NATIONAL INSTITUTE FOR COMPUTATIONAL SCIENCES

NICS)

Introduction to
Parallel I/0

Bilel Hadri
bhadri@utk.edu
NICS Scientific Computing Group

OLCF/NICS Fall Training
October 19t 2011

NATIONAL INSTITUTE FOR COMPEI'ATIONAL SCIENCES

Outline

e Introduction to I/O

 Path from Application to File System

e Common I/O Considerations

* /O Best Practices

NICS

Outline

e Introduction to I/O

NICS,

Scientific 1/O data

/0 is commonly used by scientific applications to achieve goals like:
e storing numerical output from simulations for later analysis

e loading initial conditions or datasets for processing

 checkpointing to files that save the state of an application in case
of system failure

* Implement ‘out-of-core’ techniques for algorithms that process
more data than can fit in system memory

; NICS,

HPC systems and |/O

« "A supercomputer is a device for converting a CPU-bound
problem into an |/O bound problem.” [Ken Batcher]

e Machines consist of three main components
o Compute nodes I e = —
 High-speed interconnect
e |/O infrastructure

» Most optimization work on HPC applications is carried out on
» Single node performance

» Network performance (communication)
/O only when it becomes a real problem

The 1/0 Challenge

* Problems are increasingly computationally challenging

« Large parallel machines needed to perform calculations
» Critical to leverage parallelism in all phases

 Data access is a huge challenge

 Using parallelism to obtain performance
* Finding usable, efficient, portable interfaces
 Understanding and tuning 1/0

 Data stored in a single simulation for some projects:
— 0(100) TB !!

NICS)

Why do we need parallel 1/0?

 Imagine a 24 hour simulation on 16 cores.
— 1% of run time is serial I/0.

* You get the compute part of your code to scale to 1024

cores.
— 64x speedup in compute: /0 is 39% of run time (22'16” in computation and 14°24” in 1/0).

o Parallel I/O is needed to
— Spend more time doing science
— Not waste resources
— Prevent affecting other users

NICS,

Scalability Limitation of I/O

 |/0 subsystems are typically very slow compared to
other parts of a supercomputer

— You can easily saturate the bandwidth

* Once the bandwidth is saturated scaling in 1/O stops

— Adding more compute nodes increases aggregate memory
bandwidth and flops/s, but not I/O

NICS)

Factors which affect I/0O.

* 1/0 is simply data migration. —
— Memory «—> Disk —

* /O is a very expensive operation. =
— Interactions with data in memory and on disk. —

* How is I/O performed?
— 1/0 Pattern

* Number of processes and files.
» Characteristics of file access.

* Where is I/O performed?
— Characteristics of the computational system.
— Characteristics of the file system.

NICS,

10

/O Performance

 There is no “One Size Fits All” solution to the 1/0
problem.

 Many 1/O patterns work well for some range of
parameters.

 Bottlenecks in performance can occur in many
locations. (Application and/or File system)

* Going to extremes with an 1/0 pattern will typically
lead to problems.

* Increase performance by decreasing number of 1/O

operations (latency) and increasing size
(bandwidth).

Outline

 Path from Application to File System
— Data and Performance
— /O Patterns
— Lustre File System
— |/0 Performance Results

NICS

Data Performance

Memory

Memory

Memory

H

—
I

[

__/

N —
Disk

Disk

Disk

L
|

Disk

» Best performance comes from situations when the data is accessed

contiguously in memory and on disk.

« Commonly, data access is contiguous in memory but noncontiguous on
disk. For example, to reconstruct a global data structure via parallel 1/0.

« Sometimes, data access may be contiguous on disk but noncontiguous in
memory. For example, writing out the interior of a domain without ghost

cells.

A large impact on I/O performance would be observed if data access was
noncontiguous both in memory and on disk.

12

NICS.

Serial I/0: Spokesperson

e One process performs |/O.
 Data Aggregation or Duplication
e Limited by single 1/0 process.

 Simple solution, easy to manage, but
— Pattern does not scale.

A
Nee A

Disk

~

 Time increases linearly with amount of data.
 Time increases with number of processes.

13

NICS,

Parallel I/O: File-per-Process

— All processes perform /O

to individual files.
e Limited by file system.
— Pattern does not scale at
A
N

large process counts.

* Number of files creates |
bottleneck with metadata Disk

11

 Number of simultaneous
14 NICS,

disk accesses creates
contention for file
system resources.

Parallel 1/0: Shared File

» Shared File

— Each process performs 1/0
to a single file which is
shared.

— Performance

« Data layout within the
shared file is very
important.

* At large process counts
contention can build for
file system resources.

15

Pattern Combinations

» Subset of processes which perform 1/O.

— Aggregation of a group of processes data.
« Serializes I/O in group.

— 1/0 process may access independent files.
* Limits the number of files accessed.

— Group of processes perform parallel I/0 to a shared file.
* Increases the number of shared files
—> increase file system usage.
» Decreases number of processes which access a shared file
—> decrease file system contention.

b S Sk i

NICS.

Performance Mitigation Strategies

* File-per-process 1/0

— Restrict the number of processesl/files written simultaneously.
Limits file system limitation.

— Buffer output to increase the 1/0O operation size.

e Shared file I/O

— Restrict the number of processes accessing file
simultaneously. Limits file system limitation.

— Aggregate data to a subset of processes to increase the I/O
operation size.

— Decrease the number of /0 operations by writing/reading
strided data.

NICS)

Parallel I/O Tools

* Collections of system software and libraries have grown
up to address /O issues

— Parallel file systems
— MPI-IO
— High level libraries

 Relationships between these are not always clear.

» Choosing between tools can be difficult.

Parallel I/0 tools for Computational Science

Application
High-Level I/O Library
MPI-10 Implementation

Parallel File System

Storage Hardware

 Break up support into multiple layers:

— High level I/O library maps app. abstractions to a structured, portable
file format (e.g. HDF5, Parallel netCDF, ADIOS)

— Middleware layer deals with organizing access by many processes
(e.g. MPI-I0)

— Parallel file system maintains logical space, provides efficient access
to data (e.g. Lustre)

NIGS.

Parallel File System

« Manage storage hardware
— Present single view
— Focus on concurrent, independent access

— Transparent : files accessed over the network can be treated the same as
files on local disk by programs and users

— Scalable

Application
High-Level I/O Library
MPI-10 Implementation
Parallel File System

Storage Hardware

Kraken Lustre Overview

12 DDN S2A9900
2.3 PB formatted
336 OSTs

LU

WD, | [comect |

| IdER]

9408
Compute Nodes

24 Service

24 Service
o Node
Blades For Blades
0OSSs For OSSs

21 Nlcs

File I/0O: Lustre File System

* Metadata Server (MDS) makes metadata stored in the MDT(Metadata Target)
available to Lustre clients.

— The MDS opens and closes files and stores directory and file Metadata such as file ownership,
timestamps, and access permissions on the MDT.

— Each MDS manages the names and directories in the Lustre file system and provides network
request handling for the MDT.

» Object Storage Server(OSS) provides file service, and network request handling for
one or more local OSTs.

» Object Storage Target (OST) stores file ﬂ—“
data (chunks of files). @

22 ©2009 Cray Inc.

Lustre

* Once a file is created, write
operations take place directly
between compute node processes
(PO, P1, ...) and Lustre object storage
targets (OSTs), going through the
OSSs and bypassing the MDS.

* For read operations, file data flows
from the OSTs to memory. Each OST
and MDT maps to a distinct subset of
the RAID devices.

Application
processes
running on
compute
nodes

High speed
network

10
Processes
running on

service
nodes

110 channels

RAID
Devices

Memory

%

Memory Memory

'

\

Memory

¢

MDS

Y

¢ ¢

0SS0 v 0SSm

\

|

' Y Y
- - | >

NICS,

Striping: Storing a single file across multiple OSTs

* A single file may be stripped across one or more OSTs (chunks of
the file will exist on more than one OST).

« Advantages :
- an increase in the bandwidth available when accessing the file
- an increase in the available disk space for storing the file.

 Disadvantage:

- increased overhead due to network operations and server
contention

-> Lustre file system allows users to specify the striping policy for
each file or directory of files using the Ifs utility

NICS

File Striping: Physical and Logical Views
PO P1 P2 P3
Four application processes write a variable
“: :H H amount of data sequentially within a shared file.
This shared file is striped over 4 OSTs with 1 MB
I I stripe sizes.

IS e o
T e

Offset OMB 1MB 2MB 3MB 4MB 5MiB

This write operation is not stripe aligned therefore - >
some processes write their data to stripes used by
other processes. Some stripes are accessed by
more than one process

=

OSTO OST1 OST2 OST3

i |
9 May cause contention ! OSTs are accessed by variable numbers of processes (3 OSTO, 1 OST1, 2 OST2 and 2 OST3).

25 ©2009 Cray Inc. NICS)

Single writer performance and Lustre
e 32 MB per OST (32 MB - 5 GB) and 32 MB Transfer Size

— Unable to take advantage of file system parallelism

— Access to multiple disks adds overhead which hurts performance

Single Writer
Write Performance

120

100

m1 MB Stripe
m 32 MB Stripe
1 2 4 16 32 64 128 160

Stripe Count

(0]
o

Write (MB/s)
(o2}
o

N
o

N
o

- Using more OSTs does not increase write performance. (Parallelism in Lustre cannot be exploit)

26 NICS

Stripe size and I/O Operation size
o Single OST, 256 MB File Size

— Performance can be limited by the process (transfer size) or file system

(stripe size). Either can become a limiting factor in write performance.

Single Writer
Transfer vs. Stripe Size

140

120

100

(0]
o

m 32 MB Transfer
m 8 MB Transfer

m 1 MB Transfer ﬁ

- The best performance is obtained in each case when the I/O operation and stripe sizes are similar.
- Larger I/O operations and matching Lustre stripe setting may improve performance (reduces the latency of I/O op.)

(]
o

Write (MB/s)

40

20 +

1 2 4 8 16 32 64 128
Stripe Size (MB)

. NICS.

28

Single Shared Files and Lustre Stripes

Shared File Layout #1
32 MB
Proc. 1

32 MB
Proc. 2

32 MB
Proc. 3

32 MB
Proc. 4

32 MB
Proc. 32

e
E
i

Layout #1 keeps data from a process in a contiguous block

NICS

Single Shared Files and Lustre Stripes

Shared File Layout #2

Repetition #1

Repetition #2 - #31

/\

Repetition #32

1]
=
HH

Layout #2 strides this data throughout the file

29

1 MB
Proc. 1

1 MB
Proc. 2

1 MB
Proc.3

1 MB
Proc. 4

1 MB
Proc. 32

1 MB
Proc. 1

1 MB
Proc. 2

1 MB
Proc.3

1 MB
Proc. 4

1 MB
Proc. 32

NICS.

30

File Layout and Lustre Stripe Pattern

Single Shared File (32 Processes)
1 GB file

m 1 MB Stripe (Layout #2)

m 1 MB Stripe (Layout #1) = l
m 32 MB Stripe (Layout #1)

32
Stripe Count

A 1 MB stripe size on Layout #1 results in the lowest performance due to OST contention. Each OST is

accessed by every process. (31.18 MB/s)

The highest performance is seen from a 32 MB stripe size on Layout #1. Each OST is accessed by only
one process. (1788,98 MB/s)

A 1 MB stripe size gives better performance with Layout #2. Each OST is accessed by only one process.
However, the overall performance is lower due to the increased latency in the write (smaller 1/O
operations). (442.63MB/s)

NICS

31

Scalability: File Per Process

» 128 MB per file and a 32 MB Transfer size

File Per Process
Write Performance

12000

10000 - ﬁ \
L

4 \

\ —o—1 MB Stripe

-ii—32 MB Stripe

!

Write (MB/s)

4000 -

2000 -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Processes or Files

- Performance increases as the number of processes/files increases until OST and metadata
contention hinder performance improvements.

- At large process counts (large number of files) metadata operations may hinder overall
performance due to OSS and OST contention.

Case Study: Parallel /O

* A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
— Total I/0 volume (reads and writes) is 850 GB.
— Utilizes parallel HDF5

o Default Stripe settings: count 4, size 1M, index -1.

— 1800 s run time (~ 30 minutes)
D
e Results \E
— 66% decrease in run time. m

o Stripe settings: count -1, size 1M, index -1.
— 625 s run time (~ 10 minutes)

NICS,

/0 Scalabity

* Lustre
— Minimize contention for file system resources.

— A process should not access more than one or two OSTs.
— Decrease the number of /O operations (latency).

— Increase the size of I/O operations (bandwidth).

NICS

Scalability

* Serial I/0:
— Is not scalable. Limited by single process which performs |/O.

* File per Process
— Limited at large process/file counts by:
 Metadata Operations
* File System Contention

* Single Shared File
— Limited at large process counts by file system contention.

NICS

Outline

e Common I/O Considerations

— /O libraries
— MPI I/O usage
— Buffered I/O

NICS

High Level Libraries

 Provide an appropriate
abstraction for domain

— Multidimensional datasets
— Typed variables
— Attributes

o Self-describing, structured file
format

» Map to middleware interface
— Encourage collective 1/0

* Provide optimizations that
middleware cannot

Application
High-Level I/O Library
MPI-10 Implementation

Parallel File System

Storage Hardware

POSIX

« POSIX interface is a useful, ubiquitous interface for building

basic 1/0 tools.

« Standard 1/O interface across many platforms.
— open, read/write, close functions in C/C++/Fortran

» Mechanism almost all serial applications use to perform I/O
» No way of describing collective access

* No constructs useful for parallel 1/O.

e Should not be used in parallel applications if performance is
desired !

NIGS)

38

I/O Libraries

 One of the most used libraries on Jaguar and Kraken.

 Many |/O libraries such as HDF5 , Parallel NetCDF and
ADIOS are built atop MPI-IO.

e Such libraries are abstractions from MPI-IO.

e Such implementations allow for higher information
propagation to MPI-IO (without user intervention).

MPI-I/O: the Basics Aoty

High-Level I/O Library
MPI-10 Implementation

Parallel File System

Storage Hardware

 MPI-IO provides a low-level interface to carrying out parallel 1/0
« The MPI-IO API has a large number of routines.

* As MPI-IO is part of MPI, you simply compile and link as you would
any normal MPI program.

* Facilitate concurrent access by groups of processes
— Collective I/0
— Atomicity rules

I/O Interfaces : MPI-IO

* MPI-IO can be done in 2 basic ways :

* Independent MPI-IO

— For independent I/0O each MPI task is handling the I/0 independently using
non collective calls like MPI_File_write() and MPI_File_read().

— Similar to POSIX /0, but supports derived datatypes and thus
noncontiguous data and nonuniform strides and can take advantages of
MPI_Hints

e Collective MPI-IO

— When doing collective I/O all MPI tasks participating in /0 has to call the
same routines. Basic routines are MPI_File_write_all() and
MPI_File_read_all()

— This allows the MPI library to do 10 optimization

NICS,

41

MPI 1/O: Slmple C examPIE' (using individual pointers)

I* Open the file */
MPI_File_open(MPI_COMM_WORLD,‘file’, MPI_MODE_RDONL Y, MPI_INFO_NULL,&fh);

I* Get the size of file */
MPI1_File_get_size(fh, &filesize);
bufsize = filesize/nprocs;

nints = bufsize/sizeof(int);

I* points to the position in the file where each process will start reading data */
MPI1_File_seek(fh, rank * bufsize, MPI_SEEK _SET);

I* Each process read in data from the file */
MPI1_File_read(fh, buf, nints, MPI_INT, &status);

[* Close the file */
MPI1_File_close(&fh);

NICS,

MPI I/O: Fortran example- (using explicit offsets)

I Open the file
call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘file', MPI_MODE _RDONLY, MPI_INFO_NULL, fh, ierr)

I Get the size of file

call MPI_File_get_size(fh, filesize,ierr);
nints = filesize/ (nprocs*INTSIZE)
offset = rank * nints * INTSIZE

I Each process read in data from the file
call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_|I NTEGER, status, ierr)

I Close the file
call MPI_File_close(fh,ierr);

2 NICS

43

Collective I/0 with MPI-IO

MPI_File_read[write] all, MPI_File_read[write]_at_all, ...

— _all indicates that all processes in the group specified by the communicator passed to
MPI_File_open will call this function

Each process specifies only its own access information — the argument list is the
same as for the non-collective functions.

MPI-10 library is given a lot of information in this case:
— Collection of processes reading or writing data
— Structured description of the regions

The library has some options for how to use this data
— Noncontiguous data access optimizations
— Collective I/O optimizations

NICS,

MPI Collective Writes and Optimizations

» When writing in collective mode, the MPI library carries out a number of optimizations

— It uses fewer processes to actually do the writing
 Typically one per node

— It aggregates data in appropriate chunks before writing

Process 0 Proc:ess 1 Pmr:ess 2 Process 3
Data

Process 0
Aggregate Data

.
V

To disk To disk

a4 NICS)

Process 2
Aggregate Data

MPI-IO Interaction with Lustre

* Included in the Cray MPT library.

» Environmental variable used to help MPI-IO optimize 1/0 performance:
— MPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)

— MPICH_MPIIO_HINTS Environmental
— Can set striping_factor and striping_unit for files created with MPI-IO.

— If writes and/or reads utilize collective calls, collective buffering can be utilized
(romio_cb_read/write) to approximately stripe align 1/0 within Lustre.

— man mpi for more information

NICS

MPI-IO_HINTS

« MPI-IO are generally implementation specific. Below are options from
the Cray XT5. (partial)
— striping_factor (Lustre stripe count)
— striping_unit (Lustre stripe size)
— cb_buffer_size (Size of Collective buffering buffer)
— cb_nodes (Number of aggregators for Collective buffering)
— ind_rd_buffer_size (Size of Read buffer for Data sieving)
— ind_wr_buffer_size (Size of Write buffer for Data sieving)

« MPI-IO Hints can be given to improve performance by supplying more
information to the library. This information can provide the link
between application and file system.

NICS

Buffered I/O

» Advantages
— Aggregates smaller read/write

operations into larger operations.

— Examples: OS Kernel Buffer,
MPI-IO Collective Buffering

 Disadvantages

— Requires additional memory for
the buffer.

— Can tend to serialize /0.

e Caution

— Frequent buffer flushes can
adversely affect performance.

Buffer

Disk

Disk

NICS

Case Study: Buffered I/O

A post processing application writes a 1GB file.

 This occurs from one writer, but occurs in many small write operations.
— Takes 1080 s (~ 18 minutes) to complete.

* |0 buffers were utilized to intercept these writes
with 4 64 MB buffers.

— Takes 4.5 s to complete. A 99.6% reduction in time.

D\,“

File "ssef_cn_2008052600f000"

Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 666860 72
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

NICS,

Outline

* /O Best Practices

NICS,

I/O Best Practices

» Read small, shared files from a single task

— Instead of reading a small file from every task, it is advisable to read the entire file from one
task and broadcast the contents to all other tasks.

« Small files (<1 MB to 1 GB) accessed by a single process

— Set to a stripe count of 1.

« Medium sized files (> 1 GB) accessed by a single process

— Set to utilize a stripe count of no more than 4.

e Large files (>> 1 GB)

— set to a stripe count that would allow the file to be written to the Lustre file system.
— The stripe count should be adjusted to a value larger than 4.
— Such files should never be accessed by a serial I/O or file-per-process I/O pattern.

NICS

/O Best Practices (2)

 Limit the number of files within a single directory

— Incorporate additional directory structure
— Set the Lustre stripe count of such directories which contain many small files to 1.

 Place small files on single OSTs

— If only one process will read/write the file and the amount of data in the file is small (< 1 MB to
1 GB) , performance will be improved by limiting the file to a single OST on creation.

—> This can be done as shown below by: # Ifs setstripe PathName -s 1m -i -1 -c 1

 Place directories containing many small files on single OSTs

— If you are going to create many small files in a single directory, greater efficiency will be
achieved if you have the directory default to 1 OST on creation

—># Ifs setstripe DirPathName -s 1m -i -1 -c 1

NICS

/O Best Practices (3)

 Avoid opening and closing files frequently
— Excessive overhead is created.

» Use Is -l only where absolutely necessary

— Consider that “Is -I” must communicate with every OST that is assigned to a file being listed
and this is done for every file listed; and so, is a very expensive operation. It also causes
excessive overhead for other users. "Is" or "Ifs find" are more efficient solutions.

» Consider available I/O middleware libraries

— For large scale applications that are going to share large amounts of data, one way to improve
performance is to use a middleware libary; such as ADIOS, HDF5, or MPI-I0.

NICS

53

Protecting your data HPSS = ,-.;*.;"f"-"-}mhn'
s T
] h JJIHJ

The OLCF High Performance Storage System (HPSS) provides longer term storage
for the large amounts of data created on the OLCF / NICS compute systems.

The mass storage facility consists of tape and disk storage components, servers,
and the HPSS software.

Incoming data is written to disk, then later migrated to tape for long term archival.

Tape storage is provided by robotic tape libraries

NICS.

HPSS
» HSl

— easy to use (FTP-like interface)
— fine-grained control of parameters
— works well for small numbers of large files

 HTAR
— works like tar command
— treats all files in the transfer as one file in HPSS
— preferred way to handle large number of small files

* More information on NICS/OLCF website

— http:/lwww.nics.tennessee.edu/computing-resources/hpss
— http:/lwww.olcf.ornl.gov/kb_articles/hpss/

NICS

55

Further Information
e NICS website

— http://lwww.nics.tennessee.edu/l-O-Best-Practices

 Lustre Operations Manual
— http://dic.sun.com/pdf/821-0035-11/821-0035-11.pdf

* The NetCDF Tutorial

— http://lwww.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial.pdf

e Introduction to HDF5
— http:/l ww.hdfgroup.org/HDF5/doc/H5.intro.html

NICS

Further Information MPI-IO

— Rajeev Thakur, William Gropp, and Ewing Lusk, "A Case for Using
MPI's Derived Datatypes to Improve 1/O Performance," in Proc. of
SCI8: High Performance Networking and Computing, November
1998.

 http://www.mcs.anl.gov/~thakur/dtype

— Rajeev Thakur, William Gropp, and Ewing Lusk, "Data Sieving and
Collective 1/O in ROMIO," in Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, February 1999, pp.
182-189.

 http://lwww.mcs.anl.gov/~thakur/papers/romio-coll.pdf

— Getting Started on MPI 1/O, Cray Doc S-2490-40, December
2009.
o http://docs.cray.com/books/S-2490-40/S-2490-40.pdf

s6 NICS,

Thank You !

NICS)

