
6/15/11	

1	

Advanced Crash Course in Supercomputing:
OpenMP

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

©	 2004-‐2011	 Rebecca	 Hartman-‐Baker.	 	 Reproduc<on	 permi>ed	 for	 non-‐
commercial,	 educa<onal	 use	 only.	

2

Outline

I.  About OpenMP
II.  OpenMP Directives
III.  Data Scope
IV.  Runtime Library Routines and Environment Variables
V.  Using OpenMP
VI.  Hybrid Programming

6/15/11	

2	

3

I. ABOUT OPENMP
Source: http://xkcd.com/225/

	 	

4

About OpenMP

•  Industry-standard shared memory programming model
• Developed in 1997
• OpenMP Architecture Review Board (ARB) determines

additions and updates to standard

	 	

6/15/11	

3	

5

Advantages to OpenMP

• Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

• Can express simple or complex algorithms
• Code size grows only modestly
• Expression of parallelism flows clearly, so code is easy to

read
• Single source code for OpenMP and non-OpenMP – non-

OpenMP compilers simply ignore OMP directives

	 	

6

OpenMP Programming Model

• Application Programmer Interface (API) is combination of
–  Directives
–  Runtime library routines
–  Environment variables

• API falls into three categories
–  Expression of parallelism (flow control)
–  Data sharing among threads (communication)
–  Synchronization (coordination or interaction)

	 	

6/15/11	

4	

7

Parallelism

• Shared memory, thread-based parallelism
• Explicit parallelism (parallel regions)
•  Fork/join model

	 	

Source:	 h>ps://compu<ng.llnl.gov/tutorials/openMP/	

8

II. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

6/15/11	

5	

9

II. OpenMP Directives

• Parallel
•  Loop
• Sections
• Synchronization

10

OpenMP Directives: Parallel

• A block of code executed by multiple threads
• Syntax:
#pragma omp parallel private(list)\
shared (list)

{
 /* parallel section */
}

	 	

6/15/11	

6	

11

Simple Example

#include <stdio.h>

#include <omp.h>

int main (int argc, char *argv[]) {

 int tid;

 printf(“Hello world from threads:\n”);

 #pragma omp parallel private(tid)

 {

 tid = omp_get_thread_num();

 printf(“<%d>\n”, tid);

 }

 printf(“I am sequential now\n”);

 return 0;

}

	 	

12

Output (Simple Example)

Output 1
Hello world from
threads:

<0>
<1>
<2>
<3>
<4>
I am sequential now

Output 2
Hello world from
threads:

<1>
<2>
<0>
<4>
<3>
I am sequential now

	 	

Order	 of	 execu+on	 is	 scheduled	 by	 OS!!!!!!	

6/15/11	

7	

13

OpenMP Directives: Loop

•  Iterations of the loop following the directive are executed in
parallel

• Syntax:
–  #pragma omp for schedule(type [,chunk])\
private(list) shared(list) nowait

 {
 /* for loop */
 }
–  type = {static, dynamic, guided, runtime}
–  If nowait specified, threads do not synchronize at end of loop

	 	

14

Which Loops Are Parallelizable?

Parallelizable
•  Number of iterations known

upon entry, and does not
change

•  Each iteration independent of all
others

•  No data dependence

Not Parallelizable
•  Conditional loops (many while

loops)
•  Iterator loops (e.g., iterating over

a std::list<…> in C++)
•  Iterations dependent upon each

other
•  Data dependence

6/15/11	

8	

15

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):
 x = A\b */

for (int i = 0; i < N-1; i++) {
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

16

Example: Parallelizable?

i loop
j, k loops

i loop

i loop
i loop

j, k loops

j, k loops

j, k loops

Pivot
row/column
Updated
entries

Unused
entries

6/15/11	

9	

17

Example: Parallelizable?

• Outermost Loop (i):
–  N-1 iterations
–  Iterations depend upon each other (values computed at step i-1

used in step i)
•  Inner loop (j):

–  N-i iterations (constant for given i)
–  Iterations can be performed in any order

•  Innermost loop (k):
–  N-i iterations (constant for given i)
–  Iterations can be performed in any order

18

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):
 x = A\b */

for (int i = 0; i < N-1; i++) {
#pragma omp parallel for
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

Note:	 can	 combine	 parallel	 and	 for	 into	 single	 pragma	 line	

6/15/11	

10	

19

OpenMP Directives: Loop Scheduling

• Default scheduling determined by implementation
• Static

–  ID of thread performing particular iteration is function of iteration
number and number of threads

–  Statically assigned at beginning of loop
–  Load imbalance may be issue if iterations have different amounts

of work
• Dynamic

–  Assignment of threads determined at runtime (round robin)
–  Each thread gets more work after completing current work
–  Load balance is possible

	 	

20

Loop: Simple Example
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main () {
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;
 #pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
 return 0;
}

	 	

6/15/11	

11	

21

OpenMP Directives: Sections

•  Non-iterative work-sharing construct
•  Divide enclosed sections of code among threads
•  Section directives nested within sections directive
•  Syntax

#pragma omp sections
{
 #pragma omp section
 /* first section */
 #pragma omp section
 /* next section */
}

	 	

22

Sections: Simple Example

#include <omp.h>

#define N 1000

int main () {

 int i;

 double a[N], b[N], c
[N], d[N];

 /* Some initializations
*/

 for (i=0; i < N; i++) {

 a[i] = i * 1.5;

 b[i] = i + 22.35;

 }

 #pragma omp parallel \
shared(a,b,c,d) private(i)

 {

 #pragma omp sections nowait

 {

 #pragma omp section

 for (i=0; i < N; i++)

 c[i] = a[i] + b[i];

 #pragma omp section

 for (i=0; i < N; i++)

 d[i] = a[i] * b[i];

 } /* end of sections */

 } /* end of parallel section */

return 0;

}

	 	

6/15/11	

12	

23

OpenMP Directives: Synchronization

• Sometimes, need to make sure threads execute regions of
code in proper order
–  Maybe one part depends on another part being completed
–  Maybe only one thread need execute a section of code

• Synchronization directives
–  Critical
–  Barrier
–  Single

	 	

24

OpenMP Directives: Synchronization

•  Critical
–  Specifies section of code that must be executed by only one thread at a

time
–  Syntax

#pragma omp critical [name]

–  Names are global identifiers – critical regions with same name are
treated as same region

•  Single
–  Enclosed code is to be executed by only one thread
–  Useful for thread-unsafe sections of code (e.g., I/O)
–  Syntax

#pragma omp single

	 	

6/15/11	

13	

25

OpenMP Directives: Synchronization

• Barrier
–  Synchronizes all threads: thread reaches barrier and waits until all

other threads have reached barrier, then resumes executing code
following barrier

–  Syntax
#pragma omp barrier

–  Sequence of work-sharing and barrier regions encountered must
be the same for every thread

	 	

26

III. VARIABLE SCOPE
Angled spotting scope. Source: http://www.spottingscopes.us/angled-scope-328.jpg

6/15/11	

14	

27

Variable Scope

• By default, all variables shared except
–  Certain loop index values – private by default
–  Local variables and value parameters within subroutines called

within parallel region – private
–  Variables declared within lexical extent of parallel region – private

	 	

28

Default Scope Example
void caller(int *a, int n) {

int i,j,m=3;

#pragma omp parallel for

for (i=0; i<n; i++) {

 int k=m;

 for (j=1; j<=5; j++) {

 callee(&a[i], &k, j);

 }

}

void callee(int *x, int *y, int
z) {

 int ii;

 static int cnt;

 cnt++;

 for (ii=1; ii<z; ii++) {

 *x = *y + z;

 }

}

Var	 Scope	 Comment	
a shared	 Declared	 outside	 parallel	 construct	

n shared	 same	

i private	 Parallel	 loop	 index	

j shared	 Sequen<al	 loop	 index	

m shared	 Declared	 outside	 parallel	 construct	

k private	 Automa<c	 variable/parallel	 region	

x private	 Passed	 by	 value	

*x shared	 (actually	 a)	

y private	 Passed	 by	 value	

*y private	 (actually	 k)	

z private	 (actually	 j)	

ii private	 Local	 stack	 variable	 in	 called	 func<on	

cnt shared	 Declared	 sta<c	 (like	 global)	

	 	

6/15/11	

15	

29

Variable Scope

• Good programming practice: explicitly declare scope of all
variables

•  This helps you as programmer understand how variables
are used in program

• Reduces chances of data race conditions or unexplained
behavior

30

Variable Scope: Shared

•  Syntax
–  shared(list)

•  One instance of shared variable, and each thread can read or
modify it

• WARNING: watch out for multiple threads simultaneously
updating same variable, or one reading while another writes

•  Example
#pragma omp parallel for shared(a)
for (i = 0; i < N; i++) {
 a[i] += i;
}

6/15/11	

16	

31

Variable Scope: Shared – Bad Example

#pragma omp parallel for shared(n_eq)
for (i = 0; i < N; i++) {
 if (a[i] == b[i]) {
 n_eq++;
 }
}

• n_eq will not be correctly updated
•  Instead, put n_eq++; in critical block (slow) or

introduce private variable my_n_eq, then update
n_eq in critical block after loop (faster)

32

 Variable Scope: Private

•  Syntax
–  private(list)

•  Gives each thread its own copy of variable
•  Example

#pragma omp parallel private(i, my_n_eq)
{
 #pragma omp for
 for (i = 0; i < N; i++) {
 if (a[i] == b[i]) my_n_eq++;
 }
 #pragma omp critical (update_sum)
 {
 n_eq+=my_n_eq;
 }
}

6/15/11	

17	

33

Another Solution for Sum

#pragma parallel for reduction
(+:n_eq)

for (i = 0; i < N; i++) {
 if (a[i] == b[i]) {
 n_eq = n_eq+1;
 }
}

34

IV. RUNTIME LIBRARY
ROUTINES AND
ENVIRONMENT VARIABLES
Mt. McKinley National Monument, July, 1966. Source: National Park Service Historic Photograph Collection,
http://home.nps.gov/applications/hafe/hfc/npsphoto4h.cfm?Catalog_No=hpc-001845

	 	

6/15/11	

18	

35

OpenMP Runtime Library Routines

• void omp_set_num_threads(int
num_threads)
–  Sets number of threads used in next parallel region
–  Must be called from serial portion of code

• int omp_get_num_threads()
–  Returns number of threads currently in team executing parallel

region from which it is called

• int omp_get_thread_num()
–  Returns rank of thread
–  0 ≤ omp_get_thread_num() <
omp_get_num_threads()

	 	

36

OpenMP Environment Variables

• Set environment variables to control execution of parallel
code

• OMP_SCHEDULE
–  Determines how iterations of loops are scheduled
–  E.g., setenv OMP_SCHEDULE ”guided, 4”

• OMP_NUM_THREADS
–  Sets maximum number of threads
–  E.g., setenv OMP_NUM_THREADS 4

	 	

6/15/11	

19	

37

V. USING OPENMP

38

Conditional Compilation

• Can write single source code for use with or without
OpenMP

• Pragmas are ignored
• What about OpenMP runtime library routines?

–  _OPENMP macro is defined if OpenMP available: can use this to
conditionally include omp.h header file, else redefine runtime
library routines

6/15/11	

20	

39

Conditional Compilation

#ifdef _OPENMP
 #include <omp.h>
#else
 #define omp_get_thread_num() 0
#endif
…
int me = omp_get_thread_num();
…

40

Running Programs with OpenMP
Directives

• May need special compiler options (e.g., for PGI compilers,
use -mp=nonuma flag)

• May need to set environment variables in batch scripts (e.g.,
on Jaguar, include definition of OMP_NUM_THREADS in
script)

• Example: to run on 64 quad-core nodes on Jaguar, add the
following to your script requesting 256 procs:
export OMP_NUM_THREADS=4
aprun –n 64 –N 1 myprog

	 	

6/15/11	

21	

41

VI. HYBRID PROGRAMMING
Hybrid Car. Source: http://static.howstuffworks.com/gif/hybrid-car-hyper.jpg

42

VI. Hybrid Programming

• Motivation
• Considerations
• MPI threading support
• Designing hybrid algorithms
• Examples

6/15/11	

22	

43

Motivation

• Multicore architectures are here to stay
• Macro scale: distributed memory architecture, suitable for

MPI
• Micro scale: each node contains multiple cores and shared

memory, suitable for OpenMP
• Obvious solution: use MPI between nodes, and OpenMP

within nodes
• Hybrid programming model

44

Considerations

• Sounds great, Rebecca, but is hybrid programming always
better?
–  No, not always
–  Especially if poorly programmed J
–  Depends also on suitability of architecture

•  Think of accelerator model
–  in omp parallel region, use power of multicores; in serial region,

use only 1 processor
–  If your code can exploit threaded parallelism “a lot”, then try hybrid

programming

6/15/11	

23	

45

Considerations

• Hybrid parallel programming model
–  Are communication and computation discrete phases of algorithm?
–  Can/do communication and computation overlap?

• Communication between threads
–  Communicate only outside of parallel regions
–  Assign a manager thread responsible for inter-process

communication
–  Let some threads perform inter-process communication
–  Let all threads communicate with other processes

46

MPI Threading Support

• MPI-2 standard defines four threading support levels
–  (0) MPI_THREAD_SINGLE only one thread allowed
–  (1) MPI_THREAD_FUNNELED master thread is only thread

permitted to make MPI calls
–  (2) MPI_THREAD_SERIALIZED all threads can make MPI

calls, but only one at a time
–  (3) MPI_THREAD_MULTIPLE no restrictions
–  (0.5) MPI calls not permitted inside parallel regions (returns
MPI_THREAD_SINGLE) – this is MPI-1

6/15/11	

24	

47

What Threading Model Does My Machine
Support?

#include <mpi.h>!
#include <stdio.h>!
int main(int *argc, char **argv) {!
!
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE,
&provided);!

!
printf("Supports level %d of %d %d %d %d\n",!
provided,!
MPI_THREAD_SINGLE,!
MPI_THREAD_FUNNELED,!
MPI_THREAD_SERIALIZED,!
MPI_THREAD_MULTIPLE);!
!
MPI_Finalize();!
return 0;!
}!

48

MPI_Init_Thread

• MPI_Init_thread(int required, int
*supported) !
–  Use this instead of MPI_Init(…)!
–  required: the level of thread support you want
–  supported: the level of thread support provided by

implementation (hopefully = required, but if not available,
returns lowest level > required; failing that, largest level <
required)

–  Using MPI_Init(…) is equivalent to required =
MPI_THREAD_SINGLE!

• MPI_Finalize() should be called by same thread
that called MPI_Init_thread(…)!

6/15/11	

25	

49

Other Useful MPI Functions

• MPI_Is_thread_main(int *flag)!
–  Thread calls this to determine whether it is main thread

• MPI_Query_thread(int *provided)!
–  Thread calls to query level of thread support

50

Supported Threading Models: Single

• Use single pragma
#pragma omp parallel!
{!
#pragma omp barrier!
#pragma omp single!
{!
 MPI_Xyz(…)!
}!
#pragma omp barrier!
}!

6/15/11	

26	

51

Supported Threading Models: Funneling

• XT5 supports funneling
• Use master pragma
#pragma omp parallel!
{!
#pragma omp barrier!
#pragma omp master!
{!
 MPI_Xyz(…)!
}!
#pragma omp barrier!
}!

52

What Threading Model Should I Use?

• Depends on the application!

Model	 Advantages	 Disadvantages	

Single	 Portable:	 every	 MPI	
implementa<on	 supports	
this	

Limited	 flexibility	

Funneled	 Simpler	 to	 program	 Manager	 thread	 could	 get	
overloaded	

Serialized	 Freedom	 to	 communicate	 Risk	 of	 too	 much	 cross-‐
communica<on	

Mul<ple	 Completely	 thread	 safe	 Limited	 availability	

6/15/11	

27	

53

Designing Hybrid Algorithms

•  Just because you can communicate thread-to-thread,
doesn’t mean you should

•  Tradeoff between lumping messages together and sending
individual messages
–  Lumping messages together: one big message, one overhead
–  Sending individual messages: less wait time (?)

• Programmability: performance will be great, when you finally
get it working!

54

Example: Mesh Partitioning

• Regular mesh of finite elements
• When we partition mesh, need to communicate information

about (domain) adjacent cells to (computationally) remote
neighbors

6/15/11	

28	

55

Example: Mesh Partitioning

56

Example: Mesh Partitioning
Communication Patterns

Processor 1

Processor 2

Processor 3

0

0

0

1

1

1

2

2

2

6/15/11	

29	

57

Bibliography/Resources: OpenMP

• Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas.
(2008) Using OpenMP, Cambridge, MA: MIT Press.

• Kendall, Ricky A. (2007) Threads R Us,
 http://www.nccs.gov/wp-content/training/
scaling_workshop_pdfs/threadsRus.pdf

•  LLNL OpenMP Tutorial,
https://computing.llnl.gov/tutorials/openMP/

	 	

58

Bibliography/Resources: Hybrid
Programming
•  von Alfthan, Sebastian, Introduction to Hybrid Programming,

PRACE Summer School 2008,
URL:http://www.prace-project.eu/hpc-training/prace-summer-
school/hybridprogramming.pdf

•  Ye, Helen and Chris Ding, Hybrid OpenMP and MPI
Programming and Tuning, Lawrence Berkeley National
Laboratory,
http://www.nersc.gov/nusers/services/training/classes/NUG/
Jun04/NUG2004_yhe_hybrid.ppt

•  Zollweg, John, Hybrid Programming with OpenMP and MPI,
Cornell University Center for Advanced Computing,
http://www.cac.cornell.edu/education/Training/Intro/
Hybrid-090529.pdf

•  MPI-2.0 Standard, Section 8.7, “MPI and Threads,”
http://www.mpi-forum.org/docs/mpi-20-html/
node162.htm#Node162

