
HPC Fundamentals
Programming Languages

Robert Whitten Jr

2

Programming Languages
• Computers execute instructions, i.e.:

– Move data to a memory location
–  Add data in one memory location to another
–  Jump to next instruction to execute

• Programming languages allow the order of
instructions to be controlled
–  Each type of processor has different instructions

• Low-level vs. high-level languages
– Machine languages
–  Assembly languages
–  High-level languages

•  Interpreted vs. compiled

3

Machine languages

•  Its what computers understand
–  Low level language
–  Specific to a particular architecture

•  x86, IA-32, x86-64, AMD64, Motorola's 6800 and 68000

• Binary instructions
– General form
6 5 5 5 5 6 bits
[op | rs | rt | rd |shamt| funct] R-type
[op | rs | rt | address/immediate] I-type
[op | target address] J-type

• Example
000010 00000 00000 00000 10000 000000

4

Assembly language

• One-to-one mapping to machine instruction
• Specific to each architecture

–  Usually provided by manufacturer or processor

•  Low-level language
• Uses mnemonics representation of instructions

–  mv ax, es
–  add ip, ax

• Example:
Machine code= 000010 00000 00000 00000 10000 000000
Assembly = jmp 1024

5

High-level languages

• Abstract representation of program
–  Details of architecture are hidden
–  More portability
–  Easier to program

• Structured for humans not machines
• Examples

–  C++
–  Fortran
–  Java
–  Python
–  Perl
–  Hundreds exist

6

Interpreted vs. compiled vs. markup

•  Interpreted languages
–  Require special programs that execute other programs
–  Typically 1 line at a time
–  Shell script, Python, Perl

• Compiled languages
–  Do not require a separate program to execute
–  Does require a program called a compiler
–  Typically faster than interpreted languages (not always)
–  C/C++, Fortran

• Markup languages
–  Not really a programming language (a way to format data)
–  HTML, XML, SGML

7

Interpreted languages

• Start with a text file (call source file)
–  1st line is typically #!<path to interpreter program>

•  #!/bin/bash or #!/bin/perl, etc.

•  Interpreter reads and executes one line at a time
–  Syntax errors are caught immediately
–  Does not look forward to see what’s next

• Programmers can usually test singe statements in
interpreter
–  echo “hello”

8

Compiled languages

• Starts with text file (source code)
• A compiler program:

–  Coverts source into assembly language
–  Assembly is converted into machine code (object code)
–  Object code is linked with other object code to make executable by

linker program (often part of compiler

•  Final code does not need an interpreter to execute
–  Can execute on own

•  ./programName

•  Typically faster than interpreted languages
–  Doesn’t require overhead of running another program

9

Markup languages

• Not a programming language
–  The end result is not executable code

• Designed to format data to make presentable
–  Bold, italic, justified, formated in a table, etc

• HTML
–  Hypertext Markup Language

• XML
–  eXtensible Markup Language

• SGML
–  Standard Generalized Markup Language
–  Grandparent to HTML and XML

10

C basics

• Comments
• Variables
• Constants
• Selection
• Loops
• Functions

 U. S. Department Of Energy 10

11

C program example – Hello World

#include <stdio.h>!

!

void main(void)!

{!

 printf(“Hello World\n”);!

}!

 !

 U. S. Department Of Energy 11

12

Hello World +

#include <stdio.h>!

void main(void)!

{!

 int x;!

 x=10;!

 printf(“Hello World\n”);!

 printf(“x=%d”,x);!

}!

 U. S. Department Of Energy 12

13

Hello World ++

#include <stdio.h>!

!

int main(int argc, char** argv)!

{!

 printf(“Hello World, %s\n”, argv
[1]);!

 return (0);!

}!

 U. S. Department Of Energy 13

14

Variables

 U. S. Department Of Energy 14

15

Variable declaration

•  int I;
•  char c;
• double dbl;
•  float f;
•  int i=0;
•  const pi=3.14159265;

 U. S. Department Of Energy 15

16

Arrays

• One dimensional
–  int i [10];
–  char str [25];

• Two dimensional
–  int d [2][2];

 U. S. Department Of Energy 16

17

Selection

•  if condition then something else something else.
if (x < 10)!
{!

printf(“low\n”);!

}!

 U. S. Department Of Energy 17

18

Loops

• While condition do!
while (x < 10)!
{!

printf(“low\n”);!
x++;!

}

• Do until condition!
do!
{!
!printf(“low\n”);!
!x++;!
} while (x<10);

 U. S. Department Of Energy 18

19

Loops

• For expression do
for (i=0; i<10; i++)!
{!
!printf(“low\n”);!
}!

 U. S. Department Of Energy 19

20

Functions

• Recurring pieces of code!
!

<return> func (parameters)!

{!

!body!

}!

 U. S. Department Of Energy 20

21

Exercise

• Write a C program
•  The program should perform a matrix multiplication of an

MxM matrix
–  Many scientific application rely heavily on linear algebra

•  Matrix multiplication is one such algorithm

22

Matrices: What They Are

• Multidimensional
grids of numbers

• Properties
–  Can be rectangular
–  Can be 1D, 2D,3D,

4D, …
– m x m, m x n

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

23

Matrices and Modeling

• Matrix models related
set of measures: e.g.,
–  Counts
–  Costs
–  Physical data

• Measures
characterize a set of
related, measurable
entities (e.g., people)

• Columns model
properties of these
entities

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

24

Matrices and Modeling (example)

• Matrix counts
social activities

• Rows represent set
of friends
–  Lynn, Mel, Noel, Pat

• Columns represent
activity types
–  Col. 1: movies
–  Col. 2: dinners
–  Col. 3: car trips
–  Col. 4: gifts

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

25

Matrices and Modeling (example)

• Matrix models cost
of social activities
(10’s of $s)

• Rows represent set
of friends
–  Lynn, Mel, Noel, Pat

• Columns represent
activity types
–  Col. 1: movies
–  Col. 2: dinners
–  Col. 3: car trips
–  Col. 4: gifts

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

26

Matrices and Modeling (example)

•  Matrix models value of financial
instruments (1,000s of $s)

•  Rows represent institution’s
depositors

•  Columns represent instrument
type (1,000’s of $s)
–  Col. 1: stocks
–  Col. 2: bonds
–  Col. 3: commodities
–  Col. 4: cash

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

27

Matrices and Modeling (example)

•  Matrix models counts of
registered voters

•  Rows represent locales of
interest

•  Column represent classes of
registrations
–  Col. 1: Republicans
–  Col. 2: Democrats
–  Col. 3: Independents
–  Col. 4: Unregistered

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

28

Matrices and Modeling (example)

•  Matrix models counts of
birds

•  Rows represent species

•  Columns represent counting
stations

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

29

Matrices and Modeling (example)

•  Matrix models ocean
temperatures
(degrees Celsius)

•  Rows represent buoys

•  Columns represent points in
time
–  Col. 1: 18 hours ago
–  Col. 2: 12 hours ago
–  Col. 3: 6 hours ago
–  Col. 4: now

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

30

Matrices and Modeling

•  Can flip-flop row, column
semantics for these examples,
e.g.,
–  Columns represent buoys
–  Rows represent points in

time

4 2 2 1

1 1 1 1

2 2 1 1

2 3 5 6

31

Matrices and Modeling (example)

movies dinners car trips gifts
Lynn 4 movies 2 din. 2 car t. 1gift
Mel 1 movie 1 din. 1car t. 1gift
Noel 2 movies 2 din. 1car t. 1gift
Pat 2 movies 3 din. 5 car t. 6 gifts

•  If movies cost $10, dinners cost $20, car trips
cost $30, and gifts cost $40, how much did
Lynn, Mel, Noel, and Pat spend for the
indicated time frame?

32

4 mv. 2 din. 2 cr t. 1 gifts $10/mv.
1 mv 1 din. 1 cr t. 1 gift * $20/din. =
2 mv 2 din. 1 cr t. 1 gift $30/cr t.
2 mv 3 din. 5 cr t. 6 gifts $40/gift

4 mv.*$10/mv. +2 m.o.*$20/m.o. +2 cr t.*$30/cr t. +1 gift*$40/gift
1 mv.*$10/mv. +1 m.o.*$20/m.o. +1 cr t.*$30/cr t. +1 gift*$40/gift =
2 mv.*$10/mv. +2 m.o.*$20/m.o. +1 cr t.*$30/cr t. +1 gift*$40/gift
2 mv.*$10/mv. +3 m.o.*$20/m.o. +5 cr t.*$30/cr t. +6 gifts*$40/gift

$40 +$40 +$ 60 +$ 40 $180 (Lynn)
$10 +$20 +$ 30 +$ 40 $100 (Mel)
$20 +$40 +$ 30 +$ 40 $130 (Noel)
$20 +$60 +$150 +$240 $470 (Pat)

Solution (Vector-Matrix Product)

33

Notation

• Matrix quantities typically in UPPER CASE
• Vector quantities typically in lower case
• Denoting
 4 2 2 1 10
 1 1 1 1 by EVENTS, 20 by costs,
 2 2 1 1 30
 2 3 5 6 40
 180

we have EVENTS X costs= 100
 130
 470

34

Matrix multiply

• A * B = C

ai0j0 ai0j1 bi0j0 bi0j1 ci0j0 ci0j1
ai1j0 ai1j1 bi1j0 bi1j1 = ci1j0 ci1j1

ai0j0 ai0j1 bi0j0 bi0j1 ci0j0 ci0j1
ai1j0 ai1j1 bi1j0 bi1j1 = ci1j0 ci1j1

3 2 1 3 = (3*1) +(2*2) (3*3)+(2*1)

4 3 2 1 (4*1)+(3*2) (4*3) +(3*1)

 7 11

 10 15

 U. S. Department Of Energy 34

35

Questions?

http://www.olcf.ornl.gov

