Debugging CUDA Accelerated MPI Codes

Chris Gottbrath
Principal Product Manager, Rogue Wave Software

Aug 16th, 2011

a

Agenda

* Rogue Wave Software
— TotalView
— MemoryScape
— ReplayEngine
— ThreadSpotter
« CUDA Debugging
— Intro and Demo
* Memory Debugging
« Automated Debugging
* Technology Update
— New Features and Capabilities
— Scalability
« Conclusion

Rogue Wave Today

f’\

SOFTWARE

(VisualN@izSQ

Leader in embeddable math
and statistics algorithms and
visualization software for data-
intensive applications.

The largest independent provider of

cross-platform software development

ROGUE WAVE® tools and embedded components for the

next generation of HPC applications

(PR

. SLMTIEm

multicore performance

Leading provider of intelligent

software technology which
analyzes and optimizes

computing performance in single

a

nd multi-core environments.

2 | Copyright © 2010 Rogue Wave Software | All Rights Reserved

T

TOTALVIEW

Industry-leading interactive
analysis and debugging tools for
the world's most sophisticated

software applications.

Rogue Wave Product Offerings

SourcePro C++

_ ImMsL)

3 | Copyright © 2011 Rogue Wave Software | All Rights Reserved

What is TotalView?

Application Analysis and Debugging Tool: Code Confidently

— Debug and Analyze C/C++ and Fortran on Linux, Unix or Mac OS X
— Laptops to supercomputers (BG, Cray)

— Makes developing, maintaining and supporting critical apps
easier and less risky

Action Point Tools ~ Window

» ‘
Run To

File Edit View Group Process T

thirds bt [> ii ib 3 ‘?j 3

Go Halt Kill Restart | Next Step Out

=E========°= nux (Stopped) E=E=========

Stack Trace Stack Frame

3 ||Function "snore": A
J 0x00000000 =

select,
ait a while,

Major Features

— Easy to learn graphical user interface with data
visualization

RN T ==
— Parallel Debugging

« MPI, Pthreads, OpenMP, GA, UPC
« CUDA Support available

— Includes a Remote Display Client freeing users to work from
anywhere

— Includes Memory Debugging with MemoryScape
— Reverse Debugging available with ReplayEngine
— Includes Batch Debugging with TVScript and the CLI

arg:
Block "$hl#$h2":
i {struct timeval)

imeout:
Block "$hl":
e -

What Is MemoryScape?

Runtime Memory Analysis : Eliminate Memory Errors

— Detects memory leaks before they are a problem
— Explore heap memory usage with powerful analytical tools
— Use for validation as part of a quality software development process

Major Features

— Detects

* Malloc API misuse

* Memory leaks

« Buffer overflows
— Supports

¢ C, C++, Fortran

* Linux, Unix, and Mac OS X

* MPI, pthreads, OMP, and remote apps
— Low runtime overhead
— Easy to use

« Works with vendor libraries

* No recompilation or instrumentation
— Enables Collaboration

~Cpticne

W Detec: Ledes W Ssixvets Buzein: B Encbie Fitznng ‘ m - . n
— ——— ——

 —

- ——
Mininry blick:
Tyee _eaad
Fikzred "0
Sie =14
BRI I EC T H o ol [
Frd ddreses TI9E10T
Beacet 2
Pont of allecation:
=eozinto natlzn | s Mresws e | Filz s Tas
Memod Ty CassEnm
Lew K
Carwed Flocks:

3

~CreneHl Tilas

Sla Andries B R

£n: Adzmn Dy 43¢ Chytes

o Eibr SATITIIT luzed Eloc

Type Fot prd N
Pre-guatd e ?hy;x s (] ¥
IS AT

What Is ReplayEngine?

* Reverse Debugging Tool: Radically simplify your debugging

— Captures and Deterministically Replays Execution

— Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
— Step Back and Forward by Function, Line, or Instruction

* Major Features

— Simple extension to TotalView
* No recompilation or instrumentation
* Explore data and state in the past just like in a

live process

— Supported on Linux x86 and x86-64
— Supports MPI, Pthreads, and OpenMP

40
a1
a2
43
44
45
46
=D
48

Ll Y

int funcBi{int
int ¢;
int 1i;
int v[MAXDEPT
int

—b+2

p=&C;

49 pif (c<MRXDEPTH

c=funch{c);

| SI| for (i= arrayl

v[i]=*p;

Group {Control)

]

PHEB B 5935 @«

Go Halt Kill Restart| Next Step Out Run To

9 2

vaUnS@pCderaﬁTo

o2
EWAVE

SOFTWARE

What is ThreadSpotter?

Runtime Cache Performance Optimization Tool: Tune into the Multi-Core Era
— Realize More of the Performance Offered by Multi/Many-Core Chips

— Quickly Detects and Prioritizes Issues -- and then Provides Usable Advice!
Brings Cache Performance Into Reach for Every Developer
Makes Experienced Cache Optimizers Hyper-Efficient

Features

Supports Linux x86/x86-64
Any compiled code
Runtime Analysis

Low overhead
Cache Modeling

Prioritizes Issues
Identifies Problem Lines of Code

Provides Advice
Explanations
Examples
Detailed statistics (if desired)

|3 Acumem VPE: ./art (64k/é4) - Mozilla Firefox

arkv Bedigere Viga Wik Bokmarken verktyg Hplp

@ - - @ & [0 fleryrcpo osettings/Erik1 dakument/Acumem/Pr

Summary | Loaps || Bandwidth Tssues || Latency Tssues || Files || Execution || About/Help

% of

fovhes = Utilzation HW-Prefetch Randomaess
113 Paor uiization = 294% 124% 1000% Low
114 Loop fision 99 29.4% 124% 976% Low
L7l Inefficient loop nesting &) 29.2% 12.6% 0.0% Low
302 Loop fision 99 4.4% 1L8% 973% Low
g Poor utization & 14% 2.7% 100.0% Low

/SC07/Deme/acumen

Issue #8: Cache line utilization &
This snstruction group also show symptems of 8 Hot|Splanation]

= Statistics for instructions of this issue

N L

iy T

+ Instructions involved in this issue
+ Instructions previously writing to related data
+ Loop statistics

+ Loop instructions

-report-art.html

|] [IC]

561
s82
=63
564
565
s8e
=57
568 Hje.ex
Do
565
~| [¢

file:///C:/Documentz and] dokumant, Co7/Damo)

desc.htmi#dese_utilzation

Programming for the GP-GPU

- CUDA

- rhungtFi,%n-like kernels are written for the calculations to be performed on
e

« Data parallel style, one kernel per unit of work

— Presents a hierarchical organization for thread contexts
* 2D grid of blocks
* 3D block of thread

— Exposes memory hierarchy explicitly to the user

— Includes routines for managing device memory and data movement to
and from device memory using streams

* Programming challenges

— Coordinating CPU code + device code

— Understanding what is going on in each kernel
« Exceptions

— Understanding memory usage
— Understanding performance characteristics

TotalView for CUDA

File Edit View Group Process Thread Action Point Debug Tools Window Help

Group (Contral) _’|b @ 53 5« € 3 1+ 3 1 B

Go Halt Kill Restart| Next Step Out Fun To| GoBack Prey UnStép Cailer BackTo Li\;'e

. Process 1 (20242): tx_cuda_matmul (Stopped) === —————————

] Thread -1 (=<=(1,1),(1,1,0)>>>): @TEMP@CUDA®.b<_cuda_matmul e4374cid (Stopped) <Trace Trap> i
Stack Trace il Stack Frame
C++| MatMulKernel, FP=1c97e360 |4 ||Function "MatMulKernel<<< (10,10}, (2,2, 1)>>>":[&
Device: 0/1
SM /WP /LN : 0/11/3 of 1/32/32
A: (Matrix const @parameter)
B: (Matrix const @parameter)
C: (Matrix const @parameter)
Block "$hl":
hlockRow: 0x00000001 (1)
blockCol: 0x00000001 (1)
Csub: (Matrix @local)
Cvalue: <Bad address: %f2>
/ e DA ~AAvnnns ©wDTN J’—
Function MathulKernel in t¢_cuda_matmul.cu = =]
82 cudaFree (d_A. elenents); A
83 cudaFree (d_B. elements) ;
84 cudaFree (d_C. elements) ;
85} File Edit View Tools Window Help |
86 - e > T3 o
87 // Matrix multiplication kernel called by Matri [i-1 = == | ¥ e | K€M
88 __global _ void MatMulKernel(Matrix &, Matrix E Expression: A Address: 0x00000010
89 ¢ . ;
90 // Block row and column Type: @parameter const Natrix
91 int blockRow = blockIdx.y; Field | Type [value T
92 int blockCol = hlockIdx. x; th -
93 // Each thread block computes one sub-matrix {” W'_ int 0x0000003c (60)
Matrix Csub = GetSubMatrix(C, hlockRow, hlock i~ height int 0x00000014 {20)
95 // Each thread computes one element of Csub - stride int 0x0000003¢ (60)
gg é{og{ gg;‘jlﬂgl:tal'.\g results into Cvalue - glements float @global * 0x00110000 ->0
98 // Thread row and column within Csub
99 int row = threadIdx.y;
int col = threadIdx.x;
101 // Loop over all the sub-matrices of A and B
102 // required to compute Csub
103 // Multiply each pair of sub-matrices togethe S —— |
104 // and accumulate the results ¥
[~

i
Action Points] Prgcesses]Th[eads] Phy[l0 140 |3 11 55 |2 2 e s |
1.1 (47567291993984) T at 0x2b431£97d429 /|
1.-1 ((1,1)(1,1,00) T in MatMulKernel

Characteristics

Debugging of application running on
the GPU device (not in an emulator)

Full visibility of both Linux threads and
GPU device threads

Fully represent the hierarchical
memory

Thread and Block Coordinates
Device thread control

Handles CUDA function inlining
Reports memory access errors
Multi-Device Support

Can be used with MPI

Supports CUDA 4.0 (in beta)

Memory Debugging

* Heap Memory
— User is responsible for managing
— C: Malloc / Free
— C++: New / Delete
— F90: Allocate / Deallocate

- Buffer Overrun / Array Bounds Violations
* Memory Leaks
* Memory Optimization

Heap Array Bounds Violations

Writing Outside of Allocation
— Can result in random errors
— Dangling pointer
— Array index error (off by one)

* Guard Blocks

Fast
Notification on demand
Notification after free

* RedZones

— Heavier (page per allocation)
Fast
— Notification at point of error

Lightweight (few byes per allocation)

Save Data
Save Report...
Export Memory Data..

Other Reports Categ

Hea

Memory Usage Repor|
Leak Detection Repor

s ~ | Memory Usage

ory | Memory Comparisons

August 14, 2011| Corrupted Memory Repor

~Options
I~ Enable Filtering

p Status Reports

| 0026 30930 04 bytes wnnsIensf| || 05006300 G4 bites n063encT| | |0#2062eme0 64 bifes 05 3eb 1|

Compare Memory Us¢ |oxase 336 64 byts cu0ts 3eb77| 040565490 64 bites P I G4 byt 06T
Other Tasks | OesEs 2z B4 byt oosEsec?| | owess zecss B4 byt o6 0dt | |omezecn B4 byt 0088 2ed 21|
; o bytes o s s «
Manage Filters
| onees 3834 B4 bites M5 30327 | | owe6 2000 64 bytes w086 3eddt| [T 64 botes w9637 |
Baddtrace/Source | Memory Content
Badktrace | Source
/homefubuntud

Pr

August 14, 2011

Event Reports
By Event

Save Data
Export Memory Data

Select process(es)

nd Files

ocess Selection

=2 [
malloc 166 malloc_wrappers_diopen.c | [MB& for (j=0; <6 ; j++)
™ corupt dais | tosmancx]

main 295 main.cxx

! __libc_start_main libc.s0.6

_start filterapp

g LPUoHs 1 Ips

al Handling

By Process

Use the tabs to explore where the event occurred. If there is @ memory block associated with the event allocation,
deallocation and block details will also be available.

Process 1 (3588): filterapp Time: 02:17:50

Event: Red Zone overrun error - Bounds error: Attempting to access memory beyond the end of an allocated
block

Event Location IAllocation Location | Deallocation Location | Block Details |
Backtrace

419rz_controls.c

- first_level_handler 606 signal_manager.c

= __kemel_rt_sigreturn @ syscall_liorary@-32 I
ain 295 main cxx
e atart mansin e on R -

fhome/ubuntu/sre/ main.cxx

pT = [Nt malloc{ slze ~ sizeof[1Nt) J, 5|
p2 = (Int*) malloc{ size * sizeof{ int));

Leak Detection

Window Help
[.l Configuration | Leak Detection | Heap Status lMemory Usage | Memory Compare | Leak Detecti on
— Options
| B T Esinfee JRN T Y | Il . Based on Conservative Garbage
— E— 1 — — — Collection
— — — 1 — — L
—— N N N » Can be performed at any point in
 — — | - \ — runtime
—
* Helps localize leaks in time
— e Multiple Reports
S I~

'

Backtrace Report

Heap Information IBacktraceISource I Memory Content |
— Related Blocks

| — Overall Totals fJ— Selected Block fJ

Category I B_y Property | alue Iﬂ ° Source COde StrUCtU re

Heap Start A... 0x00663890
B0 Allocated 14: End A.. 0x00BE38bS 10.25KB e Graphically Memory Location
;[Corrupted Guard Blocks Size 41 3locks 1]
¢}l Deallocated ! Type Allocated 0
b+ Guard Blocks Fi Filtered Mo | 0 kd

| = Backtr... 14 |/ El-8=

12 ROGUE WAVE

TotalView Technologies Confidential

Memory Optimization

* Prevent OOM

ary eak Detection v | Heap Status ~ | Memory Usage ~ | Corrupted Memory | Memory
errors
August 14, 2011| Heap Status Source Report
Save Data ~Data Source Options
[
Mem Usage Save Report... @ Allocatons ¢ Deallocations © Hoard © Red Zones (l‘ Detect Lezks I” Relative to Baseline ™ Enable Filtering
Export Memory Data..
- Pel" process Heap Status Reports| |= A
Graphical Report =-Process 1 (3554): filterapp 2.15KB 22
H Backtrace Report =} Main.cxx 1180 20
- Pel" |Ib|"a|"y = comupt_data 1088 17
Other Reports Categ| i ZLine 109 384 6
H Leak Detection Repor T
- Pel" funCtlon Memory Usage Repor L?ne 10 o s
gonupted'ylemory Re i “a'l-‘”e 108 3:: g
ompare Memory Us: = main
° % Line 318 64 1
Compare Other Tasks 6»L;ne 315 16 1
Manage Filters +-Line 320 12 1
- Between - myClassA.co 1024 2
o & myClassA:myClassA 1024 2
* Processes
* Points in Time =
Backrace Source
. Datasets
* Runs I

« Track
— Automate reporting

Automatic Debugging

* Non-Interactive Batch Debugging
— Work in the “main” batch queue
— Don’ t have to baby-sit job waiting on it to run

— Can script to perform checks that would be tedious to do by hand
— Verification can be part of automated processes (nightly build and test)

- Automatic Transformation of Data
— Simplify interactive (and scripted) debugging
— Perform validation/sanity checking of large datasets
— Comparative debugging
— Allows you to focus on troubleshooting your program

TVScript Overview

- Gives you non-interactive access to TotalView’ s capabilities

* Useful for
— Debugging in batch environments
— Watching for intermittent faults
— Parametric studies
— Automated testing and validation
- TVScript is a script (not a scripting language)
— It runs your program to completion and performs debugger actions on it
as you request
— Results are written to an output file
— No GUI
— No interactive command line prompt

TVScript Syntax

tvscript syntax:

. tvscript [options] [filename | [-a program_args |

Options express (“event”,”action”) pairs

e Typical events
e Action_point
* Any_memory_event
e Guard_corruption
o error

e Typical actions

« Display_backtrace [-level level-num] [num_levels] [options]

o List_leaks
e Save_memory
* Print [-slice {slice_exp] {variable | exp}

Example

°! Process:
./server (Debu
*! Thread:

Debugger ID:

°! Time Stamp:
06-26-2008 14:

actionpoint
°! Results:
foreign addr
sin_family
sin _port =
sin_addr =
s_addr =
}
sin_zero

}

gger Process ID: 1, System ID: 12110)
1.1, System ID: 3083946656

04:09

°! Triggered from event:

{
0x0002 (2)
0x1fb6 (8118)
{
0x6658a8c0 (1717086400)

-create_actionpoint "#85=>print foreign_addr”

C++View

C++View is a simple way for you to define type transformations
— Simplify complex data

— Aggregate and summarize

— Check validity

Transforms NE—

T b d Fle Edit View Group Frocess Thread Action Point Debug Tools Wil Fle Edt View Tools Window Help

— e-pase , ‘ K CERE IS

yp Gopicowey (PHME B 538 € 9 1 Dt
——ttee—t—— G0 Halt Kl Restart Next Step Out Run To Expression: triangle Address: | Oxbrb05754

- Com pose'able BERENEEERERE Process 1 (19525): miestone_example {Stopped) B UCE S0 VECIorestd: vectore double std: alocatorc double> > 810 2
(NN

Thread 1 (19525) (Stopped) <Trace Trap>

— Automatically Stack Trace ; Stag] — Type vaue -

[

) (2] main, Pmﬂqg?lgj Fu::\.‘llul‘. “main [240)fonk) sting ‘empty!”
V|S|b|e Taitfz:f:un*““n' §§ZE§51535-"» J ml’iu"’éi’-?ﬁ“j =) .a.-.:':w.._.f--_:; doubla(1] (Array)
- . (0] double 0
Code | Fesat variavled o ay2) wony) doudlel2] (Array)
Function main I mikastons_axampi oo 0] doudle 0
_ C'H' 12 (1] doubla 2
3; int TV _display typelconst vector<vector<double> > *
— Easy to write C3 for (me & = 05 & < wwd->sizel); 1o4) a48) on song oy
47 char name(64], type[64]; $sting emply '
_ ReSides 48 sprintf({name, “at(%ld).front()*, (leng) 1);
43 sprintf{type, "double[%1d]”, (long) wvvd->at(i).size());
in target o1 int status;
53 Lf {wwd->at{i).size() == 0)
—_ Only ca"ed by :g status : T'a'_a;d_;-:‘w(nano. TV ascii_string type, “empty!"):
. 56 h;:ar_u: = TV_add_row(name, type, évvd->at(i).front()):
TotalView 7 | :
20 if (status != 0)
59 break;
‘; return TV _format_OK;
£n /

]

J -
Action Points Prg:»:«ss»:«s' Threads s Jd il el)
L o

SOFTWARE

C++View Interface

 Only two functions:

int TV_ttf_display_type (constT *)

int TV_ttf_add_row (
const char * field_name,
const char * field_type,
const char * address)

Scalability In TotalView Today

* A Long History of Leadership
— Have worked with customers such as LLNL, LANL, Sandia and others on
scalability improvements for many years
* TotalView Architecture

— No Hard Limit
— Multi-Platform (Cray, IBM BG, Linux Clusters, etc..)
— Efficient Use of Cluster Resources

« Extremely light weight debug agents

 Minimal memory footprint (efficient shared data structures)
 Each agent can control many processes and threads

— Challenging User Applications
* More space on the compute nodes for user application code

— Full Control of Debugger Components
« Changes focused on HPC needs
« Customer Experiences

— TotalView is regularly used to debug scales of up to 10k processes
— TotalView is also used on >10k processes

Research and Development

Current Focus Areas

Transition TotalView from a flat 1:N communication to a tree
Scalable presentation of state and data
Usability at scale

Application driven tuning: Optimization focused on real-world applications and workloads
* Across various machines

Goals

Provide performance at >100,000 tasks to be debugged
Setting the stage for the millions of tasks we expect to see at exascale

Several Concurrent Projects

FastOS project with Bart Miller and Mike Brim of University of Wisconsin
« TBON-FS Group File Operations
+ Academic research based on MRNet & Dyninst components
LLNL Petascale Parallel Debugger Scalability contract
* MRNet - productR&D
* Multi-platform: BlueGene/Q, Cray XT/XE/XK, Linux Cluster
* Preliminary results
- First user observable improvements are in start up time
- 5x improvement in at-scale start up performance on Cray
— 20x improvement in at-scale start up performance on a “vanilla” linux cluster.
LLNL IDDA Dynamic Application contract
+ Focusing on a class of tool-breaking applications
« Thousands of DLLs and Huge Symbol Table Size

Peta and Exascale Scalability

R&D work is planned to roll into the product releases 2012 and 2013

— Multi-platform Application Based Optimization
 Cray XT/XE/XK, Blue Gene/Q, Linux clusters
« Scientific applications including especially dynamic apps
* GPU accelerated cluster scalability

— Tree-Based Overlay Network

+ Broadcast of Operations
* Aggregation of Events and Data

— Ul Layer
* New GUI Framework
+ Co-Design of Advanced Displays for Debugging at Scale
« Simplifed Discovery of Relevant Information Through Aggregation
These changes set the stage for exascale debugging
— Multi-platform
— Highly real-world optimized
— Tree based
— Low resource usage
— Support for computational accelerator technology

— Highly flexible architecture with an exclusive focus on HPC

Recent Changes

« TV 8.9 series

— Powerful parallel debugging

Support for CUDA 3.0 - 4.0 (in beta)

New Views: Multi-dimensional Array & Parallel
Backtrace

C++View and TVScript for Automatic Debugging
Easy and Secure Remote Graphical Display
— Updated platform support

* ReplayEngine 2.0 series

Deterministic Replay Radically Transforms
Debugging
Brings Reverse Debugging to HPC Clusters

* MemoryScape 3.2 series

Memory Leaks and Array Bounds Checking for
HPC

Red Zones for Instant Array Bounds Checking

* ThreadSpotter 2011

Memory Cache Optimization Made Easy

,
15|

Help

—#%H Expression: [mt_AD_array

;:“. Enter the array slice to display:

Type: infS|[7)IS][11]

ohn Dimension | Start Index End Index Stride ‘
\. Row [il 4 1 Update View
BMELL Column |[j] 4 0 [1

.. || Selectan index for the other dimensions:

[E3] O N6)1 = S5 | O B 0| (O

Slice: [0:4:1)(0:6:1][0:0:1)[0:0:1)

e
Automatic
[31:0

[4]:0 |0x00000000 (0)

1 ‘0.*.00000%3 (1000)
2 [UxDDDDU'ldU (2000)
3 ‘U:(UDDDUbe (3000)
4 [OxDODOUfaU (4000)

I |2 [3
0x00000064 (100) 0x000000c8 (200) 0x0000012¢ (300)

0x0000044c (1100) 0x000004b0 (1200) 0x00000514 (1300}
0x00000834 (2100) 0x00000898 (2200) 0x000008fc (2300
0x00000cle (3100) 0x00000cB0 (3200) 0x00000ced (3300
0x00001004 (4100) 0x00001068 (4200) 0x000010cc (4300;

[€ Acumem VPE: Jart (64k/64) - Mozilla Firefox EX)
v geckers ve mmrk pkmerten vertg b
[GECEN)

Summary

Rogue Wave
HPC tools, components and libraries
Parallel Programming is Hard, We Make it Easier

Debugging with the TotalView Family of Products
— Advanced, Scalable, Graphical, Easy to Use

— MPI Debugging

— CUDA Debugging

— Memory Debugging

— Automated Debugging

— Deterministic Reverse Debugging

Optimization with ThreadSpotter
— Programmer Friendly Analysis of Cache and Memory Use

Thanks!

Contact me

— Chris.Gottbrath@RogueWave.com

or my colleagues

— lan.Dillan@RogueWave.com

— Ed.Hinkel@RogueWave.com

or for more information

Check out: www.roguewave.com

Email: TVSupport@roguewave.com

