
6/15/11	

1	

Advanced Crash Course in Supercomputing:
Programming Project

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

©	 2004-‐2011	 Rebecca	 Hartman-‐Baker.	 	 Reproduc<on	 permi>ed	 for	 non-‐
commercial,	 educa<onal	 use	 only.	

2

Programming Project

I.  Project Description
II.  Programming Concepts
III.  Parallelization Strategies
IV.  Implementation Details

	 	

6/15/11	

2	

3

I. PROJECT DESCRIPTION

Source: http://www.ehow.com/how_2141082_best-berry-pie-ever.html

	 	

4

I. Project Description

• We want to compute π
• One method: method of darts*
• Ratio of area of square to area of inscribed circle

proportional to π

*Disclaimer:	 this	 is	 a	 TERRIBLE	 way	 to	 compute	 π.	 	 Don’t	 even	 think	 about	 doing	 it	 this	 way	 except	 for	
the	 purposes	 of	 this	 project!	

6/15/11	

3	

5

Method of Darts

•  Imagine dartboard with circle of radius R inscribed in square
• Area of circle
• Area of square
• Area of circle
 Area of square

	 	

!

= " R2

!

= 2R()2 = 4R2

!

=
" R2

4R2
=
"
4

6

Method of Darts

• So, ratio of areas proportional to π
• How to find areas?
– Suppose we threw darts (completely

randomly) at dartboard
– Could count number of darts landing in circle and total

number of darts landing in square
– Ratio of these numbers gives approximation to ratio of

areas
– Quality of approximation increases with number of darts

• π = 4 × # darts inside circle
 # darts thrown

	 	

6/15/11	

4	

7

Method of Darts

• Okay, Rebecca, but how in the world do we simulate
this experiment on computer?
– Decide on length R
– Generate pairs of random numbers (x, y) s.t.

 -R ≤ x, y ≤ R
–  If (x, y) within circle (i.e. if (x2+y2) ≤ R2), add one to tally

for inside circle
– Lastly, find ratio

	 	

8

II. PROGRAMMING
CONCEPTS
Nissan Pivo Concept Car. Source: http://www.gizmag.com/go/4683/picture/15670/

6/15/11	

5	

9

II. Programming Concepts

• Pseudorandom numbers
•  Typecast and coercion
• Datatypes

10

Pseudorandom Numbers

•  In C language, function int rand(void) generates
“pseudo-random integer in range 0 to RAND_MAX”
•  RAND_MAX: C-language constant denoting maximum

random number generated; actual value varies with
implementation
•  Divide “random” number by maximum random number to get

a number between 0 and 1*
•  Numbers generated by rand() not really random; same

sequence every time
•  Change seed for random number generator with void
srand(unsigned int seed)!

	 	

*Disclaimer:	 this	 is	 a	 TERRIBLE	 way	 to	 compute	 a	 pseudorandom	 number.	 	 Don’t	 even	 think	 about	
doing	 it	 this	 way	 except	 for	 the	 purposes	 of	 this	 project!	

	

6/15/11	

6	

11

Type Cast and Coercion

•  int a = rand(); double b = a/RAND_MAX;
–  b equals 0

•  int a = rand(); double b = ((double) a)/((double)
RAND_MAX);
–  b equals correct value

•  Type conversion rules:
–  int/int → int!
–  int/double → double!
–  double/int → double!
–  double/double → double

	 	

12

Datatypes

•  For large number of darts, need larger datatype than
int or risk overflow
• On some computers (varies by platform):

Data	 Type	 Range	

int -32,768 à +32,767
long int -2,147,483,648 à +2,147,483,647

unsigned long int 0 à +4,294,967,295

6/15/11	

7	

13

III. PARALLELIZATION
STRATEGIES

14

III. Parallelization Strategies

• What tasks independent of each other?
• What tasks must be performed sequentially?
• Using PCAM parallel algorithm design strategy

	 	

6/15/11	

8	

15

Partition

•  “Decompose problem into fine-grained tasks to
maximize potential parallelism”
•  Finest grained task: throw of one dart
• Each throw independent of all others
•  If we had huge computer, could assign one throw to

each processor

	 	

16

Communication

“Determine communication pattern among tasks”
•  Each processor throws dart(s) then sends results back to manager

process

	 	

6/15/11	

9	

17

Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs”
•  To get good value of π, must use millions of darts
• We don’t have millions of processors available
•  Furthermore, communication between manager and millions

of worker processors would be very expensive
• Solution: divide up number of dart throws evenly between

processors, so each processor does a share of work

	 	

18

Mapping

“Assign tasks to processors, subject to tradeoff
between communication cost and concurrency”
• Assign role of “manager” to processor 0
• Processor 0 will receive tallies from all the other

processors, and will compute final value of π
• Every processor, including manager, will perform

equal share of dart throws

	 	

6/15/11	

10	

19

IV. IMPLEMENTATION
DETAILS
Detail from Vincent van Gogh’s Sunflowers. Source:
http://painting.about.com/od/famouspainters/ig/Van-Gogh-and-Expressionism/Sunflower-Detail.htm

20

IV. Implementation Details

1.  Implement using six basic MPI functions
2.  Add OpenMP capabilities
3.  Implement using collective operations

6/15/11	

11	

21

Step 1

• Create function pi_basic(…) that uses only six basic
functions covered in part 1
–  pi_basic(…) should call function throw_darts(…) to

perform the actual throwing of darts

•  Test your implementation and make sure it works

22

Step 2

• Use OpenMP to parallelize throw_darts(…) over a
node
• Parallelization will occur in loop
• Make sure code works properly

6/15/11	

12	

23

Step 3

• Create function pi_advanced(…) that uses MPI
collective operations
•  This should require trivial change from pi_basic(…)

24

Skeleton Code

#include <mpi.h>
#include <stdio.h>
int main(int argc, char
**argv) {

/* declarations here */
 MPI_Init(&argc,
&argv);
 double start =
MPI_Wtime();

 pi_simple(…);
 double finish =
MPI_Wtime();

 printf(“Processor %d
took %f s for
pi_simple”, me,
finish-start);

 double start =
MPI_Wtime();

 pi_advanced(…);
 double finish =
MPI_Wtime();

 printf(“Processor %d
took %f s for
pi_advanced”, me,
finish-start);
 MPI_Finalize();
 return 0;
}

6/15/11	

13	

25

Doing this Project on Smoky

•  Bring up shell on Mac or Linux or PuTTY shell on Windows
•  Log into jaguar with your username (temporary guest accounts

or your regular account)
–  ssh –Y hqi@smoky.ccs.ornl.gov
–  Enter your PIN number and then 6-digit SECURID number

•  Create directory for program and write program
•  Compile using mpicc (e.g. mpicc -o pi.o pi.c)
–  For OpenMP, use -mp=nonuma flag, i.e., mpicc -mp=nonuma
pi.c

•  No link to MPI or OpenMP libraries necessary – Smoky takes
care of that
• Write batch script and submit using qsub scriptname

26

Bibliography/Resources

•  Heath, Michael T. (2006) Notes for CS554: Parallel Numerical
Algorithms,
http://www.cse.illinois.edu/courses/cs554/notes/index.html
•  Kernighan, Brian W. and Dennis M. Ritchie. The C Programming

Language, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1988.
•  C: The float and double Data Types and the sizeof Operator

http://www.iota-six.co.uk/c/b3_float_double_and_sizeof.asp
•  C Data types

http://www.phim.unibe.ch/comp_doc/c_manual/C/CONCEPT/
data_types.html
•  OLCF Webpages http://olcf.ornl.gov/

	 	

6/15/11	

14	

27

Appendix: Better Ways to Compute π

•  Look it up on the internet, e.g.
http://oldweb.cecm.sfu.ca/projects/ISC/data/ pi.html
• Compute using the BBP (Bailey-Borwein-Plouffe) formula

•  For less accurate computations, try your programming
language’s constant, or quadrature or power series
expansions

	 	

!

" =
4

8n +1
#

2
8n + 4

#
1

8n + 5
#

1
8n + 6

$

%
&

'

(
)

n= 0

*

+ 1
16
$

%
&

'

(
)
n

28

Appendix: Better Ways to Generate
Pseudorandom Numbers

•  For serial codes
–  Mersenne twister
–  GSL (Gnu Scientific Library), many generators available (including

Mersenne twister) http://www.gnu.org/software/gsl/
•  For parallel codes
–  SPRNG, regarded as leading parallel pseudorandom number

generator http://sprng.cs.fsu.edu/

	 	

