general
framework for the accelerator implementations. In this case we
rely on the use of spatial sorting and improving cache size and
performance on accelerators to reduce memory access laten-
cies.

Most implementations use analytic expressions for force cal-
culation but some have used force interpolation [29, 13]. The
drawback for force interpolation for potential models with low
arithmetic intensity is that the number of memory fetches is
increased in kernels that are already memory-bound [1]. For
spatial decompositions that effectively use local memory, this
might not impact performance significantly, especially when
graphics texture memory can be used for fast interpolation.
For the atom decomposition used here, we have chosen to use
analytic expressions in order to minimize memory access and
maintain consistency with the CPU LAMMPS calculations. We
note, however, that any given pair style can choose to use inter-
polation for acceleration and some will require it.

The general steps in the force kernel are:

1. Load particle type data into local array position
work item id

2. Block until data in local memory loaded by all work-items
in group

3. Load particle position and type i = global id
4. Load extra particle data for i
5. Load neighbor count n for particle i
6. for ( j j = 0; j j < n; j j++) {
7. Load neighbor j j to obtain index j
8. Load position and type for j
9. Calculate distance between i and j

10. if (distance<cutoff) {
11. Load extra particle data for j
12. Accumulate force and possibly torque
13. if (thermo energy)
14. Calculate and accumulate energy
15. if (thermo virial)
16. Calculate and accumulate virial
17. }
18. }
19. Store particle force and possibly torque
20. if (thermo energy)
21. Store particle energy
22. if (thermo virial)
23. Store particle virial

Extra particle data in the listing includes data other than the po-
sition and type that are needed for force calculation. Because
the Gay-Berne potential is anisotropic, a quaternion represent-
ing particle orientation is loaded in addition to the particle po-
sition. Another example is particle charge. The global memory

access in listing numbers 1, 3, 4, 5, 19, 21, and 23 will be co-
alesced. The access in numbers 8 and 11 will not necessarily
be coalesced. For simple potential models, the loop over non-
coalesced memory access will cause the kernel to be memory-
bound. For more complicated models, there is another source
of inefficiency. This is due to work-item divergence resulting
from some particles pairs with separation distances greater than
the force cutoff. To address this issue, we have implemented a
cutoff kernel for potentials with high arithmetic intensity that
will evaluate and pack only the neighbors within the cutoff at
each time step. The force kernel can then be called without a
branch for checking the cutoff. This requires twice the memory
for neighbor storage but can be more efficient for complicated
models such as the Gay-Berne potential.

As with the particle positions, forces and torques are stored in
length 4 vectors in order to maintain alignment that is efficient
for accelerators. The extra position is unused. This currently
results in some penalty for repacking the length 4 vectors into
length 3 vectors for the CPU. Instructions to copy force/torque
and possibly energy/virial terms are placed in the command
queue after the force kernel call. Energy and virial terms are
accumulated on the host to allow compatibility with statistics
and I/O that need per-particle energies or virials.

Force kernels can be compiled to use single, double, or mixed
precision. The drawback of double precision for memory-
bound kernels is that twice as many bytes must be fetched for
cutoff evaluation. A potential solution is to use mixed preci-
sion. In this case, the positions are stored in single precision,
but accumulation and storage of forces, torques, energies, and
virials is performed in double precision. Because this mem-
ory access occurs outside the loop, the performance penalty for
mixed precision is very small.

2.6. Load Balancing
Because most machines will have multi-core CPUs in ad-

dition to accelerators, algorithms that take advantage of both
resources will likely have the best performance for many prob-
lems. This idea has already proven beneficial in several codes.
One approach is to overlap short-range calculations with parts
of the long-range electrostatics calculation [22] and this ap-
proach has shown impressive speed-ups for protein simulations
in LAMMPS [10]. In another approach, different parts of the
long range electrostatics calculation in multilevel summation
are run concurrently on the CPU and GPU [11]. As already dis-
cussed, concurrent CPU execution of bin overflow in NAMD is
used to handle cases where there is insufficient local memory to
store all particles [24].

In all of these approaches, the partitioning of work between
the CPU and GPU is fixed and therefore the algorithms can-
not make optimal use of hybrid resources. Since short range
force calculations typically dominate the computational work
for most MD simulations, dynamic partitioning of short-range
force calculation between the accelerator(s) and CPU cores is
an attractive possibility. In our approach, time integration and
possibly neighbor list builds are performed on the CPU and
therefore dividing this work between all available CPU cores
would be beneficial. Therefore, we have implemented a load
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balancing capability that allows all CPU cores on a node to per-
form calculations, regardless of the number of accelerators.

In LAMMPS, a natural approach to achieve this is to run
an MPI process for every core on a node and allow multiple
MPI processes to share the same accelerator. Host-device data
transfers and force calculation from multiple processes can be
placed in the queue for execution on the same device. This
can improve performance for several reasons. First, the calcu-
lations for routines that have not been ported for accelerators
can be split between multiple cores. Second, the work will be
partitioned spatially, and therefore memory latencies for accel-
erated routines will possibly be improved with better data lo-
cality. Finally, force calculation can be divided between CPUs
and accelerators in order to utilize all floating-point processors
on a node. The disadvantage of this approach arises when the
number of particles per core becomes so small that each pro-
cess does not have sufficient work to utilize the accelerator effi-
ciently.

In our implementation, fixed load balancing can be achieved
by setting the CPU core to accelerator ratio and by setting the
fraction of particles that will have forces calculated by the ac-
celerator. For example, consider a job run with 4 MPI processes
on a node with 2 accelerator devices and the fraction set to 0.7.
Each accelerator will be shared by 2 MPI processes. At each
timestep, each MPI process will place data transfer of positions,
kernel execution of forces, and data transfer of forces into the
device queue for 70 percent of the particles. At the same time
data is being transferred and forces are being calculated on the
device, the MPI process will perform force calculation on the
CPU. For this case, the ideal fraction would result in a CPU
time for each process that is equal to the device time for data
transfer and kernel execution for both processes sharing the de-
vice. Because this is difficult to know in advance, we have
implemented an approach for dynamic balancing with calcu-
lation of the optimal fraction based on CPU and device timings
at some timestep interval.

The approach requires some knowledge of how the MPI pro-
cesses are mapped to nodes in a given parallel job. The user se-
lects the accelerator resources that will be utilized by specifying
in the input script an ID for the first and last device to be used on
each node. The IDs must be the same for every node. At initial-
ization, the MPI COMM WORLD communicator is split into
per-node communicators according to the host-names for each
node. The processes on each node are then assigned to one ac-
celerator device. If the number of processes per node is greater
than the number of devices on the node, multiple processes are
assigned to the same device. The number of processes per de-
vice should be constant for efficient utilization because the sub-
domain size does not currently vary between different processes
in LAMMPS. In order to perform device timings necessary for
dynamic load balancing, the per-node communicators are fur-
ther split into per-device communicators.

When neighbor list calculation is performed on the acceler-
ator, the dynamic load balancing of force calculation is per-
formed as follows (where device comm is the per-device com-
municator, pd is the current fraction of particles to be calculated
on the device, and pnew is the most recent calculation of the op-

timal fraction from previous host and device timings):

1. nd = pd ∗ nlocal
2. If a rebuild is required, build a full neighbor list for parti-

cles i < nd and a half neighbor list for particles i ≥ nd on
the device, copy the half neighbor list to the host, and set
pd = pnew

3. Cast/pack atom data
4. if (load balance this step) {
5. Block for device completion
6. MPI Barrier(device comm)
7. Start device timer
8. Block for device completion
9. MPI Barrier(device comm)

10. Start CPU timer
11. }
12. Enqueue asynchronous transfer of atom data to device
13. Enqueue asynchronous force calculation on device
14. Enqueue asynchronous transfer of force/energy/virial data

to host
15. Begin force calculation on host
16. if (load balance this step) {
17. Stop device timer
18. Stop CPU timer
19. Block for device completion
20. cpu time/ = nlocal − nd

21. device time/ = nd

22. MPI Allreduce for maximum cpu (cmax) and device
(dmax) times over device comm

23. pnew = 0.5 ∗ cmax/(cmax + dmax) + 0.5 ∗ pnew

24. }
25. Block for device completion
26. Cast/pack forces/energies/virials into LAMMPS data

structures

Because it is desirable to implement a portable method for
timing device data transfers and kernels from multiple pro-
cesses, barriers are used to ensure that all timers are started
before any data transfers and/or force calculations have begun.
Then, the maximum time recorded on the device represents the
total time required for execution of all data transfers and ker-
nels from all processes using the device. Ideally, this should be
equal to the time required for force calculation on the CPU for
each process. Currently, the timings for load balancing are per-
formed for the first 10 timesteps and then every 25 timesteps.
We set pd = pnew = 0.9 at the beginning of a simulation run.
Because full neighbor lists are used on the device and half
neighbor lists are used on the host, pd is only changed when
a neighbor rebuild occurs.

When neighbor list calculations are performed on the host, a
slightly different procedure is used. In this case, a full neighbor
list is used for both host and device calculations. Additionally,
pd can be decreased on any timestep, not just when neighbor
rebuilds occur.
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2.7. Geryon Library

Currently, there are 3 prevalent low-level APIs for pro-
gramming accelerators - CUDA-Driver, CUDA-Runtime, and
OpenCL. CUDA has been the most popular choice for program-
ming GPUs due to its maturity and optimized performance for
NVIDIA hardware. For CUDA programming, CUDA-Runtime
is the most commonly used API because it allows for more suc-
cinct code at a slightly higher level than CUDA-Driver. There
are some advantages to the CUDA-Driver API, however. For
HPC, one notable advantage is that there is more freedom in
the selection of the compiler for host code. Only kernels that are
run on the device need to be compiled with the NVIDIA com-
piler and all host code can be compiled with other compilers
optimized for the machine. Additionally, one can perform more
advanced context management with the CUDA-Driver API - an
important consideration when multiple processes or threads are
utilizing GPUs. As of CUDA version 3.1, both APIs can be
used in a single code. For portability, OpenCL is an attractive
alternative with an API that is very similar to the CUDA-Driver
API. OpenCL has been adopted as an industry standard and al-
lows OpenCL kernels to run on CPUs. For us, the main concern
with adopting the OpenCL API as the sole programming model
is the relative immaturity of the compilers and the potential for
lagging efficiency on current NVIDIA hardware.

The OpenCL and CUDA-Driver APIs are more tedious and
less succinct than the CUDA-Runtime API. The solution is to
write a library that provides a more succinct interface by ab-
stracting away low-level code. Because we want both porta-
bility and fast code for NVIDIA hardware, our solution was to
write a library that provides a succinct interface, but also al-
lows the same code to compile with CUDA-Runtime, CUDA-
Driver, or OpenCL. The software, called Geryon, is intended
to be a simple library for managing all three APIs with a con-
sistent interface. This is performed with classes for 1) device
management, 2) data storage, 3) command queue management,
4) kernel management, and 5) device timing. Commands for
data copying and host-device transfer, type-casting, and I/O
are provided. The library is written such that the same set of
commands can be used with any of the APIs - to switch from
one compiler to another, only the namespace must be changed.
Templates are used such that there is little or no overhead for
using the library and the memory management and I/O routines
are greatly simplified.

Geryon also handles the case where the device memory is
addressable by the host in an efficient manner. Currently this
occurs when the device is the CPU in OpenCL, but future ac-
celerators might also have this advantage. In this case, host-
device transfers are an unnecessary expense. This functionality
is provided with an option for a data object to “view” existing
memory rather than allocate new memory. In this case, host-
device data transfers will be ignored.

The Geryon library allows acceleration in LAMMPS with
both CUDA and OpenCL. It is important to note that many
common routines such as data sorts, BLAS, LAPACK, etc. are
provided in API-specific libraries and it would be undesirable to
rewrite these routines in Geryon. Indeed, neighbor list builds on

the device are not currently supported in LAMMPS for OpenCL
due to the use of the CUDPP library. The sort and scan routines
have been released for OpenCL, however, and we are work-
ing on a version that is fully functional with both CUDA and
OpenCL. Although API-specific libraries complicate the use
of Geryon for writing portable codes, the library is useful for
our purposes because it allows use of the CUDA-Driver and
OpenCL APIs with a simpler and more succinct interface that
is intended to make the transition between current and future
accelerator APIs much simpler and more efficient. For exam-
ple, the data types have changed for some routines in newer
versions of the CUDA API; in these cases we have only had to
modify a few underlying routines in the library to allow support
for new CUDA versions in the codes that use Geryon. While
we expect similar API-specific libraries to be available for both
CUDA and OpenCL, hopefully future efforts in programming
hybrid machines will converge on a single programming model
that is efficient and portable.

The Geryon library is available under the Free-BSD license
from http://users.nccs.gov/˜wb8/geryon/index.htm.

2.8. Lennard-Jones Potential

The Lennard-Jones potential [17] is widely used for model-
ing van der Waals forces in MD simulations,

U = 4ε
[(
σ

r

)12
−

(
σ

r

)6
]
, (1)

where r is the interparticle separation, σ parameterizes the op-
timal interparticle separation, and ε is used to parameterize the
well depth for the interaction energy. We have chosen the LJ
potential for benchmarking in this work because it is a very
common potential with very low arithmetic intensity.

For our implementation, the CUDA compilation of the LJ
kernel used 29 registers and 2128 bytes of local memory for
single precision.

2.9. Gay-Berne Potential

The Gay-Berne potential is a single-site interaction potential
for rigid molecules derived from heuristic modifications to a
Gaussian overlap potential [7]. The potential, which can be
considered as an anisotropic and shifted Lennard-Jones (LJ) 6-
12 interaction, has been extensively used for the modeling of
mesogenic systems. Although it was originally presented as a
soft potential for ellipsoidal particles of equivalent size, it has
since been generalized for dissimilar biaxial ellipsoids [2]. The
potential can be written as a product of 3 terms,

U = Ur · η · χ, (2)

parameterized by the ellipsoid shapes and relative interaction
energies. For shape, the ellipsoid semiaxes ai, bi, and ci for
each particle i are specified to form the diagonal elements of
a ‘shape’ matrix, Si = diag(ai, bi, ci). Likewise, the relative
well depths εai, εbi, and εci for particles interacting along the
corresponding semiaxes (side-to-side, face-to-face, and end-to-
end interactions) give the matrix Ei = diag(εai, εbi, εci). The

8



orientation of each particle is given here by the rotation matrix
Ai representing the transformation from the lab frame to the
body frame.

In Eq. 2, Ur represents the shifted LJ interaction given by the
interparticle distance h, the atomic interaction radius σ, and the
shift factor γ,

Ur = 4ε(%12 − %6), (3)

% =
σ

h + γσ
. (4)

Because the particles are aspherical, the interparticle distance h
is not between particle centers but rather represents the distance
of closest approach between particles. While an exact calcula-
tion of h is non-trivial[34], an approximation has been given by
Perram et al.[21] that is commonly used in Gay-Berne calcula-
tions,

h = r − [
1
2

r̂T G−1r̂]−1/2, (5)

where r = r2 − r1 is the particle center separation, r = |r| is the
center-to-center distance, r̂ = r/r, and

G = AT
1 S2

1A1 + AT
2 S2

2A2. (6)

In addition to the distance of closest approach, the interaction
anisotropy is characterized by the distance-independent terms
η and χ that control interaction strength based on the particle
shapes and relative well depths respectively,

η =

[
2s1s2

det(G)

]υ/2
, (7)

si = [aibi + cici][aibi]1/2, (8)

and

χ = [2r̂T B−1r̂]µ, (9)

B = AT
1 E2

1A1 + AT
2 E2

2A2. (10)

The parameters µ and υ in equations 7 and 9 are empirically
determined exponents that can be tuned to adjust the potential.

The analytic expressions for the forces and torques as well as
details of the parallel implementation of the Gay-Berne poten-
tial for biaxial ellipsoidal particles in the LAMMPS MD code
have been described previously [3].

The Gay-Berne potential was chosen for benchmarking due
to the very high arithmetic intensity. For typical problems, it
is approximately 15 times more expensive than the LJ calcu-
lation per particle pair. It does require additional memory ac-
cess when compared to LJ, however. In addition to particle
positions, quaternions representing the orientation of each par-
ticle are passed into the force kernels. In addition to particle
forces, torques must be copied back to the host. Because the
force calculation for each pair is computationally intensive, the
cutoffs are evaluated in a separate kernel from the forces (as
described above) in order to eliminate work-item divergence
resulting from the cutoff check. For our implementation, the
CUDA compilation resulted in a kernel that uses 119 registers
and 104 bytes of shared memory for single precision.

2.10. Yona Test Platform

Benchmarks were performed on a test cluster with 15 nodes
and a Mellanox MT26428 QDR InfiniBand interconnect. Each
node had two six-core AMD Opteron 2435 processors running
at 2.6GHz and two Tesla C2050 GPUs each with 3GB GDDR5
memory and 448 cores running at 1.15GHz with a memory
bandwidth of 144 GB/s. GPUs were connected on PCIx16 gen
2.0 slots. Tests were run with ECC support enabled. The band-
width reported by the CUDA 3.1 SDK for 32MB host-to-device
data transfers was 2.4GB/s for pageable memory and 3.9GB/s
for page-locked memory. For 32 MB device-to-host data trans-
fers, the reported bandwidth was 1.4GB/s for pageable memory
and 4.0GB/s for page-locked memory. For the CUDA molecu-
lar dynamics tests, device code was compiled with the CUDA
toolkit 3.1. Host code was compiled using OpenMPI 1.7 with
the Intel 11.1 C++ compilers. Host code was compiled with
O2 optimization for an SSE2 target. Device driver version was
256.35. For the OpenCL tests, code was compiled using the
GNU 4.3.2 compilers with OpenMPI 1.7.

2.11. Test cases

For the Lennard-Jones simulations, the LAMMPS LJ bench-
mark was used as available in the source distribution. Param-
eters are described in dimensionless units. Initial configura-
tions consisted of 256000 or 864000 atoms. Benchmark sim-
ulations were performed using the microcanonical (NVE) en-
semble with a cutoff of 2.5σ for 5000 timesteps for liquid sim-
ulations with a reduced density of 0.8442. In the CPU-only
simulations, forces for ghost atoms are communicated in or-
der to save computational time (this is the default setting in
LAMMPS). For accelerated simulations, if two interacting par-
ticles are on different processors, both processors compute their
interaction and the resulting force information is not communi-
cated. This allows the use of full neighbor lists without special
treatment for ghost atoms.

For the Gay-Berne simulations, we have used the same model
parameters as our previous work [3]. These parameters are
described in dimensionless units in terms of the characteristic
length σ0, energy ε0, and mass m0. The mesogen is modeled
as a uniaxial prolate ellipsoid with a mass 1.5m0, an aspect ra-
tio of 3, and Gay-Berne parameters εmeso = ε0, σmeso = σ0,
ameso

i = bmeso
i = σ0, cmeso

i = 3σ0, εmeso
a = εmeso

b = ε0, and
εmeso

c = 0.2ε0. The Gay-Berne model parameters have been set
as γ = 1, µ = 1, and υ = 3. A cutoff radius for the potential of
rc = 7σ0 and a neighbor list radius of 7.8σ0 was used.

The starting configuration for the Gay-Berne benchmark was
generated using equilibrium molecular dynamics simulations
carried out in an isothermal-isobaric (NPT) ensemble with a
time step of 0.002τ (τ = σ0[m0/ε0]

1
2 ). Starting with a dilute

lattice of 125000 particles, the pressure was increased from
P = 0ε0/σ

3
0 to P = 8.0ε0/σ

3
0 over 5000 time steps. The damp-

ing parameters for the thermostat and barostat were both set
to 0.5τ. The temperature T ∗ = kBT/ε0 of the simulations was
2.4. This was followed by equilibration for an additional 5000
timesteps at a pressure of P = 8.0ε0/σ

3
0 to generate the starting

configuration for the benchmark.
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The benchmark simulations for the ellipsoidal particles were
carried out using the microcanonical (NVE) ensemble with a
timestep of 0.002τ and a cutoff of rc = 7σ0 for 1000 timesteps.
In the CPU-only simulations, forces for ghost atoms are com-
municated. For accelerated simulations, if two interacting par-
ticles are on different processors, both processors compute their
interaction and the resulting force information is not communi-
cated.

3. Results

3.1. Single Node Results

The timings for the LJ and Gay-Berne benchmarks on a sin-
gle node are shown in Figure 2 for single, mixed, and double
precision. The single precision LJ case with a 2.5σ cutoff is
intended to be a worst case for LAMMPS acceleration due to
the low arithmetic intensity. As shown in Figure 2, the speedup
for the LJ potential over a dual hex-core Opteron is only 0.73;
it is slower than the CPU-only calculation. In this simulation,
the CPU work from neighbor list builds and time integration
dominate the calculation time. Additionally, these tasks are
performed on only 2 cores instead of the 12 used for the CPU-
only benchmark. In this case, the CPU calculations represented
83.1% of the loop time, the wall time required to complete the
entire simulation loop. The atom copy represented 6.3%, the
neighbor copy was 3.5%, the unpack kernel was 1%, the force
kernel was 4.4%, and the force copy was 1.7% of the loop time.

Performing neighbor list builds on the GPU improves this
speedup to 1.7. In this case, the CPU calculations were reduced
to 62.9% of the loop time. The atom copy is 14.6%, the neigh-
bor kernel is 8.2%, the force kernel is 10.4%, and the force copy
is 3.9% of the total loop time. For mixed precision, the results
were very similar to the single precision case. The speedup
with neighboring on the CPU was 0.71 and the speedup with
neighboring on the GPU was 1.69. For double precision the
performance was substantially different; with CPU neighboring
the speedup was 0.61 and with GPU neighboring, the speedup
was 1.2. This is primarily due to the increase in the force kernel
time which is memory-bound.

The Gay-Berne potential is at the opposite end of the spec-
trum. For the CUDA compilation, 119 registers per work-item
are required for force and torque calculation. For the Tesla
C1060, this is not a significant issue since 127 registers can
be used per work-item. For the C2050, this decreases to 63 reg-
isters per work-item. For single precision, we still obtain im-
pressive results, however. With CPU neighboring, the speedup
is 6.3 versus a dual hex-core Opteron with 47% of the compu-
tation time performed on the CPU. With GPU neighboring, the
speedup is 10.4 with 13.1% of the calculation performed on the
CPU. The GPU loop time breakdown for the CPU neighboring
case was 2.1% atom copy, 2.2% neighbor copy, 12.9% neigh-
bor kernels, 35.5% force/torque kernels, and 3.9% force/torque
copy. For GPU neighboring, the breakdown was 3.6% atom
copy, 23.8% neighbor kernels, 59% force/torque kernels, and
0.5% force/torque copy. Again, for mixed precision, the results
were similar to single precision - a speedup of 5.9 with CPU
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Figure 2: Performance of accelerated simulations on a single node (2 GPUs).
Top: Results for the Lennard-Jones potential. Bottom: Results for the Gay-
Berne potential. GPU-N is a test case with neighboring performed on the GPU.
GPU is a test case with neighboring performed on the CPU. Tests are performed
for single, mixed, and double precision. Time in orange is computed on the
CPU for time integration, etc. Other colors are for data transfer and kernel
execution on the GPU. Time is normalized by the time required to complete the
simulation loop on 12 CPU cores. Simulations contained 256000 particles for
LJ and 125000 particles for Gay-Berne.
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Figure 3: Speedup of accelerated code on a single node vs 12 CPU cores as a
function of number of particles. GPU-N is performed with neighboring on the
GPU. Tests were performed for Lennard-Jones with a cutoff of 2.5 using single
precision.

neighboring and a speedup of 9.4 with GPU neighboring. For
double precision, the speedups were reduced to 2.4 and 2.9 re-
spectively. Because the number of available registers is reduced
for double precision, memory latencies for variables private to
each work-item are increased and the performance is impacted.

The relative performance of the accelerated code will depend
on the number of particles per node and the cutoff. The impact
of problem size on the speedup is shown in Figure 3 for the
LJ benchmark. When neighbor list builds are performed on the
CPU, the speedup is relatively insensitive to the number of par-
ticles. For GPU neighbor builds, this is not the case and there is
more variance in the relative performance. At around 5488 par-
ticles per GPU, a speedup of greater than 1.5 is achieved. The
performance for different cutoffs is shown in Figure 4 for the LJ
and Gay-Berne benchmarks. Increasing the cutoff from 2.5σ to
5σ increases the speedup from 0.7 to 1.1 for CPU neighboring
and from 1.7 to 5.1 for GPU neighboring. This results from
the change from 37 neighbors per particle on average for the
2.5σ cutoff to 264 neighbors per particle in the 5σ case. For
Gay-Berne, decreasing the cutoff from 7σ0 to 4σ0 decreases
the speedup from 6.3 to 4.2 for the CPU neighboring case and
from 10.4 to 7.3 in the GPU neighboring case.

Use of the Geryon library allows the same code to compile
with both CUDA and OpenCL. Although OpenCL performance
is not of immediate concern in our efforts, we have compared
the loop times for code compiled with CUDA and NVIDIA’s
OpenCL implementation. These results are shown in Figure 5.
In the LJ case, the OpenCL code takes 1.9 times longer than the
CUDA code to complete the LJ benchmark. For the Gay-Berne
case, the OpenCL code takes 1.5 times longer to complete when
compared with the CUDA code. Profiling shows that the slow-
down occurs due to a greatly increased instruction count for the
OpenCL kernels. We have not investigated the cause of this, but
because the same kernels are being compiled for the same hard-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

GPU GPU-N GPU GPU-N

2.5 5

T
im

e
/C

P
U

 T
im

e

Other Answer Copy

Force Neigh Kernel

Neigh Copy Atom Copy

0

0.05

0.1

0.15

0.2

0.25

GPU GPU-N GPU GPU-N

4 7

T
im

e
/C

P
U

 T
im

e

Other Answer Copy

Force Neigh Kernel

Neigh Copy Atom Copy

Figure 4: Performance of accelerated simulations on a single node for differ-
ent cutoffs (2 GPUs). GPU-N is a test case with neighboring performed on the
GPU. GPU is a test case with neighboring performed on the CPU. Top: Perfor-
mance for Lennard-Jones with a cutoff of 2.5 and 5. Bottom: Performance for
Gay-Berne with a cutoff of 4 and 7. Time is normalized by the time required to
complete the simulation loop on 12 CPU cores. Simulations contained 256000
particles for LJ and 125000 particles for Gay-Berne.
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Figure 5: Performance of accelerated simulations on a single node for code
compiled with CUDA and OpenCL. Tests were performed with 256000 parti-
cles with neighboring performed on the GPU. Time is normalized by the time
required to complete the simulation loop with CUDA.

ware with the same instruction set, we expect this difference to
improve as the OpenCL compiler matures.

3.2. Multi-Node Results

Results for strong scaling on the test cluster for the LJ and
Gay-Berne test cases are shown in Figure 6. For the LJ case,
timings were made for 864000 particles with 1 process per
device (2 processes per node (ppn)) used for the accelerated
benchmarks. For single precision, the speedups of the clus-
ter with GPUs versus the cluster without GPUs ranged from
0.68 to 0.76 with the same number of particles per node. When
neighbor builds are performed on the GPU, this speedup range
is increased to between 1.9 and 2.1. For double precision, the
ranges were 0.54 - 0.63 for CPU neighboring and 1.09 - 1.30 for
GPU neighboring. For Gay-Berne, 125000 particles were used
for strong scaling tests due to the better parallel scaling effi-
ciency for the computationally intensive force calculation. The
single precision ranges were between 5.6 and 6.3 for the CPU
neighboring case and between 9.4 and 10.5 for the GPU neigh-
boring case. For double precision, the speedup ranges were 2.2
- 2.4 for CPU neighboring and 2.7 - 2.9 for GPU neighboring
due to the high number of private variables per work-item.

A break down of the simulation loop times per routine is
given in Figures 6 and 7. The “Other” time in these plots repre-
sents the time spent on the CPU by tasks such as time integra-
tion. The neighbor calculation dominates the loop time for the
LJ calculation and is a significant fraction of the Gay-Berne cal-
culation when neighbor list builds are performed on the CPU.
When the neighbor list builds are performed on the GPU, the in-
tegration time becomes more significant for the LJ benchmark,
but not the Gay-Berne. This is due to the smaller problem size
for the Gay-Berne benchmark and the computationally inten-
sive force calculation.

3.3. Load Balancing

With part of the code running on the CPU and part on the
GPU, a significant fraction of the hybrid resources are wasted
when the code is run with one MPI process per device. Using
the host/device load balancing approach described above with
12 ppn, we can improve the results with better utilization of
the machine (Figure 6). In these cases, the speedups for the
single precision LJ case are improved to 2.2 - 2.5 versus the
machine without acceleration. With neighbor builds performed
on the GPU, the speedups ranged from 2.9 and 3.7. For a cut-
off of 5σ (data not shown), the speedups ranged from 5.9 to
7.8. As shown in Figure 6, the fraction of particles handled by
the GPU decreases as the number of particles per process de-
creases. This might be counterintuitive, however, as shown in
Figure 3, the relative performance of the GPU decreases with
problem size and therefore the CPU calculation rates become
more competitive.

The improvements from this approach will be sensitive to
the problem size and relative performance of the force kernel.
Once the number of particles per process decreases below some
threshold, there will not be enough work to efficiently utilize
the GPU with each kernel call. If the GPU performance for the
force evaluation has a high speedup versus the CPU code, there
might be little to gain from CPU evaluation of forces. Both
of these issues arise in the Gay-Berne benchmark. In this case,
splitting the neighbor and time integration calculations does not
impact the performance as significantly because these calcula-
tions represent a smaller fraction of the loop time. Additionally,
as the number of particles per process decreases, there is less
work for the GPU and as shown in Figure 3, relative GPU per-
formance will be worse. For these reasons, running on 12ppn
results in decreased performance for the Gay-Berne benchmark
as the number of particles per process decreases below 2000.
This also occurs in the LJ benchmark at a similar number of
particles per node (data not shown). At some point, it becomes
more efficient to run the simulation with a smaller number of
processes per device.

The performance impact resulting from splitting the force
calculation between the host and device will depend on the CPU
core to device ratio and the relative rates of force calculation on
the host and device. As shown in Figures 6 and 7, the calcu-
lated fraction of particles on the host is less than 12 percent for
both the LJ and Gay-Berne single precision test cases. For these
cases, no improvement is seen with dynamic load balancing of
force calculation. For the double precision cases, the impact
is more significant, however. For the LJ cases, the loop times
were between 5.8 and 22.8 percent slower without force load
balancing. For the Gay-Berne cases, the loop times were be-
tween 5 and 12.6 percent slower without force load balancing.
The best relative speedups for the test runs are summarized in
Table 2.

As shown in Figures 6 and 7, the benefits from porting ad-
ditional routines characterized by the “Other” time will vary
depending on problem size. For the LJ benchmark, this varied
from 31% of the loop time for 1 node to less than 5% for 15
nodes. For the Gay-Berne, the “Other” time was less than 4%
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Figure 6: Strong-scaling for the Lennard-Jones test case with and without acceleration. Top Left: Comparison of loop time without acceleration (CPU), acceleration
with 1 process per GPU (2ppn), and load balancing (LB) with 6 processes per GPU (12 ppn) for single precision. Neighboring is performed on the GPU for the
GPU-N cases. Top Right: Results for double precision. Middle Left: Fraction of particles handled by the GPU for the LB test cases. Middle Right: Loop time
breakdown for the single precision GPU 2ppn case. Bottom left: Loop time breakdown for the single precision GPU-N 2ppn case. Bottom Right: Loop time
breakdown for the single precision GPU-N LB case. Loop times are the wall time required to complete the entire simulation loop.
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Figure 7: Strong-scaling for the Gay-Berne test case with and without acceleration. Top Left: Comparison of loop time without acceleration (CPU), acceleration
with 1 process per GPU (2ppn), and load balancing (LB) with 6 processes per GPU (12 ppn) for single precision. Neighboring is performed on the GPU for the
GPU-N cases. Top Right: Results for double precision. Middle Left: Fraction of particles handled by the GPU for the LB test cases. Middle Right: Loop time
breakdown for the single precision GPU 2ppn case. Bottom left: Loop time breakdown for the single precision GPU-N 2ppn case. Bottom Right: Loop time
breakdown for the single precision GPU-N LB case. Loop times are the wall time required to complete the entire simulation loop.
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Table 2: Summary of best speedups versus a single CPU core for CPU-only and
accelerated runs. GPU-N cases used the GPU for neighbor list calculation. The
speedups were calculated from single core loop times of 6605 seconds for the
LJ CPU case and 16018 seconds for the GB CPU case. Note that superlinear
speedups are also seen in the CPU-only tests for the GB case.

1 node 15 nodes
Test case Cores Speedup Cores Speedup
LJ CPU 12 9.6 180 162.5
LJ GPU Single 12 23.4 180 356.4
LJ GPU-N Single 12 34.4 180 467.1
LJ GPU Double 12 16.0 180 224.1
LJ GPU-N Double 12 20.4 180 172.6
GB CPU 12 12.8 180 182.5
GB GPU Single 12 146 30 1747.4
GB GPU-N Single 12 144.1 30 1541.7
GB GPU Double 12 37.2 30 511.4
GB GPU-N Double 12 40.9 30 503.7

of the total calculation. Because the host/device communica-
tion time is over 10% of the loop time for LJ calculations, ad-
ditional savings from reducing the amount of host/device com-
munication at each step can potentially be gained by porting
additional routines to the accelerator.

4. Discussion

We have described a framework for implementing molec-
ular dynamics for hybrid high-performance computers in
LAMMPS. For some hybrid machines, we can expect that sig-
nificant computational resources will be available in the form of
multi-core CPUs in addition to accelerators. In order to make
efficient use of hybrid resources, we have described a method
for utilizing all CPU and accelerator cores on each node. Be-
cause our approach currently uses only accelerator devices for
neighbor list builds and force calculation, additional perfor-
mance is gained by splitting the other calculations performed
on the CPU between multiple cores. In LAMMPS this can be
done straightforwardly by assigning one MPI process per core
at run time, with each process able to share accelerators on the
node. For large particle counts, the approach has the potential
to decrease memory latencies for accelerated kernels by fur-
ther dividing the work spatially to improve data locality. As the
number of particles per process becomes smaller, a point will be
reached where it is more efficient to run on fewer cores in order
to efficiently utilize the accelerator. For the test cases presented
here, six cores per device became less efficient at around 2000
particles per process. Additional performance can be gained
with dynamic load balancing of force calculation between CPU
cores and accelerators on each node. This will depend on the
relative rates of force calculation on the CPU and accelerator
and the ratio of CPU cores to accelerator devices. For the test
cluster used here, up to a 20 percent reduction in loop time was

achieved with dynamic load balancing of forces; however, there
was little change for single precision calculations.

Due to the sensitivities of accelerator speedups to particle
counts, cutoff, density, and host and device specifications, it is
difficult to provide a comparison between different approaches
or to give a simple estimate of the speedup for a given simu-
lation. For this work, we have chosen to evaluate performance
on an accelerated cluster with comparison to the same cluster
without acceleration. For the LJ case with a low cutoff of 2.5σ,
running the simulations with accelerators was between 2.9 and
3.7 times faster for between 12 and 180 CPU cores (2-30 accel-
erators). For a cutoff of 5σ, more similar to cutoffs used in pro-
tein simulations, the speedups ranged from 5.9 to 7.8. For the
Gay-Berne case with a high cutoff, the speedups ranged from
9.4 to 11.2.

These results are all for single precision calculation on the
GPU. The results for mixed precision will be very similar. The
Fermi GPU offers improved performance for double precision
with 515 Gflops on the Tesla C2050. For our test cases, double
precision performance was still significantly worse than single
or mixed precision. For the LJ case, the memory-bound kernel
requires twice as many bytes for atom positions in double preci-
sion. For the Gay-Berne case, the lack of available registers per
work-item limited performance. The use of single and mixed
precision for MD simulations has been analyzed by many in-
cluding evaluation of error in force and energy calculations, en-
ergy conservation, trajectory divergence, temperature changes
due to numerical error, and comparison of ensemble-averaged
quantities [1, 14, 6, 13, 10, 26, 24]. For current accelerators,
single and mixed precision might be the best choice for many
models.

The performance benefit from porting additional routines for
acceleration will depend on the hardware configuration and
simulation. For the 180-core accelerated simulations performed
here, less than 5 percent of the loop time was spent on time in-
tegration and statistics for the LJ case. For the Gay-Berne, the
time was less than 1 percent. This will not be the case for all
jobs, however, and porting additional calculations for accelera-
tion can decrease the times required for host/device data trans-
fer because data for all particles does not need to be transferred
for inter-process communications at every timestep. For future
hybrid machines, memory might be available that is efficiently
addressable by the host and the device. Currently, however, our
approach is to overlap host/device communications with force
calculations on the CPU. This has the advantage that the code
porting and maintenance burden is not as substantial. For some
common statistics and time integration approaches, however, it
might prove beneficial to port additional routines in order to
achieve efficient acceleration that is more general to a variety
of host and device configurations.

Additional issues in hybrid high-performance computing
have been discussed elsewhere [22, 16]. One important issue
discussed by the authors concerns the use of direct memory
access (DMA) and non-uniform memory access (NUMA) on
current hybrid machines. Incorrect mapping of process/device
pairs or thread/device pairs given the topology of the PCI ex-
press buses can have a significant performance cost. Addition-
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ally, developers must address host-device data transfer times in
addition to message-passing times between nodes when devel-
oping a scalable code. Therefore, hardware and/or software that
allow memory allocations to be shared for DMA for both MPI
and accelerator data transfers can improve parallel efficiency.
Although future accelerators might allow the host to address
device memory efficiently or support device-to-device commu-
nication directly, on current accelerators efforts aimed at hid-
ing the host-device data transfer latencies might be necessary in
scaling molecular dynamics codes for large hybrid machines.

Calculation of force contributions from long range electro-
statics are necessary for many simulation models in MD. Imple-
mentations of particle-mesh Ewald (PME) and multilevel sum-
mation have already been described for GPUs [12, 11]. An-
other approach is to overlap the PME calculation performed on
the CPU with short-range calculations on the GPU [22] and this
type of approach has been shown to give impressive speedups
in LAMMPS [10]. The host/device load balancing presented
here could be used to further optimize the utilization of hybrid
resources in long-range models. Because the time complexi-
ties and collective communications in many long-range mod-
els limit scaling for MD simulations, fast multipole [9] and
multigrid-based approaches [27, 11] will likely result in the best
scaling for large hybrid machines.

Current efforts at utilizing hybrid machines have focused on
porting current physics models for acceleration. Many of these
models are in use because they have provided excellent perfor-
mance on computer hardware. As we begin to see significant
changes in the hardware used for computational science, the
development of new physics models with improved accuracy
might prove more beneficial than porting existing force-fields.
For example, the use of complicated pairwise potentials, 3-body
models, and aspherical coarse graining can be much more com-
petitive on current hybrid machines due to their high arithmetic
intensity.
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