
6/15/11

1

Advanced Crash Course in Supercomputing:
Supercomputers, Batch Scripts, and Smoky

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

© 2004-2011 Rebecca Hartman-Baker. Reproduction permitted for
non-commercial, educational use only.

2

Outline

I.  Supercomputers
II.  Batch Scripts
III.  Using Smoky

6/15/11

2

3

I. SUPERCOMPUTERS
Mare Nostrum, installed in Chapel Torre Girona, Barcelona Supercomputing Center. By courtesy of
Barcelona Supercomputing Center -- http://www.bsc.es/

4

I. Supercomputers

• Computer Architecture 101
• OLCF Facts and Figures
• XT5 Architecture

6/15/11

3

5

Computer Architecture 101

Source: http://en.wikipedia.org/wiki/Image:Computer_abstraction_layers.svg (author unknown)

6

Computer Architecture 101

• Processors
• Memory

–  Memory Hierarchy
–  TLB

•  Interconnects
• Glossary

6/15/11

4

7

Computer Architecture 101:
Processors

• CPU performs 4 basic
operations:
–  Fetch
–  Decode
–  Execute
–  Writeback

Source: http://en.wikipedia.org/wiki/Image:CPU_block_diagram.svg

8

CPU Operations

•  Fetch
–  Retrieve instruction from program memory
–  Location in memory tracked by program counter (PC)
–  Instruction retrieval sped up by caching and pipelining

•  Decode
–  Interpret instruction by breaking into meaningful parts, e.g., opcode,

operands
•  Execute

–  Connect to portions of CPU to perform operation, e.g., connect to
arithmetic logic unit (ALU) to perform addition

• Writeback
–  Write result of execution to memory

6/15/11

5

9

Computer Architecture 101: Memory

• Hierarchy of memory
–  Fast-access memory: small (expensive)
–  Slower-access memory: large (less expensive)

• Cache: fast-access memory where frequently used data
stored
–  Reduces average access time
–  Works because typically, applications have locality of reference
–  Cache in XT4/5 also hierarchical

•  TLB: Translation lookaside buffer
–  Used by memory management hardware to improve speed of

virtual address translation

10

Cache Associativity

• Where to look in cache memory for copy of main memory
location?
–  Direct-Mapped/ 1-way Associative: only one location in cache for

each main memory location
–  Fully Associative: can be stored anywhere in cache
–  2-way Associative: two possible locations in cache
–  N-way Associative: N possible locations in cache

• Doubling associativity (1 à 2, 2 à 4) has same effect on
hit rate as doubling cache size

•  Increasing beyond 4 does not substantially improve hit rate;
higher associativity done for other reasons

6/15/11

6

11

Cache Associativity: Illustration

Main
Memory

0
1
2
3
4
5
6
7
8
9
...

Cache
Memory

0
1
2
3

Main
Memory

0
1
2
3
4
5
6
7
8
9
...

Cache
Memory

0
1
2
3

Direct-Mapped
Cache

2-Way Associative
Cache

12

Computer Architecture 101:
Interconnects

• Connect nodes of machine
to one another

• Methods of interconnecting
–  Fiber + switches and routers
–  Directly connecting

•  Topology
–  Torus
–  Hypercube
–  Butterfly
–  Tree

2-D Torus Hypercube

6/15/11

7

13

Computer Architecture 101: Glossary

• SSE (Streaming SIMD Extensions): instruction set extension
to x86 architecture, allowing CPU to work on multiple
instructions in single clock cycle

• DDR2 (Double Data Rate 2): synchronous dynamic random
access memory, operates twice as fast as DDR1
–  DDR2-xyz: performs xyz million data transfers/second

• Dcache: cache devoted to data storage
•  Icache: cache devoted to instruction storage
• STREAM: data flow

14

OLCF Facts and Figures

Jaguarpf	
 Kraken	
 Gaea	

Compute	
 Nodes	
 18,772	
 9408	
 2576	

Processor	
 2.3	
 GHz	
 AMD	

Opteron	
 Dual	

Hex-­‐Core	

2.3	
 GHz	
 AMD	

Opteron	
 Dual	

Hex-­‐Core	

2.1	
 GHz	
 AMD	

“Magny-­‐Cours”	
 12-­‐
core	

Memory	
 16	
 GB/node	

DDR2-­‐800	

16	
 GB/node	

DDR2-­‐800	

64	
 GB/node	
 DDR3	

Network	
 Cray	
 SeaStar	
 2,	

3-­‐D	
 Torus	

Cray	
 SeaStar	
 2,	

3-­‐D	
 Torus	

Cray	
 Gemini,	
 3-­‐D	

Torus	

Peak	
 2.3	
 PF	
 1.17	
 PF	
 260	
 TF	

6/15/11

8

15

XT5 Architecture

• Hardware
–  Processors
–  Memory

•  Memory Hierarchy
•  TLB

–  System architecture
–  Interconnects

• Software
–  Operating System Integration
–  CNL vs Linux

16

XT5 Hardware: Processors

• On each node:
–  Two 6-core AMD Istanbul Opteron processors, 2.2 GHz
–  16 GB shared memory
–  125 GF peak performance

6/15/11

9

17

Quad Core Cache Hierarchy

Core 1

Cache
Control

64 KB

512 KB

2 MB

Core 2

Cache
Control

64 KB

512 KB

Core 3

Cache
Control

64 KB

512 KB

Core 4

Cache
Control

64 KB

512 KB

18

L1 Cache

• Dedicated
•  2-way associativity
•  8 banks
•  2 x 128-bit loads/cycle

Core 1

Cache
Control

64 KB

512 KB

2 MB

Core 2

Cache
Control

64 KB

512 KB

Core 3

Cache
Control

64 KB

512 KB

Core 4

Cache
Control

64 KB

512 KB

6/15/11

10

19

L2 Cache

• Dedicated
•  16-way associativity

Core 1

Cache
Control

64 KB

512 KB

2 MB

Core 2

Cache
Control

64 KB

512 KB

Core 3

Cache
Control

64 KB

512 KB

Core 4

Cache
Control

64 KB

512 KB

20

L3 Cache

• Shared
• Sharing-aware replacement

policy

Core 1

Cache
Control

64 KB

512 KB

2 MB

Core 2

Cache
Control

64 KB

512 KB

Core 3

Cache
Control

64 KB

512 KB

Core 4

Cache
Control

64 KB

512 KB

Core 1

Cache
Control

64 KB

512 KB

2 MB

Core 2

Cache
Control

64 KB

512 KB

Core 3

Cache
Control

64 KB

512 KB

Core 4

Cache
Control

64 KB

512 KB…

6/15/11

11

21

Cray XT5 Architecture

•  8-way SMP
•  > 70 Gflops/node
•  Up to 32 GB shared
memory/node
•  OpenMP support

22

Cray SeaStar2 Architecture
•  Router connects to 6

neighbors in 3-D torus
–  Peak bidirectional BW 7.6

GB/s; sustained 6 GB/s
–  Reliable link protocol with

error correction and
retransmission

•  Communications Engine:
DMA Engine + PPC 440
–  Together, perform messaging

tasks so AMD processor can
focus on computing

•  DMA Engine and OS
together minimize latency
with path directly from app
to communication hardware
(without traps and
interrupts)

HyperTransport
Interface

Memory

PowerPC
440 Processor

DMA
Engine 6-Port

Router

Blade
Control

Processor
Interface

6/15/11

12

23

System Architecture

•  18,688 nodes in 200 cabinets
•  3-D torus interconnect
•  4352 square feet floorspace
•  1750 W/sq. ft. power consumption
•  Liquid cooling system

24

Software Architecture

•  CLE microkernel on
compute nodes

•  Full-featured Linux on
service nodes

•  Software architecture
eliminates jitter and
enables reproducible
runtimes

•  Even large machines
can reboot in < 30
mins, including
filesystem

6/15/11

13

25

Software Architecture

• Compute PE (processing element): used for computation
only; users cannot directly access compute nodes

• Service PEs: run full Linux
–  Login: users access these nodes to develop code and submit jobs,

function like normal Linux box
–  Network: provide high-speed connectivity with other systems
–  System: run global system services such as system database
–  I/O: provide connectivity to GPFS (global parallel file system)

26

CLE vs Linux

• CLE (Cray Linux Environment) contains subset of Linux
features

• Minimizes system overhead because little between
application and bare hardware

6/15/11

14

27

Life at an HPC Center

• Work
• People
• Careers

28

Resources: Computer Architecture
101

• Wikipedia articles on computer architecture:
http://en.wikipedia.org/wiki/Computer_architecture ,
http://en.wikipedia.org/wiki/CPU ,
http://en.wikipedia.org/wiki/CPU_cache ,
http://en.wikipedia.org/wiki/DDR2_SDRAM ,
http://en.wikipedia.org/wiki/Microarchitecture ,
http://en.wikipedia.org/wiki/SSE2 ,
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

• Heath, Michael T. (2007) Notes for CS 554, Parallel
Numerical Algorithms,
http://www.cse.uiuc.edu/courses/cs554/notes/index.html

6/15/11

15

29

Resources: Cray XT5 Architecture

•  Local machines
–  Jaguarpf: http://www.olcf.ornl.gov/computing-resources/jaguar/
–  Kraken:

http://www.nics.tennessee.edu/computing-resources/kraken
–  Gaea: http://www.ncrc.gov/computing-resources/gaea/

• XT4 Architecture
–  Hartman-Baker, Rebecca (2008) XT4 Architecture and Software,

available at
http://www.nccs.gov/wp-content/training/2008_users_meeting/
4-17-08/using-xt44-17-08.pdf

30

II. BATCH SCRIPTS
Soft Batch Cookies. From
http://www.kelloggconvenience.com/Resources/Soft_Batch-Home-PBpouch.jpg

6/15/11

16

31

II. Batch Scripts

• Batch system and Scheduling
• Concepts
• Useful commands
•  Further help

32

Batch System and Scheduling

• Supercomputer: powerful computer consisting of many
interlinked CPUs

• Users competing for computational resources
• How to launch and schedule jobs fairly?
•  Job can run without user presence
• Must not allow one user to hog resources

6/15/11

17

33

Batch System

• Batch system accepts input jobs into queue and launches
them when resources available

• Many machines use batch system PBS (Portable Batch
System)

• PBS developed for NASA in 1990s

34

Scheduler

• Scheduler decides when jobs can be run based on
scheduling policies, e.g. user priority, length of job, number
of nodes requested, length of time in queue

• Many machines use Maui
 Scheduler

• Maui Scheduler extensively
 developed, supported by

 large segment of computation
 community including
 U.S. Dept. of Energy, NCSA

(source: www.the-hawaii-vacation-guide.com)

6/15/11

18

35

Concepts

•  Limits for walltime and number of processors, so if request
exceeds limits, job automatically rejected

• Scheduler rules complicated, but generally, “smaller” jobs
run first

• Size of job is function of number of processors and
estimated time

• You provide info about number of processors you want and
estimate of time job will run

36

Concepts

• Strategies:
– Like inverse of “The Price Is Right,” give lowest estimate

possible, without going under true time needed (always
good strategy)

– Use fewer processors if possible (not always good
strategy)

•  If you reach end of estimated time, PBS will
terminate your job!

• Write script that tells PBS what to do when job is
launched

6/15/11

19

37

Concepts
•  Shell Script format:

–  First, a line invoking the scripting language:
!#!/bin/csh

–  Next, embedded PBS commands, e.g.
!#PBS -l walltime=00:10:00,nodes=2:ppn=2!
!#PBS -q workq
 (the shell script interprets these as comments, but PBS
understands they are PBS commands)

–  Then, environment variable initialization, e.g.
!setenv MYMAINDIR /home/hqi/hello (sets variable
MYMAINDIR to /home/hqi/hello)
!setenv PROG $MYMAINDIR/prog (sets PROG to /
home/hqi/hello/prog)

38

Concepts

• Shell script format (continued):
–  Then, shell script and regular Linux commands, e.g.
!if (-e $OUTF) mv $OUTF $OUTF.old!
 (meaning that if file called $OUTF exists, rename it to
$OUTF.old)

–  Finally, run job:
!mpirun -np $NP $PROG < $INFILE > $OUTF

•  To launch job:
–  Make script executable*: chmod u+x myscript
–  qsub myscript!

*Not necessary on some systems

6/15/11

20

39

Useful Commands (PBS)

•  #PBS -l walltime=hh:mm:ss,nodes=n:ppn=p
This tells PBS how much walltime you request (where
hh:mm:ss replaced by appropriate number of hours, minutes,
and seconds), how many dual processor nodes you want (replace
n with appropriate number), and how many processors per node
(1, 2, 3, or 4)

•  #PBS -q workq Which queue to use (in this case, queue
called workq)

•  #PBS -V Export all environment variables to batch job (good
practice to do this)

•  #PBS -m be Sends you e-mail at beginning and end of job

40

Useful Commands (Shell Scripting)

• set echo Print out commands as they are executed
(useful for debugging script)

• setenv A B or export A=B Sets environment
variable A to B

• $A value of A
• mpirun -np $NP $PROG < $INPUT >
$OUTPUT mpirun (sometimes mpiexec, or on
proprietary systems, aprun, poe, etc.) is executable that
launches parallel jobs on multiple processors; -np is flag
indicating number of processors used in run
*NOTE: some implementations do not require input redirection (<)

6/15/11

21

41

Further Help

• NCSA Cobalt Documentation: Running Jobs
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
SGIAltix/Doc/Jobs.html

•  The C Shell tutorial
http://www.eng.hawaii.edu/Tutor/csh.html

• DuBois, Paul. Using csh & tcsh, O’Reilly & Associates,
1995.

• Newham, Cameron and Bill Rosenblatt. Learning the bash
Shell, O’Reilly & Associates, 1998.

42

Bibliography/Resources

• About OpenPBS http://www.openpbs.org/about.html
• Maui Scheduler http://www.supercluster.org/maui/

6/15/11

22

43

III. USING SMOKY
Sunset from Clingmans Dome, Great Smoky Mountains National Park, photo available at
http://www.nps.gov/grsm/photosmultimedia/index.htm

44

III. Using Smoky

• About Smoky
•  Logging In
• Compiling
• Software Environment
• Running Jobs

6/15/11

23

45

About Smoky

• Development cluster, comparable to larger NCCS machines
• Used for application development
•  80 node Linux cluster
• Each node consists of four quad-core 2.0 GHz AMD

Opteron processors, with 32 GB memory (2GB/core)
• Gigabit ethernet network with infiniband interconnect

46

Logging in to Smoky

• Use ssh to connect
ssh username@smoky.ccs.ornl.gov!

• Authentication using one-time passwords from RSA SecurID
key fob

• X11 Tunneling: use -X (or on a Mac, -Y) option with ssh

6/15/11

24

47

Compiling on Smoky

•  Three compiler suites available on smoky:
–  PGI (default)
–  Pathscale
–  GCC

• MPI compilers (wrappers to compiler independent of
programming environment)
–  mpicc (C compiler)
–  mpiCC (C++ compiler)
–  mpif77 (Fortran 77 compiler)
–  mpif90 (Fortran 90 compiler)

48

Software Environment on Smoky

• Suppose I need to use GNU C++ compiler to compile my
code

• Suppose I also want to link with the PETSc library
• On most systems, would need to change paths in makefiles

each time I port to new system
• Would need to make sure to point to GNU compiler and

proper build of PETSc
• What happens if I discover that I need a different compiler?

Go back and change everything again

6/15/11

25

49

Software Environment on Smoky

• Modules allow dynamic modification of user environment
with modulefiles

• Can switch from PGI to GNU and back again with simple
command

• Can load proper version of PETSc automatically, based on
compiler loaded

50

Software Environment on Smoky:
Modules

• Software is loaded or swapped using modules
• Allows software, libraries, paths, etc. to be cleanly entered

into and removed from your programming environment
• Conflicts are detected and loads that would cause conflicts

are not allowed

6/15/11

26

51

Software Environment on Smoky:
Modules

Command	
 Defini=on	
 Example	

module load
my_module!

Loads	
 module	
 my_module! module load petsc!

module swap
first_module
second_module!

Replaces	
 first_module
with	
 second_module!

module swap PE-pgi
PE-gnu!

module help! Lists	
 available	
 commands	
 and	

usage	

module list! Lists	
 all	
 modules	
 currently	

loaded	

module avail
[name]!

Lists	
 all	
 modules	
 [beginning	

with	
 name]	

module avail gcc!

52

Running Jobs on Smoky

•  Login node: node you log in to
–  Edit files
–  Code compilation
–  Data backup
–  Job submission

• Compute nodes
–  Where jobs run
–  Access managed by PBS
–  Scheduling by Moab

6/15/11

27

53

Nice Job Script for Smoky

#PBS -V!
#PBS -j oe!
#PBS -A STF006!
#PBS -N loadbal!
#PBS -l walltime=00:10:00,nodes=1:ppn=16!
export CURRDIR=“/ccs/home/hqi/hello”!
export SCRDIR=“/tmp/work/hqi”!
export EXEC=“hello”!
export INPUT_FILE=“hello_input”!
cp $CURRDIR/$EXEC $SCRDIR!
cp $CURRDIR/$INPUT_FILE $SCRDIR!
cd $SCRDIR!
date!
mpirun -n 16 ./$EXEC < $INPUT_FILE!
date!

54

Resources/Bibliography

• Smoky webpage
http://www.nccs.gov/computing-resources/smoky/

• NCCS Modules webpage
http://www.nccs.gov/user-support/general-support/modules/

