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What i1is AVX?

Before VEX:

movsd (%rax, %r9), %xmmeo

movsd (%rax, %r8), %xmml

movsd 7%xmml, %xmm2

addsd %xmm@, %xmm2

After VEX:

vmovsd (%rax, %r9), %xmmeo

vmovsd (%rax, %r8), %xmml

vaddsd %xmm@, %xmml, %xmm2




Importance of Vectorization
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Know Your Target Processors

AMD Bulldozer PGl target processor flag : —tp bulldozer
Specify size of SIMD instructions : -Mvect=simd:[128|256]
Enable/Disable generation of FMA instructions: -[no]fma

Running FMA4 code on anything but Bulldozer will yield:
lllegal instruction (core dumped)

Make use of PGI Unified Binary technology to produce optimal code
paths for multiple x64 architectures within a single executable.




vzeroupper instruction generation

This instruction zeroes out the upper 128 bits of all the ymm registers
and marks them as clean.

If you mix 256-bit AVX instructions with legacy SSE instructions that use
xmm registers, you will incur performance penalties of roughly one
hundred cycles at the transition points.

The PGI compiler currently generates the vzeroupper instruction right
before a call is made. This is because we cannot be sure how the callee
has been compiled.

When compiling functions that perform AVXinstruction sequences, the
PGl compiler generates a vzeroupper instruction right before returning,
again because we cannot make assumptions about how the caller was
compiled.
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Questions/Comments about
programming with AVX on
Interlagos processors?




PGl

C99, C++, F2003 Compilers
= Optimizing
= Vectorizing
= Parallelizing
Graphical parallel tools
= PGDBG® debugger
= PGPROF® profiler
AMD, Intel, NVIDIA
64-bit / 32-bit
PGI Unified Binary™
Linux, MacOS, Windows
Visual Studio integration
GPGPU Features
= CUDA Fortran/C/C++
= PGI Accelerator™

= CUDA-x86

The Portland Group

Technology Prod Services

PGl Accelerator Files
Articles, tutorials, source code and
benchmarks to help you with your
x64+GPU software development.

PGI®Optimizing Fortran, C and C++ Compilers & Tools

PGl Workstation™ and PGl Server™ for x64

PGl optimizing multi-core x64 compilers for Linux, MacOS & Windows with
support for debugging and profiling of local MPI processes. A complete
OpenMP/MPI SDK for high performance computing on the latest Intel and AMD
CPUs. More info | Try | Buy

CUDA Fortran

CUDA Fortran enables GPU acceleration of HPC applications using the NVIDIA
CUDA parallel programming model in a native optimizing Fortran 2003 compiler.
Compatible and interoperable with NVIDIA's C for CUDA. More info | Try | Buy

PGl Accelerator™ C99 & Fortran

PGl Accelerator C99 & Fortran enable high level programming of HPC applications

for x64+GPU platforms using OpenMP-like compiler directives. Portable,
incremental, and easy to use for application domain experts. More info | Try | Bu

The PGl CDK® Cluster Development Kit

The PGI CDK includes optimizing Fortran/C/C++ compilers configured to build,
debug and profile MPI and hybrid MPI/OpenMP HPC applications for Linux or
Windows Clusters using the major open source MPl implementations or MSMPI.
More info | Try | Buy

PGI Visual Fortran® for Microsoft Windows

PCI Visual Fortran brings optimizing multi-core x64 Fortran with integrated
OpenMP/MPI debugging to scientists & engineers on Microsoft Windows within
Microsoft Visual Studio. More info | Try | Buy

Optimizing Performance Installation
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The emerging HPC architecture 1is
multi-core x64 + manycore GPUs
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Candidate GPU Codes

Code has lots of SPMD type parallelism

Performance profile:
= Several “hot spots” that can make good use of acceleration

= Flat profile with significant parallel computing in successive subroutines

Basic Porting Approach

Allocate arrays on GPU

Move data from host to GPU
Launch compute kernel on GPU
Move results from GPU to host

Deallocate arrays on GPU




What is CUDA Fortran?

CUDA Fortran is an analog to NVIDIA's C for CUDA

CUDA Fortran was co-defined by PGl and NVIDIA and
implemented in the PGl 2010 Fortran g5/03 compiler

Includes support for the full CUDA programming model
APl and introduces intuitive Fortran language extensions
to simplify host vs GPU data management

Is supported on Linux, MacOS and Windows, including
support within PGI Visual Fortran on Windows




Fortran?!? Really?

Clear, straight-forward syntax

Long legacy in the scientific community

Large existing code base

Semantics make it simpler to vectorize and parallelize

Array descriptors have been implemented since Fgo and allow
high-level operations

We can leverage descriptor extensibility to offload data and work
toa GPU

Modules add flexibility to overcome some CUDA limitations
Fortran 2003 improves encapsulation, adds type extension and
polymorphism

New abstraction features, high-level syntax, along with a
strongly-typed language lead to programmer productivity gains,
with no sacrifice in performance




CUDA Fortran in 2 slides

subroutine vadd( A, B, C )
use
use kmod
real, dimension(:) :: A, B
real, , dimension(:) :: C
real, , allocatable:: Ad(:), Bd(:), Cd(:)
integer :: N
N = size( A, 1)

end subroutine




CUDA Fortran VADD Device Code

module kmod

contains
attributes ( ) subroutine vaddkernel (A,B,C,N)
real, device :: A(N), B(N), C(N)
integer, :: N
integer :: 1i
i= ( -1)*32 +
if( i <= N ) C(i) = A(i) + B(I)
end subroutine
end module




CUDA Fortran
Matrix Multiply Host Routine

subroutine mmul( A, B, C )

real, dimension(:,:) :: A, B, C

real, @EFE8, allocatable, dimension(:,:)
[EBPSEEEs) :: dimGrid, dimBlock
! Begin execution
N = size( A, 1)
M = size( A, 2 )
L = size( B, 2 )
allocate (Adev(N,M), Bdev(M,L), Cdev(N,L))
Adev = A(1:N,1:M)
Bdev = B(1:M,1:L)
dimGrid = SNSRI
dimBlock = CENSNNSHNNGIN

Host routine to drive mmul_ kernel
Use module containing CUDA definitions

Declare allocatable device arrays

:: Adev,Bdev,Cdev

Define thread grid, block shapes

Allocate device arrays in GPU memory
Copy input A to GPU device memory
Copy input B to GPU device memory
Define thread grid dimensions

Define thread block dimensions
Launch mmul kernel on GPU

call mmul kernel SRGNCEIGNEINBISERNSS( Adev, Bdev, Cdev, N, M, L)

C(1:N,1:L) = Cdev
deallocate( Adev, Bdev, Cdev )
end subroutine mmul
end module mmul mod

Copy result C back to host memory
Free device arrays




CUDA Fortran
Matrix Multiply GPU Kernel

module mmul mod ! Module containing matrix multiply
contains ! CUDA Fortran GPU kernel
[EEESiSEEESGISEal) subroutine mmul_kernel( A, B, C, N, M, L)
real :: A(N,M), B(M,L), C(N,L)
integer, value :: N, M, L
i, j, kb, k, tx, ty
Asub(16,16), Bsub(16,16) ! Declare shared memory submatrix temps
Declare C(i,j) temp for accumulations
! Begin execution

tx = threadidx%x ! Get my thread indices
ty = threadidxsy

i = ISR - 16 + tx ! This thread computes
j = PECCREEES ~ 16 + ty ! C(i,3J) = sum(A(i,:) * B(:,]))
Cij = 0.0
do kb =1, M, 16
Asub(tx,ty) = A(i,ks+tx-1) ! Each of 16x16 threads loads one
Bsub (tx,ty) = B(ks+ty-1,3j) ! one element of ASUB & BSUB into

call EyFGERESEES) ) ! shared memory

6 ! Each thread accumulates length 16

do k =1,1
= Cij + Asub(tx,k) * Bsub(k, ty) ! partial dot product into its Cij

Cij
enddo
call EYNCERSSSESK )

enddo
C(i,j) = Cij ! Each thread stores its element
to the global C array
end subroutine mmul kernel ! End CUDA Fortran GPU kernel routine




Threads

Each thread is assigned a thread block index accessed through the built-in
blockidx variable, and a thread index accessed through threadidx.

The thread index may be a one-, two-, or three-dimensional index.

In CUDA Fortran, the thread index for each dimension starts at one. A
unique thread ID is assigned to each thread, computed from the thread
index.
» For aone-dimensional thread block, the thread index is equal to the thread ID.
= For atwo-dimensional thread block of size (Dx,Dy), the thread ID is equal to (x+Dx
(y-1)).
For a three-dimensional thread block of size (Dx,Dy,Dz), the thread ID is (x+Dx
(y-1)+Dy(z-1)).
Threads in the same thread block may cooperate by using shared memory, and by
synchronizing at a barrier using the SYNCTHREADS() intrinsic. Each thread in the
block waits at the call to SYNCTHREADS() until all threads have reached that call. The

shared memory acts like a low-latency, high bandwidth software managed cache
memory.

Currently, the maximum number of threads in a thread block is 1024 for Fermi.




Blocks

A kernel may be invoked with many thread blocks, each with the same
thread block size.

The thread blocks are organized into a one- or two-dimensional grid of
blocks, so each thread has a thread index within the block, and a block index
within the grid.

When invoking a kernel, the first argument in the chevron <<<>>> syntax is
the grid size, and the second argument is the thread block size.

Thread blocks must be able to execute independently; two thread blocks
may be executed in parallel or one after the other, by the same core or by
different cores. This behavior is controlled by the hardware rather then the
programmer.

There are currently a maximum of 65535blocks allowed. Beyond this, the
programmer must stripmine data




Declaring Fortran Device Data

= Variables [ arrays with device attribute are
allocated in device memory
real, device, allocatable :: a(:)

real, allocatable :: a(:)
attributes(device) :: a
In a host subroutine or function
= device allocatables and automatics may be declared

= device variables and arrays may be passed to other
host subroutines or functions (explicit interface)

= device variables and arrays may be passed to kernel
subroutines




Declaring Fortran Module Data

= Variables [ arrays with device attribute are
allocated in device memory

module mm
real, device, allocatable :: a(:)
real, device :: x, vy (10)
real, constant :: cl, c2(10)
integer, device :: n
contains
attributes (global) subroutine s( b )

= Module data must be fixed size, or allocatable




Host Memory

= Onthe host side, the host program can directly access data in the host main
memory.

It can also directly copy data to and from the device global memory; such
data copies require DMA access to the device, so are slow relative to the
host memory.

» The host can also set the values in the device constant memory, again
implemented using DMA access.




Device Memory

On the device side, data in global device memory can be read or written by
all threads.

Data in constant memory space is initialized by the host program; all
threads can read data in constant memory. Accesses to constant memory
are typically faster than accesses to global memory, but it is read-only to the
threads and limited in size. On Fermi— constant memory may not be faster
then simply using the global device memory cache, however managing
what data is in constant memory will free more space in the hardware cache.

Threads in the same thread block can access and share data in shared
memory; data in shared memory has a lifetime of the thread block.

Each thread can also have private local memory; data in thread local
memory may be implemented as processor registers or may be allocated in
the global device memory; best performance will often be obtained when
thread local data is limited to a small number of scalars that can be allocated
as processor registers.




Subroutine/function attributes

: The host attribute, specified on the subroutine or function
statement, declares that the subroutine or function is to be executed on the
host. Such a subprogram can only be called from another host subprogram.
The default is attributes(host), if none of the host, global, or device
attributes is specified.

: The global attribute may only be specified on a
subroutine statement; it declares that the subroutine is a kernel subroutine,
to be executed on the device, and may only be called from the host using a
kernel call containing the chevron syntax and runtime mapping parameters.

: The device attribute, specified on the subroutine or
function statement, declares that the subprogram is to be executed on the
device; such a routine must be called from a subprogram with the global or
device attribute.




Variable Qualifiers

Attributes A variable with the device attribute is called a device

variable, and is allocated in the device global memory.

= Adevice array may be an explicit-shape array, an allocatable array, or an
assumed-shape dummy array. An allocatable device variable has a dynamic

lifetime, from when it is allocated until it is deallocated. Other device variables
have a lifetime of the entire application.

Attributes A variable with the constant attributes is called a
device constant variable. Device constant variables are allocated in the
device constant memory space. Device constant data may not be assigned
or modified in any device subprogram, but may be modified in host

subprograms. Device constant variables may not be allocatable, and have a
lifetime of the entire application.



Variable Qualifiers (cont)

Attributes A variable with the shared attributed is called a device
shared variable or a shared variable. A shared variable may only be declared
in a device subprogram, and may only be accessed within that subprogram,
or by other device subprograms to which it is passed as an argument. A
shared variable may not be data initialized.

Attributes A variable with the pinned attributes is called a pinned
variable. A pinned variable must be an allocatable array. When a pinned
variable is allocated, it will be allocated in host pagelocked memory. The
advantage of using pinned variables is that copies from page-locked
memory to device memory are faster than copies from normal paged host
memory.




Allocating Data

= Fortran allocate / deallocate statement

real, device, allocatable :: a(:,:), b
allocate( a(l:n,1:m), b )

aééilocate( a, b )
= arrays or variables with device attribute are
allocated in device memory
= Allocate is done by the host subprogram
= Memory is not virtual, you can run out

= Device memory is shared among users [ processes,
you can have deadlock

= STAT=ivar clause to catch and test for errors




Copying Data to / from Device

Assignment statements

real, device, allocatable :: a(:,:), b
allocate( a(l:n,1:m), b )

a(l:n,l1:m) = x(1l:n,1:m) ! copies to device
b = 99.0

x(l:n,l:m) = a(l:n,1l:m)! copies from device
y = Db
deallocate( a, b )

Data copy may be noncontiguous, but will then be slower
(multiple DMAs)

Data copy to / from host pinned memory will be faster
Asynchronous copies currently require APl interface




Concurrent Stream Execution

Operations involving the device, including kernel execution and data copies
to and from device memory, are implemented using stream queues. An
operation is placed at the end of the stream queue, and will only be initiated
when all previous operations on that queue have been completed.

An application can manage more concurrency by using multiple streams.

Each user-created stream manages its own queue; operations on different
stream queues may execute out-of-order with respect to when they were
placed on the queues, and may execute concurrently with each other.

The default stream, used when no stream identifier is specified, is stream
zero; stream zero is special in that operations on the stream zero queue will
begin only after all preceding operations on all queues are complete, and no
subsequent operations on any queue begin until the stream zero operation
is complete.




Launching Kernels

Subroutine call with chevron syntax for launch
configuration
call vaddkernel <<<(N+31)/32,32 >>> (A,B,C,N)

type (dim3) :: g, b

g = dim3 ((N+31)/32, 1, 1)

b = dim3( 32, 1, 1 )

call vaddkernel <<< g, b >>> ( A, B, C, N )
Interface must be explicit

= Inthe same module as the host subprogram

= In a module that the host subprogram uses

= Declared in an interface block

The launch is asynchronous
= host program continues, may issue other launches




CUDA Errors

Out of memory
_aunch failure (array out of bounds, ...)
No device found

nvalid device code (compute capability
mismatch)

Test for error:

ir = cudaGetlLastError ()

1f( 1r ) print *, cudaGetErrorString( 1r )
1r = cudaGetlLastError ()
if( ir ) printf( “%s\n’
cudaGetErrorString (1ir)

4

)

4




Writing a CUDA Kernel (1)

C: global attribute on the function header, must be void type
= global void kernel ( ... ){...)}

F: global attribute on the subroutine statement
= attributes(global) subroutine kernel ( A, B, C, N )

May declare scalars, fixed size arrays in local memory

May declare shared memory arrays
= C: shared float sm(l1l6,106);

= F: real, shared :: sm(l1l6,106)
Limited amount of shared memory available (216KB, 48KB)
shared among all threads in the same thread block
Data types allowed
= int (long,short,char), float, double, struct, union, ...
= integer(z,2,4,8), logical(z,2,4,8), real(4,8), complex(4,8), derivedtype




Writing a CUDA Kernel (2)

* Predefined variables

" pblockIdx, threadIdx, gridDim,
blockDim, warpSize

= Executable statements in a kernel
= assignment
for, do, while, if, goto, switch
function call to device function
intrinsic function call

most intrinsics implemented in header files




Writing a CUDA Kernel (3)

» Fortran disallowed statements include

read, write, print, open, close, inquire, format, other 10
except now some limited support for list-directed (print *)

allocate, deallocate

Fortran pointer assignment, pointers in general
recursive procedure calls, direct or indirect

ENTRY statement, optional arguments, alternate return
SAVEd data

assigned goto, ASSIGN statement

stop, pause



I$CUF Kernel Loop Directive

CUDA Fortran allows automatic kernel generation and invocation from a
region of host code containing one or more tightly nested loops.

Launch configuration and mapping of the loop iterations onto the hardware
is controlled and specified as part of the directive body using the familiar
CUDA chevron syntax.

As with any kernel, the launch is asynchronous. The program can use
cudaThreadSynchronize() or CUDA Events to wait for the completion of the
kernel.

The work in the loops specified by the directive is executed in parallel, across
the thread blocks and grid; it is the programmer's responsibility to ensure
that parallel execution is legal and produces the correct answer.

The one exception to this rule is a scalar reduction operation, such as
summing the values in a vector or matrix. For these operations, the compiler
handles the generation of the final reduction kernel, inserting
synchronization into the kernel as appropriate




1$CUF kernel examples

The general form of the kernel directive is:

The compiler maps the launch configuration specified by the grid and block
values onto the outermost n loops, starting at loop n and working out. The
grid and block values can be an integer scalar or a parenthesized list.
Alternatively, using asterisks tells the compiler to choose a thread block
shape and/or compute the grid shape from the thread block shape and the

loop limits.



Using the CUF Kernel directive

real, device, dimension(:), allocatable :: da, db, dc
allocate( da(l:n), db(l:n), dc(1l:n) )

db o)
dc o]

1Scuf kernel do(l) <<< *, 256 >>>
do 1 =1, n

da(i) = db(i) + dc (i)
enddo

a = da

deallocate( da, db, dc )




Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename
uses a CUDA Fortran extension. The extension specifies that the file is a
free-format CUDA Fortran program;

The extension may also be used, in which case the program is
processed by the preprocessor before being compiled.

To compile a fixed-format program, add the command line option

CUDA Fortran extensions can be enabled in any Fortran source file by
adding the command line option.




CUDA C vs CUDA Fortran

. CUDAC - CUDA Fortran
supports Runtime API = supports Runtime API
supports Driver API * NO Driver API
cudaMalloc, cudaFree = allocate, deallocate
cudaMemcpy = assignments
OpenGL interoperability = NO OpenGL interoperability
Direct3D interoperability = NO Direct3D interoperability
Supports texture memory " NO textures (yet)
arrays zero-based = arrays one-based
threadidx/blockidx zero-based = threadidx/blockidx 1-based
unbound pointers = allocatable are device/host
pinned allocate routines = pinned attribute




Generic interfaces and overloading

Allows programmers to define Fortran-like operations:

module dev transpose
interface transpose
module procedure real4ddevxspose
module procedure int4devxspose
end interface

contains
function realddevxpose (adev) result(b)

real, device :: adev(:,:)
real b (ubound(adev,2) ,6ubound(adev,l))
<add your choice of transpose kernel>
return
end

end module dev_transpose

At the site of the function reference, the look is normal Fortran:

subroutine sl (a,b,n,m)
use dev_transpose
real, device :: a(n,m)
real b(m,n)

b = transpose(a)

end




BLAS overloading

module cublas
I isamax
interface isamax

. integer function isamax &
real(4), device :: xd(N) (n, x, incx)

real(4) x(N) integer :: n, incx
call random_number(x) real(4) :: x(*)

use cublas

. end function
I On the device

allocate(xd(N))
xd = x
j = isamax(N,xd,1)

integer function isamaxcu &
(n, X, incx) bind(c, &
name="'cublasIsamax"')

integer, value :: n, incx
I On the host, same name real(4), device :: x(*)

= isamax(N,x,1) end function

end interface




Calling CUDA Fortran subroutines from
PGI Accelerator programs

use cublas

1Sacc data region copyin (x)

! some compute regions .

k = isamax(N,x,1)

! maybe some other compute regions.

!Sacc end data region

= You can call CUDA global routines by creating explicit
interfaces to host-resident data and device-resident data

specific functions for a generic call




Object-oriented features

Type extension allows polymorphism:

type dertype

integer 1id, iop, npr

real, allocatable :: rx(:)

contains
procedure :: init => init dertype
procedure :: print => prth_dertype
procedure :: find => find dertype

end type dertype

type, extends (dertype) :: extdertype
real, allocatable, device :: rx d(:)
contains
procedure :: init => init extdertype
procedure :: find => find extdertype
end type extdertype

The class statement allows arguments of the base
or extended type:

subroutine init dertype (this, n)
class (dertype) :: this



You optimize data movement in CUDA
Fortran by manipulating F90 syntax
and/or inserting API calls

Can you eliminate Host/Device array assignments?
Can you place host data in Pinned memory?

Can you re-use GPU memory and data across
kernels?

You must use API calls to overlap data movement
with kernel invocations




Using the CUDA API

use cudafor

real, allocatable, device :: a(:)

real :: b(10), b2(2), <c(10)

integer (kind=cuda stream kind) :: istrm

istat = cudaMalloc( a, 10 )
istat cudaMemcpy( a, b, 10 )
istat cudaMemcpy ( a(2), b2, 2 )

istat cudaMemcpy( ¢, a, 10 )
istat cudaFree( a )

istat cudaMemcpyAsync(a, x, 10, istrm)




Taking CUDA to another level

= The higher-level PGI Accelerator programming model lags behind CUDA C
and CUDA Fortran in supporting some features (e.g. full support for device
resident data, asynchronous data transfers, etc)

=  Writing CUDA C or CUDA Fortran device kernels can be difficult and time-
consuming (e.qg. cutting the relevant loops or code segments out into a

separate kernel routine, porting code involving reductions, etc).

= We address these two issues by borrowing technologies between models




CUF Kernel-based matrix multiply using
CUDA Fortran device arrays

Generated GPU code
Fortran code description

subroutine mmul (a,b,c,n,m,1)
real, device :: a(n,*),b(m,*),c(n,*)
1Scuf kernel do(2) <<<L(*,*), (*,*)>>>
do k=1, 1
doi=1, n
c(i,k) = 0.0
do j=1, m
c(i,k) = c(i,k)+a(i,j)*b(j,k)
end do
end do
end do
return
end

5, CUDA kernel generated

5, '$cuf kernel do <<< (*,*),
(16,16) >>>
Using register for ‘c’




PGI directive-based matrix multiply
using CUDA Fortran device arrays

Fortran code

subroutine mmul (a,b,c,n,m,1)
real, device :: a(n,*),b(m,*),c(n,*)
1$acc region

a(i,j) * b(j,k)

1Sacc end region
return
end

Generated GPU code
description

4, Loop is parallelizable
Accelerator kernel generated
4, 'Sacc do parallel, vector(16)
5, '$acc do seq
Cached references to size
[16x16] block of 'a'
Cached references to size
[16x16] block of 'b'
6, !$Sacc do parallel, vector(16)




GPU programming constants

The Program must:

= Allocate data on the GPU
= Move data from host, or initialize data on GPU

Launch kernel(s)
= GPU driver can generate ISA code at runtime

= Preserves forward compatibility without requiring ISA compatibility

Gather results from GPU

Deallocate data




CUDA Fortran Host Code

use vaddmod
real, device, dimension(:), allocatable :: da, db, dc

allocate( da(l:n), db(l:n), dc(1l:n) )

b
c

vaddkernel<<<min ( (n+255) /256 ,65535) ,256>>>( da, db, dc, n

deallocate( da, db, dc )




Using PGI Accelerator directives

!Sacc region do
doi=1, n

a(i) = b(i) + c(i)
enddo

#pragma acc region for
for( 1 =0; 1 < n; ++i )
af[i] = b[i] + c[i];




End of the world as we know it?

5.4 cublas<t>axpy()

cublasStatus_t cublasSaxpy(cublasHandle_t handle, int n,

const float *alpha,

const float *¥, int incx,

float *y, int incy)
cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,

const double *¥X, 1nt incx,

double *y, int incy)
cublasStatus_t cublasCaxpy(cublasHandle_t handle, int n,

const cuComplex *alpha,

const cuComplex *X, int incx,

cuComplex *y, int incy)
cublasStatus_t cublasZaxpy(cublasHandle_t handle, int n,

const cuDoubleComplex *alpha,

const cuDoubleComplex *x, int incx,

cuDoubleComplex *y, int incy)

This function multiplies the vector x by the scalar o and adds it to the vector y overwriting
the latest vector with the result. Hence, the performed operation is y[j| = o x x[k| + y|J]

n.k=1+(i—1)*incx and j =1+ (¢ — 1) * incy. Notice that the last two
equations reflect 1-based indexing used for compatibility with Fortran.




I was looking at a solver and I
was missing slaswp.




#ifdef CUDA

SUBROUTINE SLASWP CUF( N, A, LDA, K1, K2, IPIV, INCX )
#else

SUBROUTINE SLASWP( N, A, LDA, K1, K2, IPIV, INCX )
#endif

-- LAPACK auxiliary routine (version 3.2) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006

Scalar Arguments

INTEGER :: INCX, K1, K2, LDA, N
*

* .. Array Arguments

#ifdef CUDA
INTEGER, DEVICE :: IPIV(N)
REAL, DEVICE :: A( LDA, N)

#else
INTEGER IPIV( * )
REAL A( LDA, * )
#endif




IF( N32.NE.O ) THEN

#ifdef CUDA

1Scuf kernel do <<< *, 32 >>>
#endif

DO 30 J = 1, N32, 32
IX = IXO
DO 20 I = I1, I2, INC
IP = IPIV( IX )
IF( IP.NE.I ) THEN
DO 10 K = J, J + 31

TEMP = A( I, K )

A(I, K) =A(IP, K)

A( IP, K ) = TEMP
CONTINUE
END IF
IX = IX + INCX
CONTINUE
CONTINUE



IF( N32.NE.N ) THEN
N32 = N32 + 1
IX = IXO0
#ifdef CUDA
1Scuf kernel do <<< *, 1 >>>
#endif
DO 50 I = 11, I2, INC
IP = IPIV( IX )
IF( IP.NE.I ) THEN
DO 40 K = N32, N
TEMP = A( I, K )

A(I, K) =2a(1IP, K)
A( IP, K ) = TEMP
CONTINUE
END IF
IX = IX + INCX
50 CONTINUE
END IF



= Compile it:

PGI$ pgfortran -c -Mfixed -Mcuda -Mpreprocess -Minfo slaswp.f
slaswp:
92, CUDA kernel generated
92, !'Scuf kernel do <<< (*), (32) >>>
113, CUDA kernel generated
113, 'Scuf kernel do <<< (*), (1) >>>

= Write a generic interface:

INTERFACE SLASWP
SUBROUTINE SLASWP( N, A, LDA, K1, K2, IPIV, INCX )
INTEGER INCX, K1, K2, LDA, N
INTEGER IPIV( * )
REAL A( LDA, * )
END SUBROUTINE
SUBROUTINE SLASWP CUF( N, A, LDA, K1, K2, IPIV, INCX )
INTEGER INCX, K1, K2, LDA, N
INTEGER, DEVICE :: IPIV( * )
REAL, DEVICE :: A( LDA, * )
END SUBROUTINE
END INTERFACE




Use it in CUDA Fortran:

USE MY SLASWP

CALL SLASWP(N, A DEV, LDA, Kl, K2, IPIV DEV, INCX)

Use it in the PGI Accelerator Model:

use my slaswp
!1Sacc data region copy(a, b, x) local (ipiv)

call slaswp(n, a, lda, kl, k2, ipiv, incx)

Not overly concerned with performance of these small routines
at this point; mainly we've avoided data transfers between the
device and host

Go on to the next one. Impress your friends with how fast
you've ported your code to GPUs.




Building a CUDA Fortran Program

= pgfortran a.cuf
» . cuf suffiximplies CUDA Fortran (free form)
"= _CUF suffixruns preprocessor
= Usethe -Mfixed option for F77-style fixed format

= pgfortran -Mcuda a.f90
= pgfortran -Mcuda[=[emu|cclO|ccll|ccl2|ccl3|cc20]]

= Mustuse -Mcuda when linking from object files
= Compilerdriver pullsin correct path and libraries




Latest PGI 11.x Features in CUDA
Fortran & PGI Accelerator Compilers

CUDA 4.0 Support
Some PRINT * support in CUDA Fortran device routines
CUBLAS and CUFFT interface modules

Global subroutine shared memory automatic array
support

Calling generic host/device functions from within a
PGl Accelerator data region

OpenMP parallel regions containing CUDA Fortran calls
and PGl Accelerator regions




Programming with Accelerator
Directives




Implicit Programming of
Accelerators

» The PGI Accelerator directive based approach
to programming.

= Maximize the work that the compiler is able

to do

= Concentrate programmer efforts on
performance of kernels rather then
management and placement of data




What parts can the compiler do?

Split code between Host and GPU
= CUDA Fortran, CUDA and OpenCL —function level, done manually by programmer

= Modern Compilers — can do this just as well as you can, and a lot faster, and enable
offloading of regions within functions

Manage data allocation/movement between Host and Device

= CUDA Fortran does this implicitly through language syntax. Code looks similar to
standard Fortran

CUDA and OpenCL - do this manually with API calls, one or more per argument to

the device kernel, host code nearly unrecognizable compared to original

Modern Compilers — can do this almost as well you can, user-driven tuning is
required, but can and should be quick and easy

Tune Device Kernels

=  CUDA Fortran, CUDA and OpenCL — this step is both time-consuming and difficult;
must optimize grid/thread geometry, optimize memory placement/accesses, etc

Modern Compilers — can help a little here and make the code portable, but this step
is probably always going to be hard




Accelerator VADD Device Code
(two dimensional array example)

module kmod
contains
subroutine wvaddkernel (A,B,C)
real :: A(:,:), B(:,:), C(:,:)

C(:,:) =A(:,:) +B (:,:)

end subroutine
end module

I$acc region clauses can surround many individual
loops and compute kernels. There is no implicit
GPU/CPU data movement within a region




Compiling the subroutine:

PGIs$ pgfortran -Minfo=accel -ta=nvidia -c vadd.Fgo

vaddkernel:

5, Generating copyout(c(1:z_b_14,1:z_b_17))
Generating copyin(a(1:z_b_14,1:z_b_17))
Generating copyin(b(1:z_b_14,1:z_b_17))
Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary

6, Loop is parallelizable

Accelerator kernel generated
6, !$acc do parallel, vector(26) ! blockidx%x threadidx%ox

Isacc do parallel, vector(16) ! blockidx%y threadidx%y
CC1.0:7registers; 64 shared, 8 constant, o local memory bytes; 100% occupancy

CC1.3: 8registers; 64 shared, 8 constant, o local memory bytes; 100% occupancy
CC 2.0: 15 registers; 8 shared, 72 constant, o local memory bytes; 100% occupancy




Tuning the compute kernel
Accelerator VADD Device Code

module kmod
contains
subroutine wvaddkernel (A,B,C) ! We know array size
real :: A(:,:), B(:,:), C(:,:)! dimension (2560, 96)
integer :: 1i,]J

do j = 1,size(A,1)

do i = 1,size (A, 2)
C(j,i) = A(j,i) + B (j,1)
enddo
enddo

end subroutine
end module




Keeping the data on the GPU

Accelerator VADD Device Code

module kmod
contains
subroutine wvaddkernel (A,B,C)
real :: A(:,:), B(:,:), C(:,:)

C(:,:) =A(:,:) +B (:,:)

end subroutine
end module

The 1$reflected clause must be visible to the
caller so it knows to pass pointers to arrays on
the GPU rather then copyin actual array data.




Compiling the subroutine:

PGIs$ pgfortran -Minfo=accel -ta=nvidia -c vadd.Fgo
vaddkernel:
5, Generating reflected(c(:,:))
Generating reflected(b(;,:))
Generating reflected(a(;,:))
6, Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
7, Loop is parallelizable
Accelerator kernel generated
7, '$acc do parallel, vector(16) ! blockidx%x threadidx%x
I$acc do parallel, vector(26) ! blockidx%y threadidx%oy
CC1.0:11registers; 8o shared, 8 constant, o local memory bytes; 66% occupancy
CC1.3:11regqisters; 8o shared, 8 constant, o local memory bytes; 100% occupancy
CC 2.0: 17 registers; 8 shared, 88 constant, o local memory bytes; 100% occupancy




Allocating/Deallocating GPU Arrays

Accelerator VADD Device Code

subroutine wvadd(M,N)
use kmod ! Visibility of !S$acc reflected
real, dimension(:,:) :: A, B, C
integer :: N

A=1.0
B=2.0

call vaddkernel (A,B,C)
call kernel2 (A,B,C)
call kernel3 (A,B,C)
call kerneld4d (A,B,C)

end subroutine




% pgfortran -help -ta

-ta=nvidia: {analysis|nofma| [no] flushz|keepbin |keepptx|keepgpu|maxregcount:<n>|
clO|ccll|ccl2|ccl3|cc20|fastmath|mul24|time|cuda2.3|cuda3.0|
cuda3.l|cuda3.2|cudad4.0| [no]wait} |host

Choose target accelerator
nvidia Select NVIDIA accelerator target
analysis Analysis only, no code generation
nofma Don't generate fused mul-add instructions
[no] flushz Enable flush-to-zero mode on the GPU
keepbin Keep kernel .bin files
keepptx Keep kernel .ptx files
keepgpu Keep kernel source files
maxregcount:<n> Set maximum number of registers to use on the GPU
cclO0 Compile for compute capability 1.0

cc20 Compile for compute capability 2.0
fastmath Use fast math library

mul24 Use 24-bit multiplication for subscripting
time Collect simple timing information

cuda2.3 Use CUDA 2.3 Toolkit compatibility

cuda4.0 Use CUDA 4.0 Toolkit compatibility
[no]wait Wait for each kernel to finish; overrides nowait clause
host Compile for the host, i.e. no accelerator target




Obstacles to GPU code generation

Loop nests to be offloaded to the GPU must be rectangular

At least some of the loops to be offloaded must be fully data parallel with no
synchronization or dependences across iterations

Computed array indices should be avoided
All function calls must be inlined within loops to be offloaded

In Fortran, the pointer attribute is not supported; pointer arrays may be
specified, but pointer association is not preserved in GPU device memory

In C

» Loops that operate on structs can be offloaded, but those that operate on nested
structs cannot

Pointers used to access arrays in loops to be offloaded must be declared with Cgg
restrict (or compiled w/-Msafeptr, but it is file scope)

Pointer arithmetic is not allowed within loops to be offloaded




Obstacles to loop parallelization or
vectorization in a compute region

Computed Index (linearization, look-up)

While loops mp

Triangular loops mp
“live-out” variables mp

Local arrays that must be privatized
Function calls that cannot be inlined =
Device runtime errors — failure to launch map

Compiler errors mp




Computed Index - Linearization

% pgfortran linearization.fgo -ta=nvidia -Minfo=accel
linear:
16, No parallel kernels found, accelerator
region ignored
17, Complex loop carried dependence of 'a'
prevents parallelization
18, Complex loop carried dependence of 'a'
prevents parallelization
Parallelization would require privatization of
array 'a(:)

!'Sacc region
do 1 =1, M
do j =1, N
idx = ((i-1)*M)+]
A(idx) = B(i,3)
enddo
enddo
'Sacc end region

To fix, remove the linearization or use the
“independent” clause:

!$Sacc region
!Sacc region !Sacc do independent
do i =1, M do i =1, M
do j = 1, do j =1, N
A(i,J) = B(i,] idx = ((i-1)*M)+]
enddo A(idx) = B(i,7)
enddo enddo
!Sacc end region enddo
!Sacc end region




Computed Index - Look-up

!$acc region % pgfortran lookup.fgo -ta=nvidia -Minfo=accel
doi=1,M _ lookup_test:
;ng==l‘1’°kgp (1) 16, Generating copyout(a(:,1:1024))
A(idx,3) = ((i-1)*M)+] 17, Il9aralle||zatllon would require privatization of array
enddo a(:,1:1024)
enddo Sequential loop scheduled on host
I$acc end region 19, Loop is parallelizable
Accelerator kernel generated

19, !$acc do parallel, vector(256)

1$acc region % pgfortran lookupa.fgo -ta=nvidia -Minfo=accel
doi=1, M lookup_test:
do j =1, N 16, Generating copyout(a(1:1024,:))
idx = lookup(j) Generating copyin(cell(1:1024))
A(i,idx) = ((i-1)*M)+] 17, Loop is parallelizable
en di’o‘dd° Accelerator kernel generated
|$acc end region 17, '$acc c.:lo parallel, vector(256) .
18, Loop carried reuse of 'a' prevents parallelization
Inner sequential loop scheduled on accelerator

The Independent or parallel clauses could be used to force )
parallelization but is not recommended




While Loops

!1Sacc region
i=20
do, while (.not.found)
i=1i+1
if (A(i) .eq. 102) then
found = 1
endif
enddo
1Sacc end region

!1Sacc region
doi=1, N
if (A(i) .eq. 102) then
found(i) = 1
else
found(i) =0
endif
enddo
!Sacc end region

% pgf90 -ta=nvidia -Minfo=accel while.f90
while1:

17, Accelerator region ignored

19, Accelerator restriction: invalid loop

Convert to a rectangular loop:

% pgf90 -ta=nvidia -Minfo=accel while2.f90
while2:

18, Generating copyin(a(1:1024))
Generating copyout(found(1:1024))
Generating compute capability 1.0 binary
Generating compute capability 1.3 binary

19, Loop is parallelizable
Accelerator kernel generated

print *, 'Found at ', minval (found) Using register for 'found’

19, !1$acc do parallel, vector(256) )




Triangular Loops

1Sacc region copyout (A7)
do 1 =1, M
do Jj =1, N
A(i,j) = i+
enddo
enddo
1Sacc end region

Problem: The compiler will copy out the entire array A. The
lower triangle contains garbage since it was not initialized.
Use “copy(A)” to initialize the values.




“live-out” Variables

_ % pgfgo -ta=nvidia,time -Minfo=accel liveout.fgo
!Sacc region liveout:

do i =_1' M 11, Generating copyout(a(1:1024,1:1024))
do =1, N 12, Loop is parallelizable
idx = i+] Accelerator kernel generated
A(1,]) = 1dx 12, !sacc do parallel, vector(256)
enddo 13, Inner sequential loop scheduled on accelerator
enddo _ 14, Accelerator restriction: induction variable
!Sacc end region live-out from loop: idx
print *, idx, A(1,1), A(M,N) . Accelerator restriction: induction variable

live-out from loop: idx

Privatize the scalar:

1Sacc region
df, i = 1? M % pgfgo -ta=nvidia,time -Minfo=accel liveout2.fgo

liveout2:
10, Generating copyout(a(1:1024,1:1024))
11, Loop is parallelizable
A(i,j) = idx 13, Loop is parallelizable
enddo Accelerator kernel generated
enddo 11, '$acc do parallel, vector(16)
13, !'$acc do parallel, vector(16)

!1Sacc do private (idx)
do j=1, N
idx = i+j

!1Sacc end region
print *, idx, A(1,1), A(M,N)




Privatization of Local Arrays

I$acc region % pgfo0 -ta=nvidia -Minfo=accel private.f90
doi=1. M privatearr:
do j =’1 N 10, Genera_lting copyout(tmp(1_:_10)) _
do j =’ 1.10 Generating compute capability 1.0 binary
vy s Generating compute capability 1.3 binary
tmp(jj) = jj 11, Parallelization would require privatization of array 'tmp(1:10)'
end do 13, Parallelization would require privatization of array 'tmp(1:10)’
A(i,j) = sum(tmp) Sequential loop scheduled on host
enddo 14, Loop is parallelizable
enddo Accelerator kernel generated
: 14, 1$acc do parallel, vector(10)
'$acc end region 17, Loop is parallelizable
Accelerator kernel generated
17, 1$acc do parallel, vector(10)
Sum reduction generated for tmp$r




Privatization of Local Arrays - cont.

I$acc region % pgf90 -ta=nvidia,time -Minfo=accel private2.f90
doi=1 M privatearr2:
I$acc do private(tmp) 10, Generating copyout(a(1:1024,1:1024))
doj=1,N Generating compute capability 1.0 binary
dojj=1,10 Generating compute capability 1.3 binary
tmp(jj) = Jj 11, Loop is parallelizable
end do 13, Loop is vectorizable
A(i,j) = sum(tmp) Accelerator kernel generated
enddo 11, 1$acc do parallel, vector(16)
enddo 13, !1$acc do vector(16)
I$acc end region 14, Loop is parallelizable
17, Loop is parallelizable

Need to privatize local temporary arrays.
Default is to assume that they are shared.




Function Calls

* Function calls are not allowed within a compute
region

= Restriction is due to lack of a device linker and
hardware support

= Functions must be inlined, either manually or by
the compiler using —Minline or —Mipa=inline




Managing data allocation and movement

between Host and GPU memories




You optimize data movement in CUDA
C by manipulating API calls

Can you eliminate or tune API calls?
Can you place host data in Pinned memory?

Can you re-use GPU memory and data across
kernels?

Can you overlap data movement with kernel
Invocations?




You optimize data movement with PGI
Accelerator compilers using directives

Add clauses to compute REGION directives to minimize
data movement =

Use DATA REGIONS to re-use data across kernels map

Use MIRROR, REFLECTED and UPDATE to re-use data
across subroutine boundaries in Fortran map

NOTE: there is no support for asynchronous data
movement in the PGl Accelerator model (yet) map




Compute region directive clauses for tuning
data allocation and movement

Clause Meaning

if (condition) Execute on GPU conditionally
copy (list) Copy in and out of GPU memory
copyin (list) Only copy in to GPU memory
copyout (list) Only copy out of GPU memory
local (list) Allocate locally on GPU
deviceptr (list) C pointers in list are device pointers

update device (list) | Update device copies of the arrays

update host (list) Update host copies of the arrays




Use compute region clauses to override
compiler decisions on data movement

For example, by default the compiler will move the minimum
amount of data required for correct execution:

% pgfortran -ta=nvidia -fast -c -o Jl.o J1.£90 -Minfo=accel
jacobi:
18, Generating copyin(a(l:m,1:n))
Generating copyout(a(2:m-1,2:n-1))
Generating copyout (newa(2:m-1,2:n-1))

Use copy clause to force one contiguos copyin/copyout of
entire a array, local clause to eliminate copyout of newa:

Generating local (newa(:,:))

18, Generating copy(a(:,:)) ::>




Data regions enable re-use of
GPU data across compute regions

Data regioninC
#pragma acc data region

{

}

Data region in Fortran

!Sacc data region

1Sacc end data region

May be nested and may contain compute regions

Data regions may not be nested within a compute region )




Using GPU device-resident data
across subroutines

subroutine timestep (Input,Result,M,N) module kmod

use kmod Contains

real, dimension(M,N) :: Input,Result !

subroutine vaddkernel (A,B,C)

real :: A(:,:),B(:,:),C(:,:)
'Sacc reflected (A,B,C)
!Sacc region

C(:,:) =A(:,:) +B (:,:)

!Sacc end region

end subroutine

integer :: M,N
real, allocatable :: B,C,D
dimension(:,:) :: B,C,D

'Sacc mirror (B,C,D)
allocate(B(M,N) ,C(M,N) ,D(M,N))

= 2.0

!Sacc update device (Input,B)

call vaddkernel (Input,B,C)

]

subroutine kernel2 (C,D)

real :: C(:,:),D(:,:)
!Sacc reflected (C,D)
!Sacc region

< compute-intensive loops >

!Sacc end region

end subroutine

call kernel2 (C,D)

call kernel3 (D,Result)
!Sacc update host(Result)
deallocate(B,C,D)
end subroutine

-
-
-
-
—
-
—
-

end module




Tuning GPU kernel schedules

and memory usage




You optimize kernels in CUDA C/Fortran
using heuristics and experimentation




You optimize kernels with PGI Accelerator
compilers by adding directives ...

void

computeMM (float C[] [WB], float A[] [WA], float B[] [WB],
int hA, int wA, int wB)

{

#pragma acc region

int i, j, k;
#pragma acc for parallel vector(16)
for (int i = 0; i < hA; ++i) {
C[i][3J] = 0.0;
for (int k = 0; k < wA; ++k) {
#pragma acc for parallel vector(16)
for (int j = 0; j < wB; ++j) {
CIi]1[3]1 = CI[i][3] + A[i][k] * BI[k]I[3]]~
}




... 1lnterpreting compiler feedback,
and restructuring loops

% pgcc -fast -ta=nvidia -Minfo mm.c

62, Loop is parallelizable
64, Loop carried dependence of 'C' prevents parallelization
Loop carried backward dependence of 'C' prevents vectorization
66, Loop is parallelizable
Accelerator kernel generated
62, #pragma acc for parallel, vector(l16) /* blockIdx.y threadIdx.y */
64, #pragma acc for seq(l6)
Cached references to size [16x16] block of 'A'
Cached references to size [16x16] block of 'B'
66, #pragma acc for parallel, vector(l6) /* blockIdx.x threadIdx.x */
Using register for 'C'

CC 1.3 : 27 registers; 2264 shared, 24 constant,
0 local memory bytes; 50% occupancy




Loop directive clauses for tuning
GPU kernel schedules

Clause Meaning

parallel [ (width)] Parallelize the loop across the multi-
processors

vector [ (width) ] SIMD vectorize the loop within a multi-
processor

seq [(width)] Execute the loop sequentially on each
thread processor

independent lterations of this loop are data independent
of each other

unroll (factor) Unroll the loop factor times

cache (list) Try to place these variables in shared
memory

private (list) Allocate a copy of each variable in list for
each loop iteration




Loop Schedules

27, Accelerator kernel generated
26, 'Sacc do parallel, vector(16)
27, '$acc do parallel, vector(16)

Vector loops correspond to threadidx indices (SIMD)
Parallel loops correspond to blockidx indices (MIMD)

The loop nest above has a CUDA schedule:
<<< dim3(ceil (N/16) ,ceil (M/16)), dim3(16,16) >>>

The compiler strip-mines to protect against very long loop limits

It is possible to create any legal CUDA schedule using the PGl
Accelerator loop scheduling clauses




How did we make Vectors Work?

Compiler-to-Programmer Feedback - a classic “Virtuous Cycle”

Directives, Options, Restructuring .

Vectorization ‘

L|sting

r

\ ”

C
2, o -

We can use this same methodology to enable effective
migration of applications to Multi-core and Accelerators




Compiler-to-Programmer Feedback
Incremental porting/tuning for GPUs

Directives, Options, RESTRUCTURING mmm

e B
Code \ Performance

»

£, o -

+
Acc




Common Compiler Feedback Format
http://www.pgroup.com/ccff

Source
File pgprof

V& Ve X

CCFF

Object Executable File
File File ~
program -

File




PGPROF with CCFF Messages

File Settings Process
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General Compiler Feedback

How the function was compiled
Interprocedural optimizations

Profile-feedback runtime data
» Block execution counts
= Loop counts, range of counts

Compiler optimizations, missed opportunities
= Vectorization, parallelization
= Altcode, re-ordering of loops, inlining

» X64+GPU code generation, GPU kernel mapping, data
movement

Compute intensity — important for GPUs & Multi-
core




Example PGI Accelerator compiler
feedback messages

Generating copyin(b(l:n,1:m))

Generating copyout(b(2:n-1,2:m-1))

Generating copy(a(l:n,1:n))

Generating local(c(l:n,1:n))

Generating local(c(l:n,1:n))

Generating reflected(d(l:n,1:n))

Loop is parallelizable

Accelerator kernel generated

No parallel kernels found, accelerator region ignored

Loop carried dependence due to exposed use of
prevents parallelization

Parallelization would require privatization of
array

Accelerator restriction: invalid loop
Loop not vectorized/parallelized: not countable




Categories of PGI Accelerator

compiler feedback
Hindrances
= live out variables, non-private arrays
= |oop-carried dependences
= unsupported data type, unsupported operation

= unknown array bounds

Data movement

= copyin, copyout, local

Optimizations performed, potential performance problems

= cached data, register usage, local /constant memory usage
= non-stride-1 accesses (non-coalesced)
Loop schedules

= mapping of loop iterations to thread/block indices

= occupancy calculation




Device Errors

!Sacc region
doi=1, M
do j =1, N
A(i,j) = B(i,j+1l) << out-of-bounds
enddo
enddo
!Sacc end region

parameter (N=1024,M=512)
real :: A(M,N), B(M,N)

!Sacc region copyout (A), copyin(B(0:N,1:M+1)) <<< Bad bounds
do 1 =1, M for copyin
do 3 =1, N
A(i,J) = B(i,J+1)
enddo
enddo

!'Sacc end region




Compiler Errors

No software is without bugs, including the compiler

If you encounter a problem that seems to be the fault of the
compiler, please send a report to PGl Customer Service

(trs@pgroup.com)
= QOak Ridge has special reporting website

Example of an Internal Compiler Error (ICE):

% pgf90 -ta=nvidia -c bug.£f90
/tmp/pgaccrRVcZyn0dlyP.gpu(20) : error: identifier "z0" is undefined

1 error detected in the compilation of "/tmp/pgnvdASVco8Pmxo9p.nv0".
PGF90-F-0000-Internal compiler error. pgnvd job exited with nonzero

status code 0 (bug.£f90: 22)




Timing / Profiling

How long does my program take to run?
» time ./myprogram

How long do my kernels take to run?

» pgfortran —ta=nvidia,time

Environment variables:

export ACC_NOTIFY=0

export NVDEBUG=0

# cuda profiler settings

#export CUDA_PROFILE=1

#export CUDA_PROFILE_CONFIG=cudaprof.cfg
#export CUDA_PROFILE_CSV=1

#export CUDA_PROFILE_LOG=cudaprof.log



OpenMP and Accelerator Directives

program Main
use accel_lib

Isomp parallel private(ilo, iho, k, flux) num_threads(2)
doiter =1, 100
call acc_set_device_num(omp_get_thread_num(), ACC_DEVICE_NVIDIA)
if (first) then
dkm = km/omp_get_thread_num()
ilo =dkm *omp_get_thread_num() + 1
if (omp_get_thread_num() + 1 == omp_get_num_threads()) then
iho = km
else
iho = dkm*(omp_get_thread_num() + 1)
endif
endif
I$acc region
do k=ilo,iho

end do
I$acc end region
I$omp end parallel
end do
end program Main




Automate the mechanical ... focus on
the creative

1. Split code between Host and GPU

2. Manage data allocation & movement
between Host and GPU memories

3. Tune GPU Kernel Schedules and
Memory Usage




The PGI Accelerator compilers
provide some advantages over CUDA

= They automate the mechanical aspects of
GPU programming

= Your programs remain standard-compliant
and portable

= The programming model and porting process
is more incremental than CUDA




void matrixiulGRU(cl_uint ciDeviceCount, cl mem h A, float* h_B data,
ungigned int mem size B, Float* h C )

©1_mem d_A[MAX_GPU_COONT] ;
1_mem d_C{MAX_GPU_COUNT]
1_mem d_B[MAX_GPU_COUNT] ;

©1_event GEUDone [MAX_GPU_COUNT] ;
©1_event GBUExecution[MAX_GPU_COUNT] ;

/1 create butfers for each GPU

// Bach GPU will compute sizePerGRU rows of the result

[ ] ® int sizePerGPU = HA / ciDeviceCount;
int workof£set (MAX_GPU_COUNT] ;
int workSize (MAX_GPU_COUNT]
workoE£set[0]

for (unsigned int i=0; i < ciDeviceCount; ++i)
«

/1 Toput butfer
worksize[i] = (i != (ciDeviceCount - 1)) ? sizePerGPU : (HA - workOffset[i]);
A A[] = clCreateBuffer(cxGPUContext, CL_MEM READ ONLY, workSize[i] * sizeof (float) * WA, NULL,NULL):

/1 copy only assigned rows from host to device

1, hA, dAn], * sizeof(float) * WA,
0, worksize[i] * sizeof(float) * WA, 0, NULL, NULL):

([ ] [ ]
® 1/ cxeate openc. butter on device that will be initiatiize from the host memery on first use
// on device
) 4.BI4] = clCreateBuffer (cxGPUContext, CL MEM READ_ONLY | CL MEM COPY_HOST_PIR,
nem_size_B, h_B_data, NULL);

/1 output buffer

4 Cli] = clCreateBuffer (cxGPUCONtext, CL MEM WRITE ONLY, workSize[i] * WC * sizeof (float), NULL,NULL);

/1 set the args values
clSetKernelArg (multiplicationKernel[i], 0, sizeof(cl mem), (void *) &d Cli]):
clSetKernelArg (multiplicationKernelli], 1, sizeof(cl mem), (void *) &d Ali]):

clSetKernelArg(multiplicationKernel[i], 2, sizeof(cl mem), (void *) &d B[i]);

1, 3, * BLOCK_SIZE *BLOCK_SIZE, 0 ):
1, 4, s *+ BLOCK_SIZE *BLOCK SIZE, 0 );

(i1 < cibeviceCount)

+1

_ void matrixtul( float* C, float* A, float* B, )
b = blockldx.xs // Execute Multiplication on all GPUs in parallel
blockiax size_t localWorksizel] = (BLOCK_SIZE, BLOCK SIZE};
- threadldx.x; size_t globalWorksizel] Cs1zE, WO),
Chreadia v // Launch kernels on devices
inti=0; i< ey

/1 Maltiplication - non-blocking execution
1 = SIZE, workSize[il):

0, NULL, sGPUExecution[il);
1
BLOCK_S122];

0 1< 144)

C1Finish (commandQueueli]) ;

inti=0;4< 144)

/1 Non-blocking copy of result from device to host
clEnqueusReadBuffer (commandQueue [i], d_C[i], CL_FALSE, 0, WC * sizeof (float) * worksize[il,
h_C + workoffset[i] ¥ WC, 0, NULL, &GPUDone(il);

oid )
doma

{ /1 cPU sync with Gy

clWaitFormvents (ciDeviceCount, GPUDone) ;

/1 Release mem and event objects

inti=0; i<

clReleasetencbject (4 ALL]) ;

cudaal

RN < ; clReleaseMenobject (d B[i]) ;
daatiest et e enc ClReleasevent (GEUExecution(il) ;

clReleaseMemobject (d_C(1]) ;

clReleaseEvent (GPUDone [4]) ;

1 void

2 computeMM0_saxpy (float C[][WB], float A[][WA], float B[] (W8], )

N 1ot A, int wn, int ¥B) din3 grid(WC / threads.x, HC y

. << grid, t S as, un, uws);
A matrixMul( _global float* C, _global float* A, _global float* B,

5 #pragma acc region

cudatiencpyDevice:

__kernel void

__local float* As, _local float* Bs)
7 #pragna acc for parallel vector(16) unroll (4
#pragm: P ox (16) “ - int bx = get_group_id(0), tx = get_local id(0);
for (int i =0; i <hA; +H) (
int by = get_group_id(1), ty = get_local id(1);
for (int 3 = 0; 3 < wB; ++3) (
int aBnd = WA * BLOCK SIZE * by + WA - 1;
criI3l = 0.0 ;
! £loat Csub = 0.0¢;
for (int k = 0; k < wA; ++k) {
for (int 3 = 0; 3 < wB; ++3) (
for (int a = WAYBLOCK SIZE*by , b = BLOCK SIZE * bx;
e CL4T[314AL4] (K1 *BIX] (3]
(101 = CRIGIARI 8 13] a <= aBnd; a += BLOCK_SIZE, b += BLOCK_SIZE*WB) {
Rsltx + ty * BLOCK SIZE] = Ala + WA * ty + tx];
Bsltx + ty * BLOCK SIZE] = B[b + WB * ty + tx];
barrier (CLK_LOCAL MEM_FENCE) ;
for (int k = 0; k < BLOCK STZE; ++k)
Csub += As[k + ty * BLOCK_SIZE]*Bs[tx + k * BLOCK_SIZE]
barsier (CLK_LOCAL MEM FENCE) ;




The PGI Accelerator compilers have
limitations relative to CUDA

= No support for PINNED memory

= No support for C++







PGI CUDA C/C++ for x86 -
Motivation

* Provide CUDA developers with a common
code path for both NVIDIA GPU and multi-

core x86 platform support

= Run CUDA C/C++ & Fortran applications on
x86 clusters




PGI CUDA compilers for
multi-core x86 and NVIDIA GPUs

PGl CUDA C/C++/Fortran

!

Optimization / Parallelization

< 3§ %

Optimized Parallel Massively Parallel
Host Code Multi-core Kernels GPU Kernels

__ i




Optimized CUDA C/C++ for x86

* Process CUDA C/C++ as a native parallel programming
language
= Inline device kernel functions, translate chevron syntax to

parallel/vector loops, use multiple cores and SSE/AVX
Instructions

= Execute each CUDA thread block using a single host core,
eliminate synchronization where possible

= Host Code: full PGl Intel/AMD optimizations support

= Common compiler back-end provides code generation for
new platforms (ie SSE/AVX extensions) and optimization for
all languages

» Tuned compilation delivers maximum performance




CUDA for GPUs vs Multi-core x86

Software

g

Thread

«

Thread Block

(S —

GPU

Thread Processor

Multi--processor

Thread Grid

CPU

Scalar SSE

Vector SSE

Multi-core




CUDA-x86
Timeline

Performance
Optimization

Functionality

Demonstration

The Functionality release 1s available as of
PGI 11.5. More info at pgroup.com/cuda x86.htm




Some Reference Materials

PGl Accelerator programming model

=  http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf

CUDA Fortran
= http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf

CUDA-x86

= http://www.pgroup.com/resources/cuda-x86.htm

Understanding the CUDA Threading Model

= http://www.pgroup.com/lit/articles/insider/v2niag.htm
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