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What is TotalView?

Application Analysis and Debugging Tool: Code Confidently

— Debug and Analyze C/C++ and Fortran on Linux, Unix or Mac OS X
— Laptops to supercomputers (BG, Cray)

— Makes developing, maintaining and supporting critical apps
easier and less risky
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Major Features

— Easy to learn graphical user interface with data
visualization

RN T ==
— Parallel Debugging

« MPI, Pthreads, OpenMP, GA, UPC
«  CUDA Support available

— Includes a Remote Display Client freeing users to work from
anywhere

— Includes Memory Debugging with MemoryScape
— Reverse Debugging available with ReplayEngine
— Includes Batch Debugging with TVScript and the CLI
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What Is MemoryScape?

Runtime Memory Analysis : Eliminate Memory Errors

— Detects memory leaks before they are a problem
— Explore heap memory usage with powerful analytical tools
— Use for validation as part of a quality software development process

Major Features

— Detects

* Malloc API misuse

*  Memory leaks

« Buffer overflows
— Supports

¢ C, C++, Fortran

* Linux, Unix, and Mac OS X

* MPI, pthreads, OMP, and remote apps
— Low runtime overhead
— Easy to use

«  Works with vendor libraries

* No recompilation or instrumentation
— Enables Collaboration
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What Is ReplayEngine?

* Reverse Debugging Tool: Radically simplify your debugging

— Captures and Deterministically Replays Execution

— Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
— Step Back and Forward by Function, Line, or Instruction

* Major Features

— Simple extension to TotalView
* No recompilation or instrumentation
* Explore data and state in the past just like in a

live process

— Supported on Linux x86 and x86-64
— Supports MPI, Pthreads, and OpenMP
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What is ThreadSpotter?

Runtime Cache Performance Optimization Tool: Tune into the Multi-Core Era
— Realize More of the Performance Offered by Multi/Many-Core Chips

— Quickly Detects and Prioritizes Issues -- and then Provides Usable Advice!
Brings Cache Performance Into Reach for Every Developer
Makes Experienced Cache Optimizers Hyper-Efficient

Features

Supports Linux x86/x86-64
Any compiled code
Runtime Analysis

Low overhead
Cache Modeling

Prioritizes Issues
Identifies Problem Lines of Code

Provides Advice
Explanations
Examples
Detailed statistics (if desired)
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Programming for the GP-GPU

- CUDA

- rhungtFi,%n-like kernels are written for the calculations to be performed on
e

« Data parallel style, one kernel per unit of work

— Presents a hierarchical organization for thread contexts
* 2D grid of blocks
* 3D block of thread

— Exposes memory hierarchy explicitly to the user

— Includes routines for managing device memory and data movement to
and from device memory using streams

*  Programming challenges

— Coordinating CPU code + device code

— Understanding what is going on in each kernel
« Exceptions

— Understanding memory usage
— Understanding performance characteristics



TotalView for CUDA
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Characteristics

Debugging of application running on
the GPU device (not in an emulator)

Full visibility of both Linux threads and
GPU device threads

Fully represent the hierarchical
memory

Thread and Block Coordinates
Device thread control

Handles CUDA function inlining
Reports memory access errors
Multi-Device Support

Can be used with MPI

Supports CUDA 4.0 (in beta)



Memory Debugging

* Heap Memory
— User is responsible for managing
— C: Malloc / Free
— C++: New / Delete
— F90: Allocate / Deallocate

- Buffer Overrun / Array Bounds Violations
* Memory Leaks
* Memory Optimization




Heap Array Bounds Violations

Writing Outside of Allocation
— Can result in random errors
— Dangling pointer
— Array index error (off by one)

* Guard Blocks

Fast
Notification on demand
Notification after free

* RedZones

— Heavier (page per allocation)
Fast
— Notification at point of error

Lightweight (few byes per allocation)
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Leak Detection
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Memory Optimization

*  Prevent OOM
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Automatic Debugging

* Non-Interactive Batch Debugging
— Work in the “main” batch queue
— Don’ t have to baby-sit job waiting on it to run

— Can script to perform checks that would be tedious to do by hand
— Verification can be part of automated processes (nightly build and test)

- Automatic Transformation of Data
— Simplify interactive (and scripted) debugging
— Perform validation/sanity checking of large datasets
— Comparative debugging
— Allows you to focus on troubleshooting your program



TVScript Overview

- Gives you non-interactive access to TotalView’ s capabilities

* Useful for
— Debugging in batch environments
— Watching for intermittent faults
— Parametric studies
— Automated testing and validation
- TVScript is a script (not a scripting language)
— It runs your program to completion and performs debugger actions on it
as you request
— Results are written to an output file
— No GUI
— No interactive command line prompt



TVScript Syntax

tvscript syntax:

. tvscript [ options ] [ filename | [ -a program_args |

Options express (“event”,”action”) pairs

e Typical events
e Action_point
* Any_memory_event
e Guard_corruption
o error

e Typical actions

« Display_backtrace [-level level-num] [num_levels] [options]

o List_leaks
e Save_memory
*  Print [-slice {slice_exp] {variable | exp}

Example

°! Process:
./server (Debu
*! Thread:

Debugger ID:

°! Time Stamp:
06-26-2008 14:

actionpoint
°! Results:
foreign addr
sin_family
sin _port =
sin_addr =
s_addr =
}
sin_zero

}

gger Process ID: 1, System ID: 12110)
1.1, System ID: 3083946656

04:09

°! Triggered from event:

{
0x0002 (2)
0x1fb6 (8118)
{
0x6658a8c0 (1717086400)

-create_actionpoint "#85=>print foreign_addr”




C++View

C++View is a simple way for you to define type transformations
— Simplify complex data

— Aggregate and summarize

— Check validity
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C++View Interface

 Only two functions:

int TV_ttf_display_type (constT *)

int TV_ttf_add_row (
const char * field_name,
const char * field_type,
const char * address)




Scalability In TotalView Today

* A Long History of Leadership
— Have worked with customers such as LLNL, LANL, Sandia and others on
scalability improvements for many years
* TotalView Architecture

— No Hard Limit
— Multi-Platform (Cray, IBM BG, Linux Clusters, etc..)
— Efficient Use of Cluster Resources

« Extremely light weight debug agents

 Minimal memory footprint (efficient shared data structures)
 Each agent can control many processes and threads

— Challenging User Applications
* More space on the compute nodes for user application code

— Full Control of Debugger Components
« Changes focused on HPC needs
« Customer Experiences

— TotalView is regularly used to debug scales of up to 10k processes
— TotalView is also used on >10k processes



Research and Development

Current Focus Areas

Transition TotalView from a flat 1:N communication to a tree
Scalable presentation of state and data
Usability at scale

Application driven tuning: Optimization focused on real-world applications and workloads
* Across various machines

Goals

Provide performance at >100,000 tasks to be debugged
Setting the stage for the millions of tasks we expect to see at exascale

Several Concurrent Projects

FastOS project with Bart Miller and Mike Brim of University of Wisconsin
«  TBON-FS Group File Operations
+ Academic research based on MRNet & Dyninst components
LLNL Petascale Parallel Debugger Scalability contract
*  MRNet - productR&D
*  Multi-platform: BlueGene/Q, Cray XT/XE/XK, Linux Cluster
*  Preliminary results
- First user observable improvements are in start up time
- 5x improvement in at-scale start up performance on Cray
—  20x improvement in at-scale start up performance on a “vanilla” linux cluster.
LLNL IDDA Dynamic Application contract
+ Focusing on a class of tool-breaking applications
«  Thousands of DLLs and Huge Symbol Table Size



Peta and Exascale Scalability

R&D work is planned to roll into the product releases 2012 and 2013

— Multi-platform Application Based Optimization
 Cray XT/XE/XK, Blue Gene/Q, Linux clusters
« Scientific applications including especially dynamic apps
* GPU accelerated cluster scalability

— Tree-Based Overlay Network

+ Broadcast of Operations
* Aggregation of Events and Data

— Ul Layer
*  New GUI Framework
+ Co-Design of Advanced Displays for Debugging at Scale
« Simplifed Discovery of Relevant Information Through Aggregation
These changes set the stage for exascale debugging
— Multi-platform
— Highly real-world optimized
— Tree based
— Low resource usage
— Support for computational accelerator technology

— Highly flexible architecture with an exclusive focus on HPC




Recent Changes

« TV 8.9 series

— Powerful parallel debugging

Support for CUDA 3.0 - 4.0 (in beta)

New Views: Multi-dimensional Array & Parallel
Backtrace

C++View and TVScript for Automatic Debugging
Easy and Secure Remote Graphical Display
— Updated platform support

* ReplayEngine 2.0 series

Deterministic Replay Radically Transforms
Debugging
Brings Reverse Debugging to HPC Clusters

*  MemoryScape 3.2 series

Memory Leaks and Array Bounds Checking for
HPC

Red Zones for Instant Array Bounds Checking

*  ThreadSpotter 2011

Memory Cache Optimization Made Easy

,
15|

Help

—#%H Expression: [mt_AD_array

;:“. Enter the array slice to display:

Type: infS|[7)IS][11]

ohn Dimension | Start Index End Index Stride ‘
\. Row [il 4 1 Update View
BMELL Column |[j] 4 0 [ 1

.. || Selectan index for the other dimensions:

[E3 ] O N6 )1 = S5 | O B 0| (O

Slice: [0:4:1)(0:6:1][0:0:1)[0:0:1)

e
Automatic
[31:0

[4]:0 |0x00000000 (0)

1 ‘0.*.00000%3 (1000)
2 [UxDDDDU'ldU (2000)
3 ‘U:(UDDDUbe (3000)
4 [OxDODOUfaU (4000)

I |2 [3
0x00000064 (100) 0x000000c8 (200) 0x0000012¢ (300)

0x0000044c (1100) 0x000004b0 (1200) 0x00000514 (1300}
0x00000834 (2100) 0x00000898 (2200) 0x000008fc (2300
0x00000cle (3100) 0x00000cB0 (3200) 0x00000ced (3300
0x00001004 (4100) 0x00001068 (4200) 0x000010cc (4300;

[€ Acumem VPE: Jart (64k/64) - Mozilla Firefox EX)
v geckers ve mmrk pkmerten vertg b
[GECEN)




Summary

Rogue Wave
HPC tools, components and libraries
Parallel Programming is Hard, We Make it Easier

Debugging with the TotalView Family of Products
— Advanced, Scalable, Graphical, Easy to Use

— MPI Debugging

— CUDA Debugging

— Memory Debugging

— Automated Debugging

— Deterministic Reverse Debugging

Optimization with ThreadSpotter
— Programmer Friendly Analysis of Cache and Memory Use




Thanks!

Contact me

— Chris.Gottbrath@RogueWave.com

or my colleagues

— lan.Dillan@RogueWave.com

— Ed.Hinkel@RogueWave.com

or for more information

Check out: www.roguewave.com

Email: TVSupport@roguewave.com




