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Modern Cosmology and Sky Maps

e Modern cosmology is the story of
mapping the sky in multiple ROSAT (X-ray) WMAP (microwave)
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e Maps cover measurements of
objects (stars, galaxies) and fields
(CMB temperature)

e Maps can be large (SDSS has~200 |
million galaxies, many billions for Fermi (gamma ray) SDSS (optical)
LSST R\ e

o Statistical analysis of sky maps -

o All precision cosmological analyses
constitute a statistical inverse
problem: from sky maps to scientific

inference
* Therefore: No cosmology without Explosion of information from
(large-scale) computing sky maps: Precision Cosmology
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Structure Formation: The Basic Paradigm

e Solid understanding of structure
formation; success underpins most -
cosmic discovery

e Initial conditions laid down by
inflation

‘Linear’

e |nitial perturbations amplified by
gravitational instability in a dark
matter-dominated Universe

e Relevant theory is gravity, field
theory, and atomic physics (‘first

principles’) = .
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o Early Universe: Linear perturbation 2 kg é

theory very successful (CMB) = g

o Latter half of the history of the gg% )
Universe: Nonlinear domain of B |

structure formation, impossible to ,

treat without large-scale computing 135°9en L
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Precision Cosmology: “Inverting” the 3-D Sky

Standard Model Warm dark matter

e Cosmological Probes:
Measure geometry and
presence/growth of
structure

o Examples: Baryon
acoustic oscillations

(BAO), cluster counts, e \e Det.
CMB, weak lensing, galaxy o -
clustering, -- o
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e Standard Model: Verified

TODAY /D
at the 5-10% level across , / A
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10% 633%" fes6 + V F 0
e Future Targets: Aim to — s | /1
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measurements to the ~1% pams : - 1
level can theory and ? e T 18,3196C 1970 1980 1960 2000 2010 2020
) (Universe 380,000 years old)
SimUlatiOn keep UP7 Cosmic content pie charts Optical survey ‘Moore’s Law’
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Simulating the Universe

e Gravity dominates at Ofi % . V()% =0, p=a’k,
large scales, key task: : " ix op
solve the Vlasov-Poisson 7%¢ 4nGa® (p(x,t) — (pam(t))) = 47Ga*Qdmbdm Per-
equation (VPE) ‘ (/)dm </)dm <p(1111>)
e VPE is 6-D and cannot be | 5
solved as a PDE Z'”’ /d i, ).
° N'bOdy methOdS; graVity Cosmological Vliasov-Poisson Equation: A ‘wrong-sign’

has (i) no shielding but is electrostatic plasma with time-dependent particle ‘charge’

(i) naturally Lagrangian
e Are errors controllable?
e At smaller scales add gas

physics, feedback, etc.

(subgrid modeling
inevitable)

o Calibrate simulations
against observations
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An Early Simulation

THE ASTRONOMICAL JOURNAL VOLUME 75, NUMBER 1 FEBRUAR
e Suite of 300 (and Iess) Structure of the Coma Cluster of Galaxies*
particle simulations P. J. E. Peessst

Palmer Physical Laboralory, Princeton University, Princeton, New Jersey

e Runon a CDC 3600 (Received 7 October 1969)
b
~ 1 Mflops’ 3 2KB+ at LAN L In some cosmologies, a cluster of galaxies is imagined to be a gravitationally bound system which, in

analogy with the formation of the Galaxy, originated as a collapsing protocluster. It is shown that a numeri-
cal model based on this picture is consistent with the observed features of the Coma Cluster of galaxies.
[ ] - - . - e
The cluster mass derived from this model agrees with previous values: however, an analysis of the observa-
e |Is nine orders of 8 * ' i auak

tional uncertainty within the framework of the model shows that the derived mass could be consistent
magnitu de im p rOVGment with the estimated total mass provided by the galaxies in the cluster.

in both performance and

memory good enough for
precision cosmology?

“The Universe is far too complicated a structure to be
studied deductively, starting from initial conditions and
solving the equations of motion.”

Robert Dicke (Jayne Lectures, 1969)
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Computing the Universe: Simulating Surveys

e Simulation Volume: Large survey sizes impose simulation
volumes ~ (3 Gpc)3, memory required ~100 TB -- 1 PB /8%

o Number of Particles: Mass resolutions depend on
ultimate object to be resolved, ~108 --1010 solar
masses, N~1011--1012

e Force Resolution: ~kpc, yields a (global) spatial dynamic
range of 10°

e Hydrodynamics/Sub-Grid Models: Phenomenological
treatment of gas physics and feedback greatly adds to
computational cost

e Throughput: Large numbers of simulations required
(100’s --1000’s), development of analysis suites, and
emulators; peta-exascale computing exploits

e Data-Intensive-SuperComputing: End-to-End simulations
and observations must be brought together in a DISC
environment (theory-observation feedback)
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Hardware-Accelerated Cosmology Code (HACC) Framework

e Architecture Challenge: HPC is rapidly
evolving (clusters/BG/CPU+GPU/MIC --)

e Code for the Future: Melds optimized
performance, low memory footprint,
embedded analysis, and scalability

e-05 -

Perfect weak scaling on 3
Roadrunner

c-06 3

e-O8 E

e Implementation: Long/short-range force
matching with spectral force-shaping P i pa—
(long-range=PM, short-range=PP, Tree) e

Is_l() 'l 1 1111111 1 1 1111111 1 L 2B B B B&
5 1000 10000

o Key Features: Hybrid particle/grid 1 OO s
design, particle overloading, spectral
operators, mixed-precision, node-level
‘plug-ins’, ~50% of peak Flops

Time [sec] per step per particle

LT
\"“‘
Ny, Mira

‘Titan’
a1 10 PFlops

e Cross-Platform: Desighed for all current 20\ lops
and future supercomputing platforms —

e Embedded Analysis: High performance

with low I/0 and storage requirement R‘;ag;ll’“"er' y
ops 4

Habib et al. 2009, Pope et al. 2010
S
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HACC Design Features

e New Framework: Not a port of an older code (too difficult)

o Two-Layer Design: Anticipates communication bottleneck between
CPU and accelerator layers

e Compute Sharing: Compute complexity shifted to CPU+MPI layer
(new algorithms), simple brute force computations assigned to
accelerators, use mixed precision (CPU, double; accelerator, single)

e Memory Trade-Off: Small memory overhead used to reduce inter-
layer communication and improve modularity

e Cross-Platform: Aimed at current and future supercomputing
platforms using ‘plug-in’ short-range force modules optimized for a
given nodal architecture (and using different algorithms)

e In Situ Analysis: Significant attention paid to ‘on the fly’ analysis
methods to reduce 1/0 and storage; code design allows for
essentially ‘serial’ methods to be trvially parallelized

o Simplicity: Relatively straightforward approach
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HACC Beginnings: Roadrunner Universe Project

_ Andrew White Dec 7,2007 * What if you had a petaflop/s 6 w,,_w

- Hybrid machine architecture, out of balance
communication (50-100) and performance (20)

« Balanced memory (CPU=Cell)
* Multi-level programming paradigm
* Prototype for exascale code design problems

» Scalable approach extensible to all next-
generation architectures (BG/Q, CPU/GPU, --)

200 GFlo _ | GB/s link from A | TN

P [ B LR , 1/0 nodes .
(single precnsuon) Cell to Opteron \ \
Cell BEs :

17 CUs, 50 TFlop
eee Opteron layer, with oo
\l/ commensurate B/W \’/
® o o

e

Second stage IB 4XDDR switches
] l J
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HACC Example 2: CPU+GPU

« CPU/GPU performance and

communication out of balance,
unbalanced memory (CPU/main memory
dominates)

* Multi-level programming (mitigate with
OpenCL)

 Particles in CPU main memory, CPU does
low flop/byte operations

« Stream slabs through GPU memory (pre- I

fetches, asynchronous result updates)
« Data-parallel kernel execution

* Many independent work units per slab --
many threads, efficient scheduling, good
performance achieved (improves on Cell)

 Scalability of HACC is the same across all
‘nodal’ variants

S
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HACC Algorithmic Details 1

* Solve compute imbalance: Split
problem into long-range and .
short-range force updates S

« Long-range handled by a grid-
based Poisson solver

* Direct particle-particle short-
range interactions

« Simplify and speed-up Cell
computational tasks

* Reduce CPU/Cell traffic to avoid
PCIE bottleneck: use simple CIC
to couple particles to the grid,
followed by spectral filtering on
the grid

* Reduce inter-node particle

communication: particle caching/
replication (ghost zone analog)

* ‘On the fly’ analysis and
visualization to reduce |/0
S

Particle not in reference cell Spatial grid point-boundary

Dead particle in reference cell Unit-zone shadow

Alive particle in reference cell

Overloaded domain boundary

|
|
——:0—

Overload Zone (particle “cache”)
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HACC Algorithmic Details 2

* Spectral smoothing of the CIC
density field allows 6-th order
Green function and 4th order
super-Lanczos gradients for high-
accuracy Poisson-solves

» Short-range force is fit to the
numerical difference between
Newtonian and long-range force
(not conventional P3M)

* Short-range force time-steps are
sub-cycled within long-range
force kicks via symplectic
algorithm

* Short-range computations
isolated as essentially ‘on-node’,
replace or re-design for different
architectures (e.g., BG/Q or GPU)

S
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Some Results --

A a Opteron
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Roadrunner view (halos) of the Universe at z=2 from

a 64 billion particle run (9 runs on one weekend) Particle interactions: Cell computation gave

improvement of two orders of magnitude
—— Fit from Bhattacharya ct al. 2010 over the Opterons for the short-range force
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HACC on Titan?

e Simulation Requirements: Need sets of
very large runs (~trillion particle) for
solving cosmological inverse problems;
fast turn-around important

e Titan hardware: Need to understand
host CPU/GPU better, but appears that
overall ratios (memory, communication)
are not too far from our previous HACC
implementations (RR and CPU/GPU)

o Software: Unlikely to use directive-

based approaches, need to decide on
CUDA/OpenCL trade-offs

e Prospects: With some preliminary work Zoom-in on a high-resolution HACC SN
. . run, particles colored by potential o
could be ready to hit the ground running
for Phase 4-6 (if | understand them
correctly) --
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