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Scientific I/O data

I/O is commonly used by scientific applications to achieve goals like:

• storing numerical output from simulations for later analysis

• loading initial conditions or datasets for processing

• checkpointing to files that save the state of an application in case
of system failure

• Implement 'out-of-core' techniques for algorithms that process
more data than can fit in system memory
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HPC systems and I/O

• "A supercomputer is a device for converting a CPU-bound 
problem into an I/O bound problem." [Ken Batcher]

• Machines consist of three main components:
• Compute nodes

• High-speed interconnect

• I/O infrastructure

• Most optimization work on HPC applications is carried out on
•Single node performance
• Network performance ( communication)
• I/O only when it becomes a real problem
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The I/O Challenge

• Problems are increasingly computationally challenging
• Large parallel machines needed to perform calculations

• Critical to leverage parallelism in all phases

• Data access is a huge challenge
• Using parallelism to obtain performance

• Finding usable, efficient, portable interfaces

• Understanding and tuning I/O

• Data stored in a single simulation for some projects:
– O(100) TB !!
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Why do we need parallel I/O?

• Imagine a 24 hour simulation on 16 cores.
– 1% of run time is serial I/O.

• You get the compute part of your code to scale to 1024 
cores.
– 64x speedup in compute: I/O is 39% of run time ( 22’16” in  computation and 14’24’’ in I/O).

• Parallel I/O is needed to
– Spend more time doing science

– Not waste resources

– Prevent affecting other users
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Scalability Limitation of I/O

• I/O subsystems are typically very slow compared to
other parts of a supercomputer
– You can easily saturate the bandwidth

• Once the bandwidth is saturated scaling in I/O stops
– Adding more compute nodes increases aggregate memory

bandwidth and flops/s, but not I/O
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Factors which affect I/O.

• I/O is simply data migration.
– Memory Disk

• I/O is a very expensive operation.
– Interactions with data in memory and on disk.

• How is I/O performed?
– I/O Pattern

• Number of processes and files.

• Characteristics of file access.

• Where is I/O performed?
– Characteristics of the computational system.

– Characteristics of the file system.
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I/O Performance
• There is no “One Size Fits All” solution to the I/O

problem.

• Many I/O patterns work well for some range of
parameters.

• Bottlenecks in performance can occur in many
locations. (Application and/or File system)

• Going to extremes with an I/O pattern will typically
lead to problems.

• Increase performance by decreasing number of I/O
operations (latency) and increasing size
(bandwidth).
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Data Performance

• Best performance comes from situations when the data is accessed
contiguously in memory and on disk.

• Commonly, data access is contiguous in memory but noncontiguous on
disk. For example, to reconstruct a global data structure via parallel I/O.

• Sometimes, data access may be contiguous on disk but noncontiguous in
memory. For example, writing out the interior of a domain without ghost
cells.

• A large impact on I/O performance would be observed if data access was
noncontiguous both in memory and on disk.
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Serial I/O: Spokesperson

• One process performs I/O.
•Data Aggregation or Duplication

•Limited by single I/O process.

• Simple solution, easy to manage, but
– Pattern does not scale.

•Time increases linearly with amount of data.

•Time increases with number of processes.
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Parallel I/O: File-per-Process

– All processes perform I/O 
to individual files.

•Limited by file system.

– Pattern does not scale at 
large process counts.

•Number of files creates 
bottleneck with metadata 
operations.

•Number of simultaneous 
disk accesses creates 
contention for file 
system resources.
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Parallel I/O: Shared File

• Shared File

– Each process performs I/O 
to a single file which is 
shared.

– Performance

•Data layout within the 
shared file is very 
important.

•At large process counts 
contention can build for 
file system resources.
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Pattern Combinations

• Subset of processes which perform I/O.
– Aggregation of a group of processes data. 

• Serializes I/O in group.

– I/O process may access independent files.
• Limits the number of files accessed.

– Group of processes perform parallel I/O to a shared file.
• Increases the number of shared files 

� increase file system usage.

• Decreases number of processes which access a shared file 

� decrease file system contention.
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Performance Mitigation Strategies

• File-per-process I/O
– Restrict the number of processes/files written simultaneously.

Limits file system limitation.

– Buffer output to increase the I/O operation size.

• Shared file I/O
– Restrict the number of processes accessing file

simultaneously. Limits file system limitation.

– Aggregate data to a subset of processes to increase the I/O
operation size.

– Decrease the number of I/O operations by writing/reading
strided data.
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Parallel I/O Tools

• Collections of system software and libraries have grown 
up to address I/O issues
– Parallel file systems

– MPI-IO

– High level libraries

• Relationships between these are not always clear.

• Choosing between tools can be difficult.
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Parallel I/O tools for Computational Science

• Break up support into multiple layers:
– High level I/O library maps app. abstractions to a structured, portable 

file format (e.g. HDF5, Parallel netCDF, ADIOS)

– Middleware layer deals with organizing access by many processes 
(e.g. MPI-IO)

– Parallel file system maintains logical space, provides efficient access 
to data (e.g. Lustre)
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Parallel File System

• Manage storage hardware
– Present single view

– Focus on concurrent, independent access

– Transparent : files accessed over the network can be treated the same as 
files on local disk by programs and users

– Scalable



Kraken Lustre Overview
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File I/O: Lustre File System

• Metadata Server (MDS) makes metadata stored in the MDT(Metadata Target )
available to Lustre clients.

– The MDS opens and closes files and stores directory and file Metadata such as file ownership,
timestamps, and access permissions on the MDT.

– Each MDS manages the names and directories in the Lustre file system and provides network
request handling for the MDT.

• Object Storage Server(OSS) provides file service, and network request handling for
one or more local OSTs.

• Object Storage Target (OST) stores file

data (chunks of files).

22 ©2009 Cray Inc.



Lustre 

• Once a file is created, write
operations take place directly
between compute node processes
(P0, P1, ...) and Lustre object storage
targets (OSTs), going through the
OSSs and bypassing the MDS.

• For read operations, file data flows
from the OSTs to memory. Each OST
and MDT maps to a distinct subset of
the RAID devices.
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Striping: Storing a single file across multiple OSTs

• A single file may be stripped across one or more OSTs (chunks of
the file will exist on more than one OST).

• Advantages :

- an increase in the bandwidth available when accessing the file

- an increase in the available disk space for storing the file.

• Disadvantage:

- increased overhead due to network operations and server
contention

���� Lustre file system allows users to specify the striping policy for
each file or directory of files using the lfs utility
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File Striping:  Physical and Logical Views
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Four application processes write a variable
amount of data sequentially within a shared file.
This shared file is striped over 4 OSTs with 1 MB
stripe sizes.

This write operation is not stripe aligned therefore
some processes write their data to stripes used by
other processes. Some stripes are accessed by
more than one process

���� May cause contention ! OSTs are accessed by variable numbers of processes (3 OST0, 1 OST1, 2 OST2 and 2 OST3). 



Single writer performance and Lustre

• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
– Unable to take advantage of file system parallelism

– Access to multiple disks adds overhead which hurts performance

Lustre  

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

26

� Using more OSTs does not increase write performance. (Parallelism in Lustre cannot be exploit )



Stripe size and I/O Operation size

Lustre  
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– Performance can be limited by the process (transfer size) or file system 

(stripe size).  Either can become a limiting factor in write performance. 
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� The best performance is obtained in each case when the I/O operation and stripe sizes are similar.
� Larger I/O operations and matching Lustre stripe setting may improve performance (reduces the latency of I/O op.)



Single Shared Files and Lustre Stripes

Lustre
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File Layout and Lustre Stripe Pattern

Lustre
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� A 1 MB stripe size on Layout #1 results in the lowest performance due to OST contention. Each OST is
accessed by every process. ( 31.18 MB/s)

� The highest performance is seen from a 32 MB stripe size on Layout #1. Each OST is accessed by only
one process. (1788,98 MB/s)

� A 1 MB stripe size gives better performance with Layout #2. Each OST is accessed by only one process.
However, the overall performance is lower due to the increased latency in the write (smaller I/O
operations). (442.63MB/s)



Scalability:  File Per Process
• 128 MB per file and a 32 MB Transfer size
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���� Performance increases as the number of processes/files increases until OST and metadata 
contention hinder performance improvements. 

���� At large process counts (large number of files) metadata operations may hinder overall 
performance due to OSS and OST contention.



Case Study:  Parallel I/O

• A particular code both reads and writes a 377 GB file.  
Runs on 6000 cores.
– Total I/O volume (reads and writes) is 850 GB.

– Utilizes parallel HDF5

• Default Stripe settings:  count 4, size 1M, index -1.
– 1800 s run time (~ 30 minutes)

• Stripe settings:  count -1, size 1M, index -1.
– 625 s run time (~ 10 minutes)

• Results
– 66% decrease in run time.
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I/O Scalabity

• Lustre
– Minimize contention for file system resources.

– A process should not access more than one or two OSTs.

– Decrease the number of I/O operations (latency).

– Increase the size of I/O operations (bandwidth).
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Scalability

• Serial I/O:

– Is not scalable. Limited by single process which performs I/O.

• File per Process

– Limited at large process/file counts by:

• Metadata Operations

• File System Contention

• Single Shared File

– Limited at large process counts by file system contention.
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High Level Libraries

• Provide an appropriate 
abstraction for domain
– Multidimensional datasets

– Typed variables

– Attributes

• Self-describing, structured file 
format

• Map to middleware interface
– Encourage collective I/O

• Provide optimizations that 
middleware cannot
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POSIX

• POSIX interface is a useful, ubiquitous interface for building 
basic I/O tools.

• Standard I/O interface across many platforms. 

– open, read/write, close functions in C/C++/Fortran

• Mechanism almost all serial applications use to perform I/O

• No way of describing collective access

• No constructs useful for parallel I/O.

• Should not be used in parallel applications if performance is 
desired !



I/O Libraries

• One of the most used libraries on Jaguar and Kraken.

• Many I/O libraries such as HDF5 , Parallel NetCDF and 
ADIOS are built atop MPI-IO.

• Such libraries are abstractions from MPI-IO.

• Such implementations allow for higher information 
propagation to MPI-IO (without user intervention).
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MPI-I/O: the Basics

• MPI-IO provides a low-level interface to carrying out parallel I/O

• The MPI-IO API has a large number of routines.

• As MPI-IO is part of MPI, you simply compile and link as you would 
any normal MPI program.

• Facilitate concurrent access by groups of processes
– Collective I/O

– Atomicity rules



I/O Interfaces : MPI-IO

• MPI-IO can be done in 2 basic ways :

• Independent MPI-IO
– For independent I/O each MPI task is handling the I/O independently using

non collective calls like MPI_File_write() and MPI_File_read().

– Similar to POSIX I/O, but supports derived datatypes and thus
noncontiguous data and nonuniform strides and can take advantages of
MPI_Hints

• Collective MPI-IO
– When doing collective I/O all MPI tasks participating in I/O has to call the

same routines. Basic routines are MPI_File_write_all() and
MPI_File_read_all()

– This allows the MPI library to do IO optimization
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MPI I/O: Simple C example- ( using individual pointers)

/* Open the file */

MPI_File_open(MPI_COMM_WORLD,‘file’, MPI_MODE_RDONL Y, MPI_INFO_NULL,&fh);

/* Get the size of file */

MPI_File_get_size(fh, &filesize);

bufsize = filesize/nprocs;

nints = bufsize/sizeof(int);

/* points to the position in the file where each process will start reading data */

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);

/* Each process read in data from the file */

MPI_File_read(fh, buf, nints, MPI_INT, &status);

/* Close the file */

MPI_File_close(&fh);

41



MPI I/O: Fortran example- ( using explicit offsets )

! Open the file 

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘file', MPI_MODE _RDONLY, MPI_INFO_NULL, fh, ierr)

! Get the size of file 

call MPI_File_get_size(fh, filesize,ierr);

nints = filesize/ (nprocs*INTSIZE)

offset = rank * nints * INTSIZE

! Each process read in data from the file 

call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_I NTEGER, status, ierr)

! Close the file 

call MPI_File_close(fh,ierr);
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Collective I/O with MPI-IO

• MPI_File_read[write]_all, MPI_File_read[write]_at_all, …
– _all indicates that all processes in the group specified by the communicator passed to

MPI_File_open will call this function

• Each process specifies only its own access information – the argument list is the
same as for the non-collective functions.

• MPI-IO library is given a lot of information in this case:
– Collection of processes reading or writing data

– Structured description of the regions

• The library has some options for how to use this data
– Noncontiguous data access optimizations

– Collective I/O optimizations
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MPI Collective Writes and Optimizations

• When writing in collective mode, the MPI library carries out a number of optimizations

– It uses fewer processes to actually do the writing

• Typically one per node

– It aggregates data in appropriate chunks before writing
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MPI-IO Interaction with Lustre

• Included in the Cray MPT library.

• Environmental variable used to help MPI-IO optimize I/O performance:

– MPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)

– MPICH_MPIIO_HINTS Environmental

– Can set striping_factor and striping_unit for files created with MPI-IO.

– If writes and/or reads utilize collective calls, collective buffering can be utilized 
(romio_cb_read/write) to approximately stripe align I/O within Lustre.

– man mpi for more information
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MPI-IO_HINTS

• MPI-IO are generally implementation specific.  Below are options from 
the Cray XT5. (partial)
– striping_factor  (Lustre stripe count)

– striping_unit  (Lustre stripe size )

– cb_buffer_size  ( Size of Collective buffering buffer )

– cb_nodes ( Number of aggregators for Collective buffering )

– ind_rd_buffer_size ( Size of Read buffer for Data sieving )

– ind_wr_buffer_size ( Size of Write buffer for Data sieving )

• MPI-IO Hints can be given to improve performance by supplying more 
information to the library.  This information can provide the link 
between application and file system.
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Buffered I/O

• Advantages
– Aggregates smaller read/write 

operations into larger operations.

– Examples:  OS Kernel Buffer,  
MPI-IO Collective Buffering

• Disadvantages
– Requires additional memory for 

the buffer.  

– Can tend to serialize I/O.

• Caution
– Frequent buffer flushes can 

adversely affect performance.

47

Buffer



Case Study:  Buffered I/O

• A post processing application writes a 1GB file.

• This occurs from one writer, but occurs in many small write operations.

– Takes 1080 s (~ 18 minutes) to complete.

• IO buffers were utilized to intercept these writes                                                                      
with 4 64 MB buffers.

– Takes 4.5 s to complete.  A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
Calls Seconds Megabytes Megabytes/sec Avg Size

Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 666860 72
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15
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I/O Best Practices 

• Read small, shared files from a single task 
– Instead of reading a small file from every task, it is advisable to read the entire file from one 

task and broadcast the contents to all other tasks.

• Small files (< 1 MB to 1 GB) accessed by a single process
– Set to a stripe count of 1.

• Medium sized files (> 1 GB) accessed by a single process
– Set to utilize a stripe count of no more than 4.

• Large files (>> 1 GB)
– set to a stripe count that would allow the file to be written to the Lustre file system.

– The stripe count should be adjusted to a value larger than 4.

– Such files should never be accessed by a serial I/O or file-per-process I/O pattern.
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I/O Best Practices (2)

• Limit the number of files within a single directory
– Incorporate additional directory structure

– Set the Lustre stripe count of such directories which contain many small files to 1.

• Place small files on single OSTs
– If only one process will read/write the file and the amount of data in the file is small (< 1 MB to 

1 GB) , performance will be improved by limiting the file to a single OST on creation. 

�This can be done as shown below by: # lfs setstripe PathName -s 1m -i -1 -c 1

• Place directories containing many small files on single OSTs 
– If you are going to create many small files in a single directory, greater efficiency will be 

achieved if you have the directory default to 1 OST on creation

����# lfs setstripe DirPathName -s 1m -i -1 -c 1
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I/O Best Practices (3)

• Avoid opening and closing files frequently
– Excessive overhead is created. 

• Use ls -l only where absolutely necessary
– Consider that “ls -l” must communicate with every OST that is assigned to a file being listed 

and this is done for every file listed; and so, is a very expensive operation. It also causes 
excessive overhead for other users. "ls" or "lfs find" are more efficient solutions.

• Consider available I/O middleware libraries 
– For large scale applications that are going to share large amounts of data, one way to improve 

performance is to use a middleware libary; such as ADIOS, HDF5, or MPI-IO.
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Protecting your data HPSS

• The OLCF High Performance Storage System (HPSS) provides longer term storage 
for the large amounts of data created on the OLCF / NICS compute systems. 

• The mass storage facility consists of tape and disk storage components, servers, 
and the HPSS software.

• Incoming data is written to disk, then later migrated to tape for long term archival. 

• Tape storage is provided by robotic tape libraries
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HPSS

• HSI
– easy to use (FTP-like interface)

– fine-grained control of parameters

– works well for small numbers of large files

• HTAR
– works like tar command

– treats all files in the transfer as one file in HPSS

– preferred way to handle large number of small files

• More information on NICS/OLCF website
– http://www.nics.tennessee.edu/computing-resources/hpss

– http://www.olcf.ornl.gov/kb_articles/hpss/

54



Further Information
• NICS website

– http://www.nics.tennessee.edu/I-O-Best-Practices

• Lustre Operations Manual
– http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf

• The NetCDF Tutorial
– http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial.pdf

• Introduction to HDF5
– http:// ww.hdfgroup.org/HDF5/doc/H5.intro.html

55



Further Information MPI-IO

– Rajeev Thakur, William Gropp, and Ewing Lusk, "A Case for Using 
MPI's Derived Datatypes to Improve I/O Performance," in Proc. of 
SC98: High Performance Networking and Computing, November 
1998.
• http://www.mcs.anl.gov/~thakur/dtype

– Rajeev Thakur, William Gropp, and Ewing Lusk, "Data Sieving and 
Collective I/O in ROMIO," in Proc. of the 7th Symposium on the 
Frontiers of Massively Parallel Computation, February 1999, pp. 
182-189.
• http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf

– Getting Started on MPI I/O, Cray Doc S–2490–40, December 
2009.
• http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
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Thank You !
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